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Abstract. Proofs of computational effort were devised to control de-
nial of service attacks. Dwork and Naor (CRYPTO ’92), for example,
proposed to use such proofs to discourage spam. The idea is to couple
each email message with a proof of work that demonstrates the sender
performed some computational task. A proof of work can be either CPU-
bound or memory-bound. In a CPU-bound proof, the prover must com-
pute a CPU-intensive function that is easy to check by the verifier. A
memory-bound proof, instead, forces the prover to access the main mem-
ory several times, effectively replacing CPU cycles with memory accesses.

In this paper we put forward a new concept dubbed proof of space.
To compute such a proof, the prover must use a specified amount of
space, i.e., we are not interested in the number of accesses to the main
memory (as in memory-bound proof of work) but rather on the amount of
actual memory the prover must employ to compute the proof. We give a
complete and detailed algorithmic description of our model. We develop a
full theoretical analysis which uses combinatorial tools from Complexity
Theory (such as pebbling games) which are essential in studying space
lower bounds.

Keywords: Space Complexity, Proof of Work, Pebbling Game, Random
Oracle Model.

1 Introduction

Space has a special meaning in Computer Science. It refers to the number of cells
of the working tape used by a Turing Machine (TM). While a TM computes a
function, it will make several steps (relevant to time complexity) and use a
certain number of tape cells (relevant to space complexity).

In [13], Dwork and Naor proposed to employ proof of work (PoW) to discour-
age spam and, in general, to hinder denial of service attacks. Before any action
(such as sending an email), the prover must perform some work and generate a
proof of it that can be efficiently verified. Proofs of work are currently being used
to implement a publicly verifiable ledger for Bitcoin, where transactions are reg-
istered and verified by a community of users to avoid the double-spending prob-
lem [27]. The work performed by the prover can be CPU-bound, in which the
work represents the number of steps made by a TM, or memory-bound, in which
the work represents the times a TM access the working tape. The motivation
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behind memory-bound PoW is that, while CPU speed may differ significantly
among distinct platforms, memory latencies vary much less across machines and
may prove to be more equitable and egalitarian. We stress that memory-bound
function complexity measures the number of memory accesses and does not take
into account the actual amount of memory employed. That is, a TM may read
and mark a single cell several times to reach a certain complexity level but it
will still end up using only one cell.

In this work we define the notion of Proof of Space (PoSpace). PoSpace forces
the prover to use at least a specified amount of memory. This means, for instance,
that a TM must now use a predetermined number of distinct tape cells to be able
to respond to a challenge. We will show that our PoSpace construction is also a
memory-bound PoW under the definition provided in [12, 14], while in general
a PoW cannot be a PoSpace under our definition. The state of the art memory-
bound PoW was described in [14] by Dwork, Goldberg, and Naor. Their scheme
requires both the prover and the verifier to store a large table T but they devised
ways to mitigate this problem via either hash trees or public-key signatures.

We view PoSpace as a valid alternative to various flavors of PoWs. In PoSpace
the spotlight is turned on the amount of space rather than on CPU cycles or
memory accesses as in PoWs. In addition, PoSpace solves certain problems where
PoW is not applicable. For instance, we believe PoSpace can be employed in
forensic analysis or device attestation to confirm remotely that an embedded
device has been successfully wiped. That is, a remote device could be instructed
to respond to a wipe command with PoSpace as evidence that its functional
memory is now overwritten (cf. [29]).

Straw Man Solutions. Memory-bound functions were first introduced by Abadi
et al. [1]. In the main construction of memory-bound PoW given in [12], both the
prover and the verifier share a large random table T . The prover must compute
a function by making several memory accesses to uniformly random positions
in T . Through a proper tuning of the parameters, it is also possible to force
the prover to reserve a specific amount of memory. In another construction, the
authors of [12] show that the verifier does not have to store T . The idea is to
sign all pairs (i, T [i]) and then challenge the prover on ℓ positions of T . The
prover will return the ℓ values T [i] along with an aggregate signature that can
be checked by the verifier to ensure the prover is holding the table T .

We first remark that it is possible to harness recent advances in proof of stor-
age schemes, such as Provable Data Possession (PDP) [4] and (compact) Proof
of Retrievability (POR) [31], to reduce the message complexity from O(ℓ) to
essentially constant. This solution improves upon the one in [12] and, as long
as the initialization phase is performed only once, would meet our efficiency re-
quirements for PoSpace. However, proof of storage does not satisfy our definition
of PoSpace since the running time of the verifier depends on the size of T . The
only way to avoid linear dependency is to run a PDP-based scheme with spot
checking [4], but then the prover either must use more space than required or will
not access all the memory locations. Intuitively, the reason why a solution based
on proof of storage will not work rests upon the interpretation of what proof of
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space really means. Proof of storage applied to our context satisfies the notion
that “the prover can access space”. PoSpace instead captures the stronger no-
tion that “the prover can handle space”, i.e., the prover possesses, controls, and
manipulates space directly. In particular, we distinguish between a prover that
can only read memory and a prover that can read and write memory. This is
important because, among other things, write operations cannot be parallelized
within classical computer architectures. We will provide a formal definition later
and make this intuition rigorous.

We also remark that the adversarial model considered in [1,12] contemplates
the existence of a small but fast cache memory that must be saturated to force
the prover to dispense with the cache and use traditional RAM memory. Thus,
the constructions in [1, 12, 14] do provide a form of proof of space where the
space coincides with the cache memory. But, as for proof-of-storage schemes,
these schemes satisfy the weaker notion of PoSpace where the prover can only
read memory.

Other Related Work. A proof of work is also known as a cryptographic puz-
zle in the computer security literature. Puzzles were devised to improve on the
proposal by Back [6] and employed to thwart denial of service attacks. In partic-
ular, it is important to make them hard to precompute (see [22] and references
therein). Waters et al. [34] suggest to outsource the creation of puzzles to an
external secure entity. Abliz and Tznati [2] introduce the concept of network-
bound puzzles where clients collect tokens from remote servers before querying
the service provider. They argue that network latency provides a good solution
to the resource disparity problem.

All solutions above deal with proof of effort and cannot be adapted to prove
possession of space in the way it is meant and defined in this paper.

Litecoin (litecoin.org) is a variant of Bitcoin that employs scrypt [28] to
certify a public ledger. scrypt is defined as a sequential memory-hard function
and originally designed as a key derivation function, but it is used as a proof of
effort in litecoin to hinder the use of specialized hardware. Technically, scrypt
is not a memory-bound function as defined in [1] since no lower bound on the
memory used by the function can be guaranteed. Thus, it is not even a PoSpace.
We also note it requires both the prover and the verifier to dedicate a possibly
large amount of memory, while ideally only the prover should reserve and use
actual memory (as in our construction to be presented later).

Dziembowski et al. [18] have independently suggested a notion of proof of
space. Their original construction generalizes the hash-based PoW of Cash [6]
and does not employ the pebbling framework of [14] (cf. Appendix A of [15]).
A major overhaul version of their paper later appeared on the IACR Crypto
Eprint repository [15], along with ours [3]. Their new version does use pebbling
and adopts techniques similar to ours.

However, there are two main differences between our work and [15] that make
their work quite compelling:
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1. The definition of proof of space in [15] is stronger in that it allows a two-
stage protocol. The first stage can be executed once while the second stage
can potentially be executed many times after the first. There are several ap-
plications that would benefit from this two-stage notion (see for example the
Gmail scenario described in [15]). At the same time, however, this stronger
notion is achieved in a more idealized model than the Random Oracle Model.
To emphasize the differences between these two notions, we will often refer
to ours as a one-stage PoSpace.

2. In [15] the authors provide two main constructions. The one that can be
compared with our work achieves better pebbling complexity (N/(log(N)
vs. N/(log(N) · k)). Namely, they are able to remove the extra k (a security
parameter) through a clever technique.

The pebbling framework introduced in [14] has been used successfully in many
other contexts (see for example [15–17, 23, 32]). Dziembowski et al. [16] built a
leakage resilient key evolution scheme based on the pebbling framework. Their
model allows an internal memory-bounded adversary that can control the update
operation and leak bounded amounts of information. Smith and Zhang obtain a
more efficient scheme [32], specifically, their update operation runs in time quasi-
linear in the key length, rather than quadratic. The key-evolution scheme can be
adapted to obtain a proof of space with efficient communication complexity but
the space complexity of the verifier would not satisfy the efficiency constraint of
PoSpace.

In a recent paper [23], Karvelas and Kiayias provide two efficient constructions
for Proof of Secure Erasure (PoSE) as introduced by Perito and Tsudik [29].
Informally, in PoSE the prover must convince a verifier that a certain amount
of memory has been erased. Both schemes in [23] are ingenious and one of them
uses the pebbling framework. PoSE and PoSpace are closely related notions but
have different requirements as stated in [23]. In addition, in PoSpace the prover
must show that he can access (read/write) memory while in PoSE, intuitively,
there should be the extra and necessary requirement that the memory contents
before and after the protocol execution are uncorrelated.

General Ideas behind Our Protocol. We cast PoSpace in the context of delegation
of computation, where a delegator outsources to a worker the computation of a
function on a certain input. Securely delegating computation is a very active
area [10,11,19,21] thanks also to the popularity of cloud computing where weak
devices use the cloud to compute heavy functions. In the case of PoSpace, a
function f is first selected satisfying the property that there exists a space lower
bound for any TM computing it. Then, the verifier chooses a random input x
and delegates to the prover the computation of f(x).

Specifically, we will turn to the class of functions derived from the“graph
labeling problem” already used in cryptography (see for example [14, 16, 17]).
Important tools in delegation of computation are interactive proof (and argu-
ment) systems. The delegation problem, as described in [26], can be solved as
follows: The worker computes y := f(x) and proves using an interactive proof
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system that indeed y = f(x). While interactive proofs with statistical soundness
and non-trivial savings in verification time are unlikely to exist [8, 9, 20], Kil-
ian showed [24] that proof systems for NP languages with only computational
soundness (i.e., argument systems [7]) and succinctness 1 do exist. The construc-
tion in [24] relies on Merkle Trees and PCP proofs. However, in the context of
PoSpace, the PCP machinery is an overkill. In fact, the prover does not have
to prove the statement f(x) = y, but only that a space-consuming computa-
tion was carried out. Therefore, we replace the PCP verification with an ad-hoc
scheme that results in a very efficient overall construction (while PCP-based
constructions are notoriously impractical).

Our Contributions. We introduce a formal definition of Proof of Space (PoSpace
Definition 2) capturing the intuitive idea of proving to be able to handle (read
/ write) at least a specified amount of space. We provide two PoSpace protocols
in the ROM. In addition, we provide a weaker form of PoSpace (wPoSpace)
and prove that it is indeed a separate notion. Most of previous work on proof
of storage [4, 5, 31] and on memory-bound PoW, as defined in [1, 12, 14], can
somehow be adapted to meet this weaker definition but we will not elaborate on
this any further in this paper.

Structure of the Paper. Section 2 contains some preliminary definitions. Section
3 contains the formal definition of PoSpace and provide two PoSpace protocols.
Section 5 contains the definition of a weak variant of PoSpace that captures read-
only provers and a separation result between PoSpace and this weaker variant.

Open Problems. It is not clear whether in general PoSpace implies the standard
definition of PoW in the sense of [13] (i.e., whether PoSpace is also a PoW). The
main obstacle to proving a positive result consists in showing non-amortizability.
Roughly speaking, non-amortizability means that the “price” of computing the
function for l different inputs is comparable to l times the “price” of computing
the same function once. In the context of PoWs, the “price” is measured in terms
of computational time. A PoSpace prover for space S requires a computational
time proportional to S, thus we would like to reduce an adversary for l different
protocol executions to an adversary for a single execution which spends less than
S computational time. The point is that in order to carry out l executions, the
prover needs S space and we need to ensure that he spends l×S computational
time. But space is reusable and it may well happen that something already
computed for one instance is reused to compute the proof for another instance.
Nevertheless, our second construction does satisfy the definition of PoW. This
is simply because we resort to the Random Oracle to ensure that two instances
of the protocol are uncorrelated.

1 I.e., the total amount of communication and the verification time are both less than
their respective values required to transmit and check the NP-witness.
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2 Notations and Preliminary Definitions

Graph Notation. Given a directed acyclic graph (DAG) G, the set of successors
and predecessors of v in G are respectively Γ+(v) and Γ−(v). We will implicitly
assume a topological ordering on its vertex set and a boolean encoding of the
vertices respecting that ordering. If Γ+(v) = ∅ then v is an output-node and
T(G) is the set of all output-nodes of G. Analogously if Γ−(v) = ∅ then v is an
input-node and S(G) is the set of all input-nodes of G.

Sampling, Interactive Execution, and Space. Let A be a probabilistic TM. We
write y ← A(x) to denote y sampled from the output of A on input x. Moreover,
given σ ∈ {0, 1}∗, we write y := A(x;σ) to denote the output of A on input x
fixing the random coins to be σ. We write ppt for the class of probabilistic
polynomial time algorithms. Let A, B be two probabilistic interactive TMs. An
interactive joint execution between A, B on common input x is specified via the
next message function notation: let b1 ← B(x), ai ← A(x, b1, . . . , bi), and bi+1 ←
B(x, a1, . . . , ai), then ⟨A,B⟩ (x) denotes a joint execution of A and B on common
input x. If the sequence of messages exchanged is (b1, a1, . . . , bk, ak, bk+1) we say
that k is the number of rounds of that joint execution and we denote with
⟨A,B⟩ (x) = bk+1 the last output of B in that joint execution of A and B on
common input x.

With Space(A, x), we denote the maximal amount of space used by the deter-
ministic TM A on input x without taking into account the length of the input
and output. More formally, we say that A(x) has space s (or Space(A, x) = s) if
and only if at most s locations on A’s work tapes (excluding the input and the
output tapes) are ever written by A’s head during its computation on x. In the
case of probabilistic TM A, the function Space(A, x) is a random variable that
depends on A’s randomness.

Similarly, given two interactive TMs A and B, we can define the space
occupied by A during a joint execution on common input x as follows. Let
(b1, a1, . . . , bk, ak, bk+1) the sequence of messages exchanged during ⟨A,B⟩ (x),
then:

SpaceA(⟨A,B⟩ , x) := max
i=1,...,n

{Space (A, x, b1, . . . , bi))}

As before, if A and B are probabilistic interactive TM then the function
SpaceA(⟨A,B⟩ , x) is a random variable that depends on the randomness of both
A and B. For simplicity, when the inputs of A (or ⟨A,B⟩) are clear from the
context, we write Space(A) (or SpaceA (⟨A,B⟩)).

Merkle Trees. Merkle Trees (MT) are classical tools in cryptography. A MT
enables a party to succinctly commit itself to a string l = (l1, . . . , ln) with
li ∈ {0, 1}k.

The term “succinctly” here means that the MT-commitment has size k which
is independent with respect to the size of l. In a later stage, when a party opens
the MT-commitment, it is guaranteed that the “opening” can yield only the
string l committed before (the binding property). Moreover l can be succinctly
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opened location-by-location: the party can open li for any i giving the certificate
attesting the value of li. Here we use the term succinctly to mean that the
“opening”, i.e., the certificate, has size logn × k (sub-linear in n) with respect
to the size of l.

Abstractly, we define a Merkle Tree as a tuple of three algorithms (GenCRH ,
MT,Open) where the first algorithm is a key generation algorithm for a collision
resistance hash (CRH) function. Suppose that GenCRH outputs a key s. Then
MT takes as input s and a sequence of strings l and outputs the commitment C
for l, i.e., C = MTs(l). The algorithm Open takes as input the key s, a sequence
of strings l, and an index i (it is denoted as Opens(l, i)), and outputs the string
li in l.

Usually, the term “commitment” refers to a scheme that is both hiding (i.e.,
the receiver cannot infer any knowledge on l from the commitment) and binding.
The MT scheme that we use does not provide the hiding property but we still
refer to it as a commitment.

A full description of the Merkle Tree is deferred to Appendix B.

Pebbling Games with Wildcards. The following definition of pebbling game with
wildcards is a modification of the standard definition of pebbling game that can
be found, for instance, in [25]. Given a DAG G = (V,E), we say that a sequence
P = (P0, . . . , PT ) of subsets of V is a pebbling sequence on G with m wildcards
if and only if P0 = ∅ and there exists a set W ⊆ V of size m such that, for each
i ∈ {1, . . . , T }, exactly one of the following holds:

– Pi = Pi−1 ∪ {v} if Γ−(v) ⊆ Pi−1 ∪W (pebbling) or
– Pi ⊆ Pi−1 (unpebbling).

If a set of vertexes Γ is such that Γ ⊆
⋃T

i=0 Pi, we say that P pebbles Γ. If
P pebbles T(G) then we say that P is a pebbling game on G with m wildcards.
Moreover we say that the pebbling time of P is T and the pebbling space of P
is maxi |Pi|. Intuitively, a pebbled node is a node for which we have made some
computations. Instead, W represents complementary nodes, for which we have
made no computations.

One of the main ingredients for the correctness of our constructions is the Peb-
bling Theorem [25] that proves that stacks of superconcentrators graphs (Pip-
penger [30]) have an exponential pebbling space-time trade off.

Theorem 1 (Pebbling Theorem). There exists a family of efficiently sam-
pleable directed acyclic graphs {GN,k}k,N∈N with constant fan-in d, N input
nodes, N output nodes and kN logN nodes in total, such that:

1. Any pebbling sequence that pebbles ∆ output nodes has pebbling space at most
S pebbles and m wildcards, where |∆| ! 4S + 2m+ 1, and pebbling time T
such that

T ! |∆|
(
N − 2S −m

2S +m+ 1

)k

.
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2. There exists a pebbling sequence that pebbles the graph GN,k which has peb-
bling space N + 2 and needs time O(kN logN).

3. For any node v ∈ V (GN,k), the incoming nodes of v and the position of v in
first lexicographic topologically order of GN,k are computable in O(k logN).

More details about the construction and the proof of this theorem are given
in Appendix A.

Graph Labeling Problem with Faults. We adopt the paradigm where the action
of pebbling a node in a DAG G is made equivalent to the action of having
calculated some labeling on it. This paradigm was introduced in [14] and also
recently used in [16, 17]. We make use of a Random Oracle (RO) H to build a
labeling on G according to the pebbling rules.

Definition 1 (H-labeling with faults). Given a DAG G with a fixed ordering
of the nodes and a Random Oracle function H : {0, 1}∗ → {0, 1}k, we say that
ℓ : V (G) → {0, 1}k is a (partial) H-labeling of G with m faults if and only if
there exists a set M ⊆ V (G) of size m such that for each v ∈ V (G) \M

ℓ(v) := H(v∥ℓ(v1)∥ . . . ∥ℓ(vd)) where {v1, . . . , vd} = Γ−(v). (1)

Given a label ℓ and a node v, we say that ℓ well-label v if only if the equation
(1) holds for ℓ and v.

Our framework generalize the paradigm of [14] by introducing the concept of
“faults”. As it is shown in Section 3.1, dealing with “faults” is necessary because
an adversary challenged on a labeling function could cheat by providing an
inconsistent label on some nodes (which, indeed, are then referred to as “faults”).

The use of a Random Oracle H provides two important benefits to our
construction: First, the incompressibility of any output given the input and
the evaluation of the function in many different points. Specifically, for any
x and x1, . . . , xm, the value of H(x) is uniformly random and independent of
H(x1), . . . ,H(xm). Therefore, to store H(x), an adversary needs space equal to
the minimum between the shortest description of the input and the length of the
output. In particular, notice that we do not require that the entire function be
incompressible (this holds for a Random Oracle but it is trivially false for any
real-world instantiation of it). Second, in order to H-label the graph, any TM
must follow a pebble strategy. In particular, to label a node v, a TM must neces-
sarily calculate and store the label values of all the predecessors ℓ(v1), . . . , ℓ(vd)
of the node v. If the graph G needs at least S pebbles to be pebbled efficiently in
a pebbling game, then a TM needs to store at least S labels (i.e., RO outputs)
to compute an H-labeling of G. This general strategy is proven sound in [14]
and referred to as the Labeling Lemma. In our context, however, we provide m
degrees of freedom and, given a partial H-labeling ℓ of G with m faults and a
H-labeling ℓ′ of G, it will likely be the case that ℓ(v) ̸= ℓ′(v) for each node v
that is a descendant of a not well-labeled node. For this reason, we must state a
more general version of the Labeling Lemma in [14].
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Lemma 1 (Labeling with Faults Lemma). Consider a DAG G with degree
d, a TM A with advice h, and a Random Oracle H : {0, 1}∗ → {0, 1}k that
computes an H-labeling ℓ with m faults of G. If h is independent of H, with
overwhelming probability, there exists a pebbling sequence P = (P1, . . . , PT ) for
the DAG G with m wildcards having pebbling space S such that:

– S " 1
k Space(A) + d,

– T " (d+ 2)σ, where σ is the number of queries of A to H.

In particular T is a lower bound for the execution time of A.

The proof of the Lemma above is provided in the full version of this paper [3].

3 Proof-of-Space Protocols

In this section we define the notion of PoSpace, then we provide two constructions
that meet the definition. We later define a second notion of a weak form of
PoSpace and show a separation result between the two notions. In our definition
below, we allow the adversary to access extra information to model the case
in which the adversary may outsource storage and computation to an external
provider.

We model the write permission on the storage by providing a precomputation
phase to the adversary. That is, the adversary can use as much space as needed to
produce an hint. The hint, that may depend on the public parameters of PoSpace,
can be read during the interactive phase (i.e., when the protocol is started). In
contrast, wPoSpace does not provide the adversary with a precomputation phase.

Definition 2 (PoSpace). Consider Σ = (Gen,P,V), where Gen is a ppt TM,
and P,V are interactive ppt TMs. Let k ∈ N be a security parameter. Suppose
that the following points hold :

(Completeness) For all pk ∈ Gen(1k) and for all S ∈ N, S > k it holds
⟨P,V⟩ (pk, 1S) = 1, time complexity of P is O(poly(k, S));

(Succinctness) For all S ∈ N, S > k the time and space complexity of V and
the message complexity of ⟨P,V⟩, as functions of k and S, are O(poly(k) ·
poly logS);

(Soundness) For any ppt adversary A and for any ppt TM with advice A′

such that pk ← Gen(1k) and h ← A′(pk, 1S), the following event:

SndA,A′

Σ,S (k) := ⟨A(h),V⟩ (pk, 1S) = 1 ∧ SpaceA(⟨A(h),V⟩ , pk, 1S) < S

has negligible probability (as a function of k) for all S ∈ N, S > k.

Then, we say that Σ = (Gen,P,V) is a (one-stage) Proof of Space (PoSpace).
To be concise, we could say informally that A wins when the event ∃S ∈ N :

SndA,A′

Σ,S (k) occurs.
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Notice that in the completeness part we set just a very mild upper bound on
the space complexity of P. This is done on purpose to allow comparison among
different PoSpace protocols. In particular a useful measure on a PoSpace protocol
(Gen,P,V) is the following space gap: the ratio Space(P(pk, 1S))/S.

Notice that A′ is a space-unbounded ppt TM that models the fact that there
might be information that can be efficiently computed that the space-bounded
adversary A can exploit somehow to compromise PoSpace.

It is easy to see that the PoSpace definition implicitly provides sequential
composability. In fact, the adversaryA′ gives toA a hint which is a function of the
public key, therefore the adversary A′ can compute all the previous executions
of the protocol “in his head”.

We provide next a 4-messages PoSpace protocol in the Random Oracle Model
(ROM) without any computational assumption. By applying the Fiat-Shamir
paradigm to the scheme, we obtain a 2-message non-interactive PoSpace.

3.1 A 4-Message PoSpace Protocol

The protocol Σ4 = (Gen,V,P) is described in Figure 1 and it is a 4-message
protocol.

The protocol follows in some way Kilian’s construction of argument sys-
tems [24]. For any string α ∈ {0, 1}∗, let Hα(·) be defined as H(α∥·). The verifier
chooses a random α and asks the prover to build a Hα-labeling of graph GN,k,
where N depends on S. The purpose of α is to “reset” the Random Oracle. That
is, any previous information about H is now useless with overwhelming prob-
ability. The labeling provides evidence that the prover has handled at least S
memory cells. The prover then commits the labeling and sends the commitment
to the verifier. At this point, the verifier asks the prover to open several random
locations in the commitment and then it checks locally the integrity of the la-
beling. For a commitment C and for any node that the verifier has challenged,
the prover sends what we call a C-proof for the node (defined next).

Definition 3 (C-proof). Given a DAG G, a commitment C, and a Random
Oracle H, we say that a string π = (π0, . . . ,πd) is a C-proof for a vertex v ∈
V (G) w.r.t. H if only if given Γ−

G (v) = {w1, . . . , wd} the following points hold:

1. π0 is a C-opening for v, let x be the value π0 is opening to;
2. for each i = 1, . . . , d, πi is a C-opening for wi, let xi be the value πi is

opening to;
3. x = H(v∥x1∥ . . . ∥xd).

We omit C, G, and H, when they are clear from the context, by saying that π
is simply a proof.

In the definition of C-proof, the points 1 and 2 refer to the commitment C
while point 3 ensures the integrity of the labeling. Note that the size of π is
O(kd logN).

We remark that when TM B takes as input a RO H, it is intended that B has
oracle access to H and the length of the input of B does not take into account
the (exponentially long) length of H.
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Generator Gen takes as input 1k and outputs pk := ({GN,k}N∈N,H, s),
where {GN,k}N∈N is a family of graphs satisfying the Pebbling Theorem (Theorem
1), equipped with the natural lexicographic topological ordering on its vertex set,

H is a RO and s is a key for CRH H.
Common input: k, S, pk

N := ⌈4γ(d+ S/k) + γ⌉, where d is the degree of GN,k and γ ∈ R, γ > 1.

Verifier V Prover P

1. Pick α ← {0, 1}k α

C

Let ℓ be a Hα-labeling of GN,k,
where Hα(·) := H(α∥·).

Commit C := MTs(ℓ).

2. Pick (v1, . . . , vl) ← V l

uniformly at random, where
l = ⌊k ln2 k logN⌋ and
V = V (GN,k)

3. Check for any i " l if
Πi is a C-proof for vi wrt
the Hα-labeling ℓ

(v1, . . . , vl)

(Π1, . . . ,Πl)

For any vi, πi := Opens (ℓ, vi):
For any vji ∈ Γ−(vi):

πj
i := Opens

(
ℓ, vji

)

Πi :=
(
πi,π

1
i , . . . , π

d
i

)

Send (Π1, . . . ,Πl)

Fig. 1. The 4-message PoSpace protocol Σ4

Theorem 2. The protocol Σ4 in Figure 1 is a (one-stage) PoSpace.

We start by giving the intuition behind the proof of the Theorem. Com-
pleteness is trivial. Succinctness follows easily from point (3) of the Pebbling
Theorem (Theorem 1). For Soundness, we first prove that the protocol Σ4 is a
Proof-of-Knowledge (PoK) of a partial labeling with “few” faults. By the PoK
property, we can extract from a winning adversary a partial labeling with few
faults. Thus, with overwhelming probability, the adversary A computes a partial
labeling. We then exploit the binding property of the Merkle-Tree and show that
the adversary has computed the labeling during the round (1) of the protocol.
By appropriately fixing the randomness of the protocol, we ensure that the hint
h is independent of H, thus meeting all the hypotheses of the Labeling Lemma
(Lemma 1). We obtain then a pebbling strategy that has pebbling space and
pebbling time roughly upper-bounded by the respective space and time com-
plexity of the adversary A. Since the adversary uses strictly less space than S
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and A is ppt then, by our choice of the parameters, there is a contradiction with
the point (1) of the Pebbling Theorem (Theorem 1).

Proof. We focus on the Soundness. We divide the proof in two parts. First, in
the PoK Lemma, we prove that the Protocol Σ4 is a PoK for a partial labeling
with “few” faults, and that the partial labeling has been computed during the
round (1), i.e., after the verifier V sent the message α and before the adversary
sent the commitment message C. Then we combine the PoK Lemma with the
Labeling Lemma and the Pebbling Theorem to reach a contradiction assuming
that there exists a winning ppt adversary.

We stress that the knowledge extractor doesn’t need to be efficient since we
do not rely on any computational assumption.

Lemma 2 (PoK Lemma). Consider the protocol Σ4 = (Gen,V,P), a ppt ad-
versary A, a ppt Turing Machine with advice A′, a space parameter S, and a
security parameter k. Sample a random pk ← Gen(1k) and let h ← A′(pk, 1S). If

Pr
[
SndA,A′

Σ4,S
(k)

]
is noticeable (where the probability is taken over the random-

ness of pk, h and all the randomness used during the protocol execution between
A and the verifier) then, for a noticeable probability over the choice of pk, there
exist a first verifier message α̃ and an adversary’s randomness ρ̃ such that A(h)
calculates an Hα̃-labeling ℓ of GN,k with m faults such that the following holds:

– the hint h is independent of Hα̃,
– m = O

(
N
ln k

)
and

– for any well-labeled node u in ℓ we have (α̃∥u∥ℓ(u1)∥ . . . ∥ℓ(ud)) ∈ Q,

where Q is the set of queries to H made by A when fed with randomness ρ̃ during
round (1) of the protocol Σ4, and {u1, . . . , ud} = Γ−(u).

The proof of the Lemma above is provided in the full version of this paper [3].
By contradiction, suppose there exists an adversary A for the protocol Σ4. By

applying Lemma 2, we extract with noticeable probability a partial Hα̃-labeling,
ensure that A(h) computed that labeling during round (1) and that the hint h
is independent of Hα̃. Hence, satisfying the hypotheses of Lemma 1.

This gives us, with overwhelming probability, a pebbling sequence P of GN,k

with m wildcards having pebbling space S′ = S
k + d, m = O( N

ln k ). In addition,
the pebbling time of P is a lower bound for the execution time of A during round
(1). To apply Theorem 1, we fix N such that

N − l ! 4S′ + 2m+ 1, (2)

where l denotes the number of wildcards that are in T(GN,k).
Given c ∈ (0, 1) and ϵ > 0, we have that (2+ ϵ)m+ l " cN . If we find N such

that
N ! 4S′ + cN + 1,

(hence N ! 4γS′ + γ, where γ = 1/(1− c)) then the inequality (2) will follow.
(This is main reason why we have set N := ⌈4γS′ + γ⌉ in the Protocol Σ4.)
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By applying Theorem 1, the execution time T of A is such that

T ! (N − l)

(
N − 2S′ −m

2S′ +m+ 1

)k

! c′(1 + ϵ)k, (3)

where c′ is a constant that is a lower bound for N − l. The value (1+ ϵ)k derives
from the fact that, eventually,

N − 2S′ −m ! (1 + ϵ)(2S′ +m+ 1).

Equation (3) shows that the execution time of A is exponential in k. This is not
possible as, by hypothesis, A is ppt.

On the Space Gap of the Protocol. The prover algorithm can be implemented
basically in two ways. The most natural implementation is to first build the
labeling for all the nodes in the graph and then apply the Merkle Tree, while
keeping in memory the labeling which is reused during the second phase of
the prover algorithm. Through this algorithm, the space gap of the prover is
O(log S) while the time complexity is essentially dominated by the one labeling
phase. Another way to implement the prover algorithm is by computing the
labeling and the Merkle Tree simultaneously. In this way the algorithm can
reuse space resulting in a strategy with space gap O(1). Note however that,
in this implementation, the prover must build the labeling twice (once for the
commitment and then during the challenge phase).

4 A 2-Messages PoSpace Protocol

We apply the standard Fiat-Shamir paradigm to the PoSpace scheme given in
Section 3.1 by using two independent Random Oracles H,L:

– H : {0, 1}∗ → {0, 1}k is used by the prover for the labeling of the graph;
– L : {0, 1}k → V l given the commitment C as input, it yields the second

verifier’s message (of the protocol Σ4).

Let (Σ4.Gen,Σ4.P,Σ4.V) the PoSpace defined in Figure 1. We define in Figure
2 a 2-messages PoSpace: we call Σ2 = (Gen,P,V) this protocol. Furthermore, let
H′ : {0, 1}∗ → {0, 1}k be a RO then the function f(x) := Σ2.P(pk, 1S,H′(x)) is
a non-interactive PoSpace that satisfies the syntactic definition of PoWs in [13].

Theorem 3. The Protocol Σ2 in Figure 2 is a PoSpace.

The proof of the theorem 3 is provided in the full version of this paper [3].

5 Weak Proof of Space

The concept of proof of space can lead to multiple interpretations. The main
interpretation formalized in the PoSpace definition requires that the prover can
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Generator Gen on input 1k returns pk′ := (pk,L),
where pk ← Σ4.Gen(1k) and L is a RO

Common input: k, S, pk

Verifier V Prover P

1. Pick α ← {0, 1}k

2. Let v = L(C)
Check Σ4.V(pk, 1S ,α, C,v,Π) = 1

α

(C,Π)

C := Σ4.P(pk, 1S ,α)
v := L(C)

Π := Σ4.P(pk, 1S ,α, v)

Fig. 2. The 2-messages (one-stage) PoSpace protocol Σ2 = (Gen,P,V)

handle (i.e., read/write) space. In this section we provide a definition for a weaker
alternative of PoSpace we call weak Proof of Space (wPoSpace). This captures
the property that the prover can just access space and formalizes what could
effectively be achieved by properly adapting previous work on proof of storage
[4, 5, 31] and on memory-bound PoW as defined in [1, 12](where the adversary
model contemplates the existence of cache memory). The definition of wPoSpace
is similar to the Definition of PoSpace (Definition 2) (the only change is in the
Soundness part). We will provide a protocol which is a wPoSpace but not a
PoSpace, hence wPoSpace is a strictly weaker notion than PoSpace.

Definition 4 (wPoSpace). Consider Σ = (Gen,P,V) where Gen is a ppt TM,
and P, V are interactive ppt TMs. Let k ∈ N be a security parameter and
pk ← Gen(1k). Suppose that the following points hold for all S ∈ N, S > k:

(Completeness) and (Succinctness) the same as in the PoSpace definition.
(weak-Soundness) For any ppt adversary A, the following event:

wSndA
Σ,S(k) := ⟨A,V⟩ (pk, 1S) = 1 ∧ SpaceA(⟨A,V⟩ , pk, 1S) < S,

has negligible probability (as a function of k).

Then we say that Σ is a (one-stage) Weak Proof of Space (wPoSpace).

In the Soundness of PoSpace, the adversary can take advantage of an un-
bounded space machine which is then unavailable during the protocol execu-
tion. In the Soundness of wPoSpace, instead, this is disallowed. Notice that a
wPoSpace’s adversary can perform some precomputation before the execution of
the protocol (i.e., before sending/receiving the first message), however, such a
precomputation cannot exceed the space bound given.

Theorem 4. There exists a protocol which is a wPoSpace but not a PoSpace.
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Proof. We start by providing a protocol which is not a PoSpace. Consider the
protocol Σ4 in Figure 1 where the first message α sent by V is always the same,
say 0k. We call Σ3 this modified version of Σ4. The protocol Σ3 is not a PoSpace.
For any k and S ∈ N, consider the hint h which is the H0k -labeling of GN,k plus
the complete Merkle-Tree of that labeling. We define an adversary that sends
the commitment C that is in h and, for any verifier’s second message v, reads
the right answer from h. That adversary needs to access h in read-only mode,
hence without using any additional working space.

The protocol Σ3 is a wPoSpace. The structure of the proof is the same as the
one of Theorem 2. We provide a particular case of the PoK Lemma (Lemma
2) where the hint h is the empty string and α̃ is 0k. For the sake of clarity, we
restate the PoK Lemma for this particular setting.

Lemma 3. Consider the protocol Σ3 = (Gen,V,P), a ppt adversary A, a space
parameter S and a security parameter k such that pk ← Gen(1k).

If Pr
[
wSndA

Σ3,S(k)
]
is noticeable, then there exists a randomness ρ̃ such that

A fed with the randomness ρ̃ during the round (1) of the protocol Σ3 calculates
an H0k-labeling ℓ of GN,k with m faults such that the following holds:

– m = O
(

N
ln k

)
and

– for any well-labeled node u in ℓ we have (α̃∥u∥ℓ(u1)∥ . . . ∥ℓ(ud)) ∈ Q,

where Q is the set of queries to H made by A when fed with randomness ρ̃ until
the end of round (1) and {u1, . . . , ud} = Γ−(u).

By contradiction, suppose there exists an adversary A for the protocol Σ3. By
applying Lemma 3, we extract a partial H0k -labeling, ensuring that A computed
that labeling during round (1) (hence satisfying the hypotheses of Lemma 1).

This gives us, with overwhelming probability, a pebbling sequence P of GN,k

withm wildcards and with pebbling space S′ = S
k +d,m = O( N

lnk ). The pebbling
time of P is a lower bound for the execution time of A before round (2). The
rest of the proof follows exactly the same structure of the proof of Theorem 2
and it is therefore omitted. ⊓⊔
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A Proof of the Pebbling Theorem (Theorem 1)

For the sake of convenience we re-write the statement of that theorem here. For
the definitions of pebbling games, pebbling space and pebbling time we refer the
reader to Section 2.

Pebbling Theorem (Theorem 1). There exists a family of efficiently sam-
pleable directed acyclic graphs {GN,k}k,N∈N with constant fan-in d, N input
nodes, N output nodes and kN logN nodes in total, such that:

1. Any pebbling sequence that pebbles ∆ output nodes has pebbling space at most
S pebbles and m wildcards, where |∆| ! 4S + 2m+ 1, and pebbling time T
such that

T ! |∆|
(
N − 2S −m

2S +m+ 1

)k

.

2. There exists a pebbling sequence that pebbles the graph GN,k which has peb-
bling space N + 2 and needs time O(kN logN).
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3. For any node v ∈ V (GN,k), the incoming nodes of v and the position of v in
first lexicographic topologically order of GN,k are computable in O(k logN).

The family of graphs GN,k we build is made from DAGs that are k layered
stack of superconcentrators [30] with N inputs and N outputs.

Definition 5 (superconcentrator). We say that a directed acyclic graph G =
(V,E) is an N -superconcentrator if and only if

1. |S(G)| = |T(G)| = N ,
2. for each S ⊆ S(G) and for each T ⊆ T(G) such that |S| = |T | = ℓ there

exist ℓ vertex-disjoint paths from S to T , i.e. paths such that no vertex in V
is in two of them.

Fig. 3. An example of 16-superconcentrator: the Butterfly Graph

Definition 6 (stack of superconcentrators). Given an N-superconcentrator
G we define the graph G×k, the stack of k copies of G, inductively as follows:
G×1 = G and G×k is obtained from G×(k−1) and G by first renaming the vertexes
of G so that they do not appear in the vertexes of G×(k−1), obtaining a graph
G′, and then by identifying T(G×(k−1)) with S(G′).

Not any k layered stack of superconcentrators satisfies points 2 and 3 of the
Pebbling Theorem. To obtain those properties we use the following well-known
superconcentrator: the Butterfly Graph BN built by putting together two FFT
graphs with N inputs and outputs [33]. An example of such construction (for
N = 16) is given in Figure 3.

It is easy to see that the family of graphs GN,k := B×k
N satisfies points 2 and

3 of the Pebbling Theorem and it is a k layered stack of N -superconcentrators.
It remains to prove only point 1.

For superconcentrator graphs we can prove a tradeoff between pebbling space
and pebbling time, even for pebbling games with wildcards. This result is based
on a generalization of the “Basic Lower Bound Argument” (BLBA) by Tompa
[33].
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Lemma 4 (BLBA with wildcards). Consider an N -superconcentrator G, a
set M ⊆ T(G), and a pebbling sequence P = (P0, . . . , Pℓ) with m wildcards that
pebbles M . Let A be the set of all elements of S(G) pebbled and unpebbled at
some point in P. If |M | ! |P0|+ |Pℓ|+m+ 1 then |A| ! N − |P0|− |Pℓ|−m.

Proof. By contradiction suppose that |A| < N − |P0| − |Pℓ| − m, this means
that |Ac| ! |P0| + |Pℓ| + m + 1 and every element in Ac, by definition, is not
pebbled and unpebbled. Take any B ⊆ Ac such that |B| = |M | then, as G is an
N -superconcentrator, we have π1, . . . ,π|M| vertex disjoint paths from B to M .
Let W be a set of m faults for P . By construction |M | > |P0 ∪ Pℓ ∪W | thus we
have some path π from some element v of B to some element w of M such that
π∩ (P0 ∪Pℓ ∪W ) = ∅. By definition of Ac, and hence of B, v is not pebbled and
unpebbled and v ̸∈ P0∪Pℓ∪W , thus v ̸∈ Pi for each i ∈ [ℓ]. As π∩(P0∩W ) = ∅,
we must have that π ∩ Pi = ∅ for each i ∈ [ℓ]. But then the vertex w is not in⋃

i∈[ℓ] Pi contradicting the fact that P pebbles M . ⊓⊔

Theorem 5 (Pebbling Theorem (point 1)). Let G×k be a stack of k copies
of an N -superconcentrator G, ∆ ⊆ T(G×k) and P a pebbling sequence for G×k

with m wildcards that pebbles ∆. Let S be the pebbling space of P and T the
pebbling time of P. If |∆| ! 4S + 2m+ 1 then

T ! |∆|
(
N − 2S −m

2S +m+ 1

)k

.

Proof. Let G1, . . . , Gk be the k copies of G that form G×k. Suppose we want
to pebble a set M ⊆ T(Gi) such that |M | ! 2S +m+ 1 and let A1, . . . , An be
disjoint subsetes of M such that A1 are the first 2S +m+ 1 elements of M to
be pebbled in P , A2 are the second 2S +m+ 1 elements of M to be pebbled in

P and so on. Clearly we have that the number of these sets is n =
⌊

|M|
2S+m+1

⌋
.

By Lemma 4 we have that for each Aj there exists a set β(Aj) in S(Gi), whose
elements are pebbled and unpebbled, of size at least N − 2S − m. Thus we
have that the total number of elements in S(Gi) that have been pebbled and

unpebbled is at least (N − 2S −m)
⌊

|M|
2S+m+1

⌋
. Notice now that each β(Aj) ∈

T(Gi−1) hence we can reapply the argument above to it provided that for each
j, |β(Aj)| ! N − 2S − m ! 2S + m + 1 (and this is implied by the fact that
N ! |∆| ! 4S+2m+1). Thus starting from T(Gk) = T(G×k) we can prove by
induction, going back to G1, that at least

|∆|
(
N − 2S −m

2S +m+ 1

)k

actions of pebbling and unpebbling take place on S(G1) = S(G×k). As each
action is an elementary step in the pebbling game P we have that the result
follows. ⊓⊔
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B Merkle Tree

Consider the complete binary tree T over n leaves. Without loss of generality we
can assume that n is a power of 2 by using padding if necessary. Label the i-th
leaf with li, then, use a collision resistant hash (CRH) function Hs : {0, 1}2k →
{0, 1}k with random seed s to propagate the labeling l of the leaves to a labeling
φ along the tree T up to the root according to the following rules:

1. φ(v) := li if v is the i-th leaf of T ,
2. φ(v) := Hs(φ(v1)∥φ(v2)) where v1, v2 are the two children of v.

Then the commitment for a string l is the label φ(r) of the root of the tree: we
denote it with MTs(l). The commitment is succinct in fact it has size k which
is independent of n.

An opening for the i-th element in the sequence l is an ordered sequence
formed by elements of {0, 1}k that are intended to be the label li of the i-th leaf
of T together with the labels φ(vj) for each vj that is a sibling of vertices in the
path from the root of the tree to the i-th leaf. An example of opening is shown
in Figure 4.

e

c

b a

d

Fig. 4. An example of opening: c = (a, b, c, d, e)

We denote with Opens(l, i) the opening formed by li together with all the
φ(vj). Notice that from Opens(l, i) it is possible to compute φ(w) for each vertex
w in the path from the root to the leaf at the i-th position. In particular it
is efficient to compute MTs(l). The opening is succinct in fact it has size k ·
logn which is (almost) independent of n. In general, given an opening c =
(c1, . . . , clogn) for some position i we can think of it as equivalent to Opens(l, i)
and compute the label of the root according to the given c and position i. If this
value is equal to MTs(l), we say that c opens the i-th position to c1. As H is a
CRH function, then for any i, it is guaranteed that MTs(l) can open the i-th
position only to li.


