This presentation is an adaptation of material from Antoni Lozano and Conrado Martinez
AVL Trees
Heaps & Priority Queues
Before we start: Questions on previous material?
A Binary Search tree (cat: Arbre Binari de Cerca, ABC) is a binary tree such that each vertex v in it has associated a key \mathsf{KEY}(v) and
We saw how to use a BST to implement a dictionary, i.e. how to search / insert / remove elements.
For a BST of depth/height h the worst-case cost of a search / insertion / deletion has cost \Theta(h).
This is great if h\approx \log n but bad when h\approx n (which can happen).
An AVL tree1 T is a binary search tree such that for every node v in T, let h_{\mathsf{left}} and h_{\mathsf{right}} be the height of the left (resp. right) sub-trees of v, then \mathsf{balance}(v)=h_{\mathsf{right}}-h_{\mathsf{left}}\in \{-1,0,1\}\ .
d3 = require("d3-selection@1.4", "d3-transition@1.3", "d3-ease", "d3-interpolate", "d3-scale-chromatic@1.5")
ewidth = Math.min(width, 640)
dur = 2000
root = d3.schemeCategory10[0]
pivot = d3.schemeCategory10[1]
secondary = d3.schemeCategory10[4]
html`<figure><svg width=${ewidth} height="420">
<line class="edge" id="e54" x1="${ewidth/2}" y1="50" x2="${ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e57" x1="${ewidth/2}" y1="50" x2="${3*ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e42" x1="${ewidth/4}" y1="150" x2="${ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e76" x1="${3*ewidth/4}" y1="150" x2="${5*ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e78" x1="${3*ewidth/4}" y1="150" x2="${7*ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e23" x1="${ewidth/8}" y1="250" x2="${3*ewidth/16}" y2="350" stroke="black" />
<g class="node" id="n5" transform="translate(${ewidth/2}, 50)">
<circle r="35" fill="white" stroke="black"></circle>
<text fill="black" text-anchor="middle" alignment-baseline="central">5</text>
<text fill="#C00" transform="translate(3, 25)" alignment-baseline="hanging">-1</text>
</g>
<g class="node" id="n4" transform="translate(${ewidth/4}, 150)">
<circle r="35" fill="${root}" stroke="black"></circle>
<text fill="white" text-anchor="middle" alignment-baseline="central">4</text>
<text fill="#C00" font-weight="bold" transform="translate(3, 25)" alignment-baseline="hanging">-2</text>
</g>
<g class="node" id="n7" transform="translate(${3*ewidth/4}, 150)">
<circle r="35" fill="white" stroke="black"></circle>
<text fill="black" text-anchor="middle" alignment-baseline="central">7</text>
<text fill="#black" transform="translate(3, 25)" alignment-baseline="hanging">0</text>
</g>
<g class="node" id="n2" transform="translate(${ewidth/8}, 250)">
<circle r="35" fill="white" stroke="black"></circle>
<text fill="black" text-anchor="middle" alignment-baseline="central">2</text>
<text fill="#090" transform="translate(15, 20)" alignment-baseline="hanging">+1</text>
</g>
<g class="node" id="n6" transform="translate(${5*ewidth/8}, 250)">
<circle r="35" fill="white" stroke="black"></circle>
<text fill="black" text-anchor="middle" alignment-baseline="central">6</text>
<text fill="black" transform="translate(3, 25)" alignment-baseline="hanging">0</text>
</g>
<g class="node" id="n8" transform="translate(${7*ewidth/8}, 250)">
<circle r="35" fill="white" stroke="black"></circle>
<text fill="black" text-anchor="middle" alignment-baseline="central">8</text>
<text fill="black" transform="translate(3, 25)" alignment-baseline="hanging">0</text>
</g>
<g class="node" id="n3" transform="translate(${3*ewidth/16}, 350)">
<circle r="35" fill="white" stroke="black"></circle>
<text fill="black" text-anchor="middle" alignment-baseline="central">3</text>
<text fill="black" transform="translate(3, 25)" alignment-baseline="hanging">0</text>
</g>
</svg>
</figure>`
Red = left-heavy
green = right-heavy
bold indicates where tree is too unbalanced.
As for the BSTs (see last class) but in Node
we also store the height of the node.
template <typename Key, typename Info>
class Dictionary {
private:
struct Node {
Key key;
Info info;
Node* left; // Pointer to left child
Node* right; // Pointer to right child
int height; // Height of the tree
Node (const Key& c, const Info& i, Node* l, Node* r, int h)
: key(c), info(i), left(l), right(r), height(h)
{ }
};
int n; // Number of keys
Node* root; // Pointer to the root of the AVL
...
};
See the full implementation in the Algorismes en C++.
Theorem 1 Every AVL tree with n nodes has height h=\Theta(\log n).
Proof.
This is very similar to the recurrence for the h-th Fibonacci number F_h, indeed (by induction on h) we can prove that T(h)=F_{h+2}-1=\Theta(\varphi^h), where \varphi=\frac{1+\sqrt{5}}{2}. Since n\geq T(h), we get n=\mathcal O(\log n).
This is done as in any other BST (see last class).
By the previous theorem, the cost of any search for a key in an AVL tree of size n is O(\log n), even in the worst case.
Insertion in an AVL tree at first is done as for generic BSTs, but this might invalidate the balance of some nodes.
What numbers could be the out-of-bounds balance?
Where could be in the tree the nodes with out-of-bounds balance?
How could we restore the balance efficiently?
If the balance condition at some node is not valid anymore (it can only become +2 or -2) we must do something to fix it and re-establish the invariant. This is done via left and right rotations (or combinations of them).
After the insertion of a vertex in an AVL tree, at most 2 rotations are enough to re-establish the balances on every vertex.
root = the deepest vertex not respecting the balance condition before any rotation
pivot = its child along the path towards the new vertex added
We have 4 possibilities:
root | pivot | short name | |
---|---|---|---|
balance | +2 | +1 or 0 | RR |
balance | +2 | -1 | RL |
balance | -2 | -1 | LL |
balance | -2 | +1 or 0 | LR |
{
const view = html`<figure><svg width=${ewidth} height="452">
<line class="edge" id="e12" x1="${ewidth/2}" y1="50" x2="${ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e13" x1="${ewidth/2}" y1="50" x2="${3*ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e24" x1="${ewidth/4}" y1="150" x2="${ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e25" x1="${ewidth/4}" y1="150" x2="${3*ewidth/8}" y2="250" stroke="black" />
<g class="node" id="n1" transform="translate(${ewidth/2}, 50)">
<circle r="35" fill="${root}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">root</text>
<text class="balance" fill="#C00" transform="translate(3, 25)" alignment-baseline="hanging" style="font-weight:bold">-2</text>
</g>
<g class="node" id="n2" transform="translate(${ewidth/4}, 150)">
<circle r="35" fill="${pivot}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">pivot</text>
<text class="balance" fill="#C00" transform="translate(3, 25)" alignment-baseline="hanging">-1</text>
</g>
<g class="node" id="n3" transform="translate(${3*ewidth/4}, 150)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
</g>
<g class="node" id="n4" transform="translate(${ewidth/8}, 250)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
<line x1="0" y1="100" x2="0" y2="175" stroke="black" stroke-dasharray="4" />
<circle cy="175" r="10" stroke-dasharray="4" fill="white" stroke="black"></circle>
</g>
<g class="node" id="n5" transform="translate(${3*ewidth/8}, 250)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
</g>
</svg>
</figure>`;
const tree_view = d3.select(view);
var t = d3.transition();
tree_view.select("#e12").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/2)
.attr("y2", 50)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e13").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", 7*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", 3*ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e24").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e25").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", 5*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", 3*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n1").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/4) + ", 150)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (ewidth/2) + ", 50)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n1>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "-2" : "0"))
.style("fill", "black")
.styleTween("font-weight", () => ((t) => t <= 0.5 ? "bold" :"normal"))
.transition()
.delay(dur)
.duration(0)
.text(-2)
.style("fill", "#c00")
.style("font-weight", "bold")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n2").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/2) + ", 50)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (ewidth/4) + ", 150)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n2>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "-1" : "0"))
.style("fill", "black")
.transition()
.delay(dur)
.duration(0)
.text("-1")
.style("fill", "#c00")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n3").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (7*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (3*ewidth/4) + ", 150)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n4").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/4) + ", 150)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (ewidth/8) + ", 250)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n5").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (5*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (3*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.on("start", repeat);
});
return view;
}
Balance Factors before & after a single right rotation
The dotted lines denote the new vertex added.
static void update_height (Node* p) {
p->height = 1 + max(height(p->left), height(p->right));
}
static void LL (Node*& p) {
Node* q = p;
p = p->left;
q->left = p->right;
p->right = q;
update_height(q);
update_height(p);
}
LL rotations are not expensive: just change a couple of pointers.
The RR case (both root and pivot right heavy) is symmetric w.r.t. the LL case
{
const view = html`<figure><svg width=${ewidth} height="452">
<line class="edge" id="e12" x1="${ewidth/2}" y1="50" x2="${3*ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e13" x1="${ewidth/2}" y1="50" x2="${ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e24" x1="${3*ewidth/4}" y1="150" x2="${7*ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e25" x1="${3*ewidth/4}" y1="150" x2="${5*ewidth/8}" y2="250" stroke="black" />
<g class="node" id="n1" transform="translate(${ewidth/2}, 50)">
<circle r="35" fill="${root}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">root</text>
<text class="balance" fill="#090" transform="translate(3, 25)" alignment-baseline="hanging" style="font-weight:bold">+2</text>
</g>
<g class="node" id="n2" transform="translate(${3*ewidth/4}, 150)">
<circle r="35" fill="${pivot}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">pivot</text>
<text class="balance" fill="#090" transform="translate(3, 25)" alignment-baseline="hanging">+1</text>
</g>
<g class="node" id="n3" transform="translate(${ewidth/4}, 150)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
</g>
<g class="node" id="n4" transform="translate(${7*ewidth/8}, 250)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
<line x1="0" y1="100" x2="0" y2="175" stroke="black" stroke-dasharray="4" />
<circle cy="175" r="10" stroke-dasharray="4" fill="white" stroke="black"></circle>
</g>
<g class="node" id="n5" transform="translate(${5*ewidth/8}, 250)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
</g>
</svg>
</figure>`;
const tree_view = d3.select(view);
var t = d3.transition();
tree_view.select("#e12").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/2)
.attr("y2", 50)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", 3*ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e13").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e24").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", 3*ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.duration(0)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", 7*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e25").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", 3*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", 5*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n1").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/4) + ", 150)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (ewidth/2) + ", 50)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n1>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "+2" : "0"))
.style("fill", "black")
.styleTween("font-weight", () => ((t) => t <= 0.5 ? "bold" :"normal"))
.transition()
.delay(dur)
.duration(0)
.text("+2")
.style("fill", "#090")
.style("font-weight", "bold")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n2").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/2) + ", 50)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (3*ewidth/4) + ", 150)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n2>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "+1" : "0"))
.style("fill", "black")
.transition()
.delay(dur)
.duration(0)
.text("+1")
.style("fill", "#090")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n3").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + ( ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (ewidth/4) + ", 150)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n4").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/4) + ", 150)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (7*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n5").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (5*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.on("start", repeat);
});
return view;
}
{
const view = html`<figure style="transform: scale(0.7);"><svg width=${ewidth} height="552">
<line class="edge" id="e12" x1="${ewidth/2}" y1="50" x2="${ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e13" x1="${ewidth/2}" y1="50" x2="${3*ewidth/4}" y2="150" stroke="black" />
<line class="edge" id="e24" x1="${ewidth/4}" y1="150" x2="${ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e25" x1="${ewidth/4}" y1="150" x2="${3*ewidth/8}" y2="250" stroke="black" />
<line class="edge" id="e510" x1="${3*ewidth/8}" y1="250" x2="${5*ewidth/16}" y2="350" stroke="black" />
<line class="edge" id="e511" x1="${3*ewidth/8}" y1="250" x2="${7*ewidth/16}" y2="350" stroke="black" />
<g class="node" id="n1" transform="translate(${ewidth/2}, 50)">
<circle r="35" fill="${root}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">root</text>
<text class="balance" fill="#C00" transform="translate(3, 25)" alignment-baseline="hanging" style="font-weight:bold">-2</text>
</g>
<g class="node" id="n2" transform="translate(${ewidth/4}, 150)">
<circle r="35" fill="${pivot}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">pivot</text>
<text class="balance" fill="#090" transform="translate(3, 25)" alignment-baseline="hanging">+1</text>
</g>
<g class="node" id="n3" transform="translate(${3*ewidth/4}, 150)">
<polygon points="0, 0 25, 200 -25, 200" fill="white" stroke="black" />
<text fill="black" y="125" text-anchor="middle" alignment-baseline="central">h+1</text>
</g>
<g class="node" id="n4" transform="translate(${ewidth/8}, 250)">
<polygon points="0, 0 25, 200 -25, 200" fill="white" stroke="black" />
<text fill="black" y="125" text-anchor="middle" alignment-baseline="central">h+1</text>
</g>
<g class="node" id="n5" transform="translate(${3*ewidth/8}, 250)">
<circle r="35" fill="${secondary}" stroke="black"></circle>
<text class="value" fill="white" text-anchor="middle" alignment-baseline="central">sec</text>
<text class="balance" fill="#C00" transform="translate(15, 20)" alignment-baseline="hanging">-1</text>
</g>
<g class="node" id="n10" transform="translate(${5*ewidth/16}, 350)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
<line x1="0" y1="100" x2="0" y2="175" stroke="black" stroke-dasharray="4" />
<circle cy="175" r="10" stroke-dasharray="4" fill="white" stroke="black"></circle>
</g>
<g class="node" id="n11" transform="translate(${7*ewidth/16}, 350)">
<polygon points="0, 0 25, 100 -25, 100" fill="white" stroke="black" />
<text fill="black" y="50" text-anchor="middle" alignment-baseline="central">h</text>
<line x1="0" y1="100" x2="0" y2="175" stroke="black" stroke-dasharray="4" visibility="hidden" />
<circle cy="175" r="10" stroke-dasharray="4" fill="white" stroke="black" visibility="hidden" ></circle>
</g>
</svg>
</figure>`;
const tree_view = d3.select(view);
var t = d3.transition();
tree_view.select("#e12").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.transition()
.duration(dur)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/2)
.attr("y2", 50)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e13").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.transition()
.duration(dur)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", 7*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/2)
.attr("y1", 50)
.attr("x2", 3*ewidth/4)
.attr("y2", 150)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e24").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/8)
.attr("y1", 250)
.attr("x2", ewidth/16)
.attr("y2", 350)
.transition()
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e25").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/8)
.attr("y1", 250)
.attr("x2", ewidth/4)
.attr("y2", 150)
.transition()
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", ewidth/2)
.attr("y2", 50)
.transition()
.delay(dur)
.duration(0)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", 3*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e510").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/8)
.attr("y1", 250)
.attr("x2", 3*ewidth/16)
.attr("y2", 350)
.transition()
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", 3*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", 3*ewidth/8)
.attr("y1", 250)
.attr("x2", 5*ewidth/16)
.attr("y2", 350)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#e511").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("x1", ewidth/4)
.attr("y1", 150)
.attr("x2", 3*ewidth/8)
.attr("y2", 250)
.transition()
.duration(dur)
.attr("x1", 3*ewidth/4)
.attr("y1", 150)
.attr("x2", 5*ewidth/8)
.attr("y2", 250)
.transition()
.delay(dur)
.duration(0)
.attr("x1", 3*ewidth/8)
.attr("y1", 250)
.attr("x2", 7*ewidth/16)
.attr("y2", 350)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n1").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.transition()
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/4) + ", 150)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (ewidth/2) + ", 50)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n1>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.transition()
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "-2" : "+1"))
.style("fill", "#090")
.styleTween("font-weight", () => ((t) => t <= 0.5 ? "bold" :"normal"))
.transition()
.delay(dur)
.duration(0)
.text(-2)
.style("fill", "#c00")
.style("font-weight", "bold")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n2").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/8) + ", 250)")
.transition()
.duration(dur)
.attr("transform", "translate(" + (ewidth/4) + ", 150)")
.transition()
.delay(dur)
.duration(0)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n2>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "+1" : "0"))
.style("fill", "black")
.attr("transform", "translate(15,20)")
.transition()
.duration(dur)
.attr("transform", "translate(3,25)")
.transition()
.delay(dur)
.duration(0)
.text("+1")
.style("fill", "#090")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n3").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.transition()
.duration(dur)
.attr("transform", "translate(" + (7*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (3*ewidth/4) + ", 150)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n4").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/16) + ", 350)")
.transition()
.duration(dur)
.attr("transform", "translate(" + (ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n5").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (ewidth/4) + ", 150)")
.transition()
.duration(dur)
.attr("transform", "translate(" + (ewidth/2) + ", 50)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (3*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n5>.balance").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(3, 25)")
.textTween(() => ((t) => t <= 0.5 ? "-1" : "-2"))
.styleTween("font-weight", () => ((t) => t <= 0.5 ? "normal" :"bold"))
.transition()
.duration(dur)
.textTween(() => ((t) => t <= 0.5 ? "-2" : "0"))
.style("fill", "black")
.styleTween("font-weight", () => ((t) => t <= 0.5 ? "bold" :"normal"))
.transition()
.delay(dur)
.duration(0)
.text(-1)
.style("fill", "#c00")
.style("font-weight", "normal")
.attr("transform", "translate(15, 20)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n10").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/16) + ", 350)")
.transition()
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (5*ewidth/16) + ", 350)")
.transition()
.delay(dur)
.on("start", repeat);
});
tree_view.select("#n11").transition(t)
.delay(1000)
.on("start", function repeat() {
d3.active(this)
.duration(dur)
.attr("transform", "translate(" + (3*ewidth/8) + ", 250)")
.transition()
.duration(dur)
.attr("transform", "translate(" + (5*ewidth/8) + ", 250)")
.transition()
.delay(dur)
.duration(0)
.attr("transform", "translate(" + (7*ewidth/16) + ", 350)")
.transition()
.delay(dur)
.on("start", repeat);
});
return view;
}
analogous to the LR case, just symmetric.
public:
void assign (const Key& key, const Info& info) {
assign(root, key, info);
}
private:
void assign (Node*& p, const Key& key, const Info& info) {
if (p) {
if (key < p->key) {
assign(p->left, key, info);
if (height(p->left)-height(p->right) == 2) {
if (key < p->left->key) LL(p);
else LR(p);
}
update_height(p);
} else if (key > p->key) {
assign(p->right, key, info);
if (height(p->right)-height(p->left) == 2) {
if (key > p->right->key) RR(p);
else RL(p);
}
} else {
update_height(p);
p->info = info;
}
} else {
++n;
p = new Node(key, info, nullptr, nullptr, 0);
}
}
The worst-case cost of an insertion in an AVL is \Theta(\log n).
The deletion algorithm for AVLs draws upon the same ideas: delete as in a normal BST and then fix the unbalances. The analysis to determine what rotation must be applied is a bit more complex.
The worst-case of deletions in AVLs is \Theta(\log n). Unbalance in a node is corrected by a simple or a double rotation, but it might be necessary to apply several rotations to fix the balance. However, not more than a rotation is necessary in any given node in the path from the root to the deletion point, since they are only \mathcal O(\log n), the worst-case is also \Theta(\log n).
A binary tree is perfect if all the internal nodes have 2 children and all the leaves have the same depth/height.
Theorem 2 For a perfect binary tree of depth d and n nodes, it holds that n=2^{d+1}-1\ .
(Proof at the blackboard)
A binary tree of depth d is complete if
Theorem 3 For a complete binary tree of depth d and n nodes, it holds that 2^d\leq n\leq 2^{d+1}-1\ . Which implies, d=\lfloor \log_2 n\rfloor and d=\Theta(\log n).
(Proof at the blackboard)
A priority queue (cat: cua de prioritat; esp: cola de prioridad) stores a collection of elements, each one associated with a value called its priority.
Priority queues support the insertion of new elements and the query and removal of an element of minimum (or maximum) priority.
template <typename Elem, typename Prio>
class PriorityQueue {
public:
...
void insert(cons Elem& x, const Prio& p);
Elem min() const;
Prio min_prio() const;
void remove_min();
bool empty() const;
};
Several techniques that we have seen for the implementation of dictionaries can also be used for priority queues (not hash tables).
For instance, AVL trees can be used to implement a priority queue with cost \mathcal O(\log n) for insertions and deletions
A min-heap (cat: munt o munticles) is complete binary tree such that for each node its priority is smaller than the one of its children. Max-heaps are defines analogously.
Where is in the tree the element with smaller priority?
A (min-)heap with n elements can be represented as a vector T with n+1 positions. T[i] contains the priority of the node i.
What would change if we wanted to store a max-heap?
Why using 0 to store the root is not a good idea?
Where is the parent/father of i?
How many leaves a heap with say 2n elements have?
template <typename Elem, typename Prio>
bool PriorityQueue<Elem,Prio>::empty() const {
return nelems == 0;
}
(see blackboard)
template <typename Elem, typename Prio>
void PriorityQueue<Elem,Prio>::remove_min() const {
if (nelems == 0) throw EmptyPriorityQueue;
swap(h[1], h[nelems]);
--nelems;
h.pop_back();
sink(1);
}
template <typename Elem, typename Prio>
void PriorityQueue<Elem,Prio>::sink(int j) {
if (2 * j > nelems) return;
int minchild = 2 * j;
if (minchild < nelems and h[minchild].second > h[minchild + 1].second)
++minchild;
if (h[j].second > h[minchild].second) {
swap(h[j], h[minchild]);
sink(minchild);
}
}
j
has no left child we are at the last level
minchild
is the index of the child with smaller priority
(see blackboard)
template <typename Elem, typename Prio>
void PriorityQueue<Elem,Prio>::insert(cons Elem& x, cons Prio& p) {
++nelems;
h.push_back(make_pair(x, p));
siftup(nelems);
}
template <typename Elem, typename Prio>
void PriorityQueue<Elem,Prio>::siftup(int j) {
if (j == 1) return;
int father = j / 2;
if (h[j].second < h[father].second) {
swap(h[j], h[father]);
siftup(father);
}
}
siftup
has cost \mathcal O(\log j)
j
is the root we are done
Heapsort (Williams, 1964) sorts an array of n elements building a heap with the n elements and extracting them, one by one, from the heap.
The originally given array is used to build the heap; heapsort works in-place and only some constant auxiliary memory space is needed.
Since insertions and deletions in heaps have cost \mathcal O(\log n) the cost of the algorithm is \mathcal O(n\log n).
template <typename Elem>
void sink(Elem v[], int sz, int pos);
template <typename Elem>
void heapsort(Elem v[], int n) {
make_heap(v, n);
for (int i = n; i > 0; --i) {
swap(v[1], v[i]);
sink(v, i-1, 1);
}
}
template <typename Elem>
void make_heap(Elem v[], int n) {
for (int i = n/2; i > 0; --i)
sink(v, n, i);
}
make_heap
establishes a (max) heap order in the array v[1..n] of Elem’s; Elem == priorities this is a.k.a. as heapify
make_heap
template <typename Elem>
void make_heap(Elem v[], int n) {
for (int i = n/2; i > 0; --i)
sink(v, n, i);
}
Let B(n) be the worst-case cost of make_heap
. Since the worst-case cost of sink(v,i-1,j)
is \mathcal O(\log i). We have
\begin{align*}
B(n)&=\sum_{i=1}^{n/2} \mathcal O(\log n)=\mathcal O(n\log n)
\end{align*}
heapsort
void heapsort(Elem v[], int n) {
make_heap(v, n);
for (int i = n; i > 0; --i) {
swap(v[1], v[i]);
sink(v, i-1, 1);
}
}
The worst case cost of heapsort
H(n) is
\begin{align*}
H(n)&=B(n)+ \sum_{i=1}^{n}\mathcal O(\log i)
\\
&=\mathcal O(n\log n)+ \mathcal O(\log n!)
\\
&=\mathcal O(n\log n)
\end{align*}
//Heapsort using priority_queue as a blackbox
#include<queue>
using namespace std;
template <typename elem>
void heap_sort (vector<elem>& v) {
int n = v.size();
priority_queue<elem> pq;
for (int i = 0; i < n; ++i)
pq.push(v[i]);
for (int i = n-1; i >= 0; --i) {
v[i] = pq.top();
pq.pop();
}
}
A possible visualization of heapsort.
make_heap
— a better analysistemplate <typename Elem>
void make_heap(Elem v[], int n) {
for (int i = n/2; i > 0; --i)
sink(v, n, i);
}
Let B(n) be the worst-case cost of make_heap
. We have
B(n)=\Theta(n)\ .
(see blackboard)
This, of course, does not change the cost of heapsort
but it is still useful.
Suppose that given a vector with n elements we don’t want to completely order it, but say we only want to output in increasing order, for example the k smallest elements.
Using a min-heap to store the elements and getting the minimum k times, we can get the k smallest elements in ascending order with cost B(n)+\mathcal O(k\log n)=\mathcal O(n+k\log n)\ .
Which means \mathcal O(n) if k=\mathcal O(n/\log n).
Questions?