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proving space lower bounds in algebraic proof systems. As an immediate application, we obtain the space
lower bounds previously provided for PC/PCR [Alekhnovich et al. 2002; Filmus et al. 2012]. More importantly,
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1. INTRODUCTION
The proof complexity research field was initiated by Cook and Reckhow [1979]. It stud-
ies the complexity of proving propositional tautologies in propositional proof systems
or equivalently refuting contradictions. The historical motivation for investigating the
complexity of proofs is the P vs. NP question. As observed in Cook and Reckhow [1979],
one way of establishing NP ̸= coNP and hence P ̸= NP would be to prove that there
are no polynomially bounded proof systems. A proof system S is polynomially bounded
if it admits polynomial-size proofs for any tautology. In other words there exists a poly-
nomial p such that for every tautology x there is a proof "x in S of size at most p(|x|),
that is, p-bounded in the length of x. Studying bounds on the size of proofs in systems
of increasing strength could be useful to understand better the NP ̸= coNP problem.
Quoting J. Krajı́ček in Krajı́ček [2009]:

“Proving that NP ̸= coNP showing incrementally that examples of proof
systems are not polynomially bounded seems unlikely. Rarely a universal
statement is proved by proving all its instances. Nevertheless proving these
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lower bounds we may hope to uncover hidden computational hardness as-
sumptions and then try to reduce the conjecture to some more approachable
problem.”

This is known as Cook’s program in proof complexity. The most investigated proof
systems include Resolution, a logical proof system introduced in Robinson [1965] and
Blake [1937], and algebraic proof systems such as Polynomial Calculus (PC) and Polyno-
mial Calculus with Resolution (PCR) introduced in Clegg et al. [1996] and Alekhnovich
et al. [2002].

As remarked by A. Razborov in Razborov [2003] and Alekhnovich et al. [2002],
proof complexity plays the same role in the field of feasible proofs as the one played
by boolean circuits in the field of efficient computations. Hence, proof size in proof
complexity should be viewed as circuit-size in circuit complexity. Following this analogy,
a notion of proof space was introduced also for proof systems [Esteban and Torán
2001; Alekhnovich et al. 2002]. Thereafter, proof space has been investigated in depth,
especially for Resolution, where space is measured in terms of number of clauses to be
stored in memory [Esteban and Torán 2001; Alekhnovich et al. 2002; Ben-Sasson and
Galesi 2003; Esteban et al. 2004; Nordström 2009; Ben-Sasson and Nordström 2011;
Nordström and Håstad 2013; Filmus et al. 2012].

We consider the space complexity measure, introduced in Alekhnovich et al. [2002],
that counts the number of distinct monomials to be kept simultaneously in a memory
while verifying a proof in PC/PCR.

Previous work. PC and PCR are well-studied proof systems with respect to the size
and the degree of proofs [Clegg et al. 1996; Buss et al. 2001, 1997; Razborov 1998;
Pudlák and Sgall 1998; Ben-Sasson and Impagliazzo 2010; Impagliazzo et al. 1999;
Alekhnovich and Razborov 2003; Galesi and Lauria 2010a, 2010b]. However, unlike in
the case of Resolution, much less is known when we consider the space measure.

There are only two works in the literature so far which investigate space in PC/PCR.
In Alekhnovich et al. [2002], the authors introduce the notion of space for PC/PCR and
prove lower bounds only for families of unsatisfiable polynomials having high degree
such as the Pigeonhole Principle (PHPm

n ) and the Complete Tautologies (CTn). Improving
the results in Alekhnovich et al. [2002] was an open problem in a twofold aspect: finding
a lower bound technique working also for polynomials having small degree; finding
lower bounds for other combinatorial principles, other than the Pigeonhole Principle.
Recently Filmus et al. [2012] proved space lower bounds for families of polynomials of
small initial degree. However, their result is specifically tailored to two variants of the
Pigeonhole Principle (Bit-PHPm

n and XOR-PHPm
n ), and makes use of the same approach

used by Alekhnovich et al. [2002].

Contributions. In this work, we introduce a new combinatorial framework to prove
space lower bounds in algebraic proof systems. Under this framework, we obtain
all the space lower bounds previously provided for PC/PCR. More importantly, we
solve the open problem of proving space lower bounds in PC/PCR for random k-CNFs
[Alekhnovich et al. 2002; Filmus et al. 2012]. Our technique works regardless of the
degree of the initial polynomials. The Main Theorem (Theorem 3.5) of our contributions
builds on the definition of k-winning strategy (Definition 3.4). This definition is one of
the main innovations of this work, since it reduces space lower bounds in algebraic
proof systems to a combinatorial property on families of Boolean assignments. Our
definition resembles the definition of k-dynamical satisfiability in Esteban et al. [2004]
which was used to prove space lower bounds for Resolution. Likewise, the definition of k-
winning strategy is analogous to the definition of winning strategies for the Duplicator
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Table I. Summary of Results.

Formula Initial Degree Space Reference
CTn O(n) n/4 [Alekhnovich et al. 2002, this work]

PHPm
n O(n) n/4 [Alekhnovich et al. 2002, this work]

Bit-PHPm
n O(log n) n/8 [Filmus et al. 2012, this work]

XOR-PHPm
n 4 n/4 [Filmus et al. 2012, this work]

random k-CNFs in n vars, k ! 4 k !(n) this work

G -PHP, G of left degree d ! 4 d !(n) this work

Tseitin formulas 4 !(
√

n) [Filmus et al. 2013] (use our Main Theorem)
over a 4-regular graph of n vertices

in the k-existential Spoiler-Duplicator game which led to prove that in Resolution space
is lower bounded by width [Atserias and Dalmau 2008].

Our Main Theorem (Theorem 3.5) states the existence of a precise relation between k-
winning strategies and refutation space in PC/PCR: if there exists a k-winning strategy
for an unsatisfiable CNF ϕ, then the space needed to refute ϕ in PC/PCR is at least k/4.
PC/PCR are defined over a field F but our result is independent from the characteristic
of F and is valid over any field.

The first application of our Main Theorem is to re-obtain under a unique combina-
torial framework all the space lower bounds provided in PC/PCR. All those proofs are
obtained defining winning strategies with the right dimension and then applying the
Main Theorem.

We exploit the potential of our combinatorial framework to solve the open problem
proposed in Alekhnovich et al. [2002] and Filmus et al. [2012] of proving space lower
bounds for a random k-CNF ϕ in n variables. The result (Theorem 5.5) follows from the
Main Theorem and the construction of an !(n)-winning strategy for ϕ. To this end we
use a variant of the Matching Game used in Ben-Sasson and Galesi [2003] and Atserias
[2004] to prove space lower bounds for random k-CNFs in Resolution. Our result holds
for k ! 4 and we discuss the case k = 3 as an open problem in Section 6.

Finally, we prove an analogous result (Theorem 5.7) for the Graph Pigeonhole Prin-
ciple G -PHP, which is a Pigeonhole Principle defined over an expander bipartite graph
G with constant left degree. This result is obtained by means of the same technique
used for random k-CNFs.

Table I summarizes our results in term of space lower bounds in PC/PCR and further
recent developments.

Further Recent Developments. Our framework, as developed in a preliminary version
of this work [Bonacina and Galesi 2013], was used in Filmus et al. [2013] to get new
results for space in PC/PCR for the family of Tseitin contradictions. As a consequence
of our Main Theorem, they prove that Tseitin contradictions over random 4-regular
graphs of n vertices require space at least !(

√
n). Similar techniques were used to

solve the open problem proposed in Alekhnovich et al. [2002] of giving quadratic lower
bounds for the total space of random k-CNFs in Resolution [Bonacina et al. 2014].

Organization of the Article. The rest of the paper is organized as follows.
Section 2 contains preliminary definitions on algebraic proof systems, partial assign-
ments, and graph properties. Section 3 introduces the notion of k-winning strategies
(Definition 3.4). It includes the proof of our Main Theorem (Theorem 3.5) and the proof
of the Locality Lemma (Lemma 3.3), which is the main technical tool needed for the
Main Theorem. Section 4 as a first application of our method, contains the previously
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known space lower bounds for PC/PCR. Section 5 contains the proof of the lower bounds
for random k-CNFs and for the Graph Pigeonhole Principle. It starts with a subsection
proving the necessary results on matchings in bipartite graphs. Section 6 is dedicated
to open problems and further research directions.

2. PRELIMINARY DEFINITIONS
[n] denotes the set of integers {1, . . . , n}. Let X be a set of variables. A literal is a boolean
constant, 0 or 1, or a variable x ∈ X or the negation ¬x of a variable x. A clause is a
disjunction of literals: C = (ℓ1 ∨ · · · ∨ ℓk). A formula ϕ is in Conjunctive Normal Form
(CNF) if ϕ = C1 ∧ · · · ∧ Cm where Ci are clauses. It is a k-CNF if each Ci contains at
most k literals.

Given a field F, F[X] is the ring of polynomials in the variables X with coefficients
in F. We use the following standard encoding, tr, of CNF formulas over X into a set of
polynomials in F[X],

tr(x) = (1 − x), tr(¬x) = x, tr

( n∨

i=1

ℓi

)

=
n∏

i=1

tr(ℓi).

Hence, for a CNF ϕ, tr(ϕ) = {tr(C) : C ∈ ϕ} ∪ {x2 − x : x ∈ X}. Observe that tr(ϕ) may
lead to an exponential number of monomials with respect to the number of clauses in ϕ.
To avoid such effect, following Alekhnovich et al. [2002], we consider the ring F[X, X],
where X = {x̄ : x ∈ X} is a set of new formal variables and the intended meaning of
x̄ is ¬x. Over F[X, X], we can define a more efficient encoding in terms of number of
monomials: tr(ϕ) = {tr(C) : C ∈ ϕ} ∪ {x2 − x, x + x̄ − 1 : x ∈ X}, where

tr(x) = x̄, tr(¬x) = x, tr

( n∨

i=1

ℓi

)

=
n∏

i=1

tr(ℓi).

A set of polynomials P in F[X] (respectively, in F[X, X]) is contradictory if and only if
1 ∈ ideal(P), that is the ideal generated by P is not a proper ideal in F[X] (respectively,
in F[X, X]). Notice that a CNF ϕ is unsatisfiable if and only if tr(ϕ) and tr(ϕ) are
contradictory sets of polynomials.

2.1. Partial Assignments
A partial assignment over X is a map α : X −→ {0, 1, ⋆}, where X is a set of variables.
The domain of α is dom(α) = α−1({0, 1}) and we say that α is assigning a value to x if
and only if x ∈ dom(α). ' denotes the partial assignment with the empty domain.

Given a partial assignment α and a CNF ϕ, we can apply α to ϕ obtaining a new
formula α(ϕ) in this way: substitute each variable x in ϕ with the value α(x) if x ∈
dom(α), or otherwise leave x untouched. Then simplify the result with the usual rules:
0 ∨ A ≡ A, 1 ∨ A ≡ 1, 0 ∧ A ≡ 0, 1 ∧ A ≡ A. We say that α satisfies ϕ and we write α " ϕ,
if α(ϕ) = 1. Similarly, for a family F of partial assignments, we write F " ϕ if for each
α ∈ F, α " ϕ.

For each partial assignment α over X ∪ X, we assume that it is respecting the
intended meaning of the variables, that is α(x̄) = 1 − α(x) for each x, x̄ ∈ dom(α). In
particular, it is always possible to extend to X∪X an assignment β over X respecting the
previous property. Given a polynomial p in F[X, X] and an assignment α we define α(p)
the application of α to p as follows: substitute each variable x in p with the value α(x)
if x ∈ dom(α) and each variable x̄ with α(x̄), or otherwise leave the variable untouched.
Then simplify the result with the rules: 0 · m ≡ 0, 1 · m ≡ m and m− m ≡ 0 where m is
a monomial in p.
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Definition 2.1 ("I). Let p be a polynomial in F[X, X], I an ideal in F[X, X] and α a
partial assignment over X ∪ X. The notation α "I p means that α(p) ∈ I.

If F is a family of partial assignments and P a set of polynomials, we write F "I P
if α "I p for each α ∈ F and p ∈ P. We say that F is I-consistent if F "I I, that is for
every p ∈ I and α ∈ F, α(p) ∈ I.

Notice that if ϕ is a CNF and α is a partial assignment satisfying ϕ, then α(tr(ϕ)) = 0
and in particular α "I tr(ϕ) for any ideal I. Moreover, given a set of partial assignments
F, a set of polynomials P and an ideal I, if F "I P then F "I ideal(P).

Two partial assignments are disjoint if they have disjoint domains. Given two disjoint
partial assignments α and β, their union α ∪ β is the partial assignment

α ∪ β(x) =
{

α(x) if x ∈ dom(α),
β(x) if x ∈ dom(β),

⋆ otherwise.

Given a partial assignment α over X and Y ⊆ X, the restriction α#Y is the partial
assignment

α #Y (x) =
{

α(x) if x ∈ Y,
⋆ otherwise.

β extends α (α ⊆ β) if β #dom(α)= α. Given a family F of partial assignments over X
and given Y ⊆ X, we define F #Y = {α #Y : α ∈ F}. Given two sets F and F ′ of partial
assignments, F ′ ⊆ F if each assignment in F ′ is also in F.

2.2. Algebraic Proof Systems and Monomial Space
Polynomial Calculus (PC) is an algebraic proof system defined in Clegg et al. [1996] and
working on polynomials in F[X]. Starting from a set of initial contradictory polynomials
P in F[X], PC allows to derive the polynomial 1 using the following inference rules: for
any p, q ∈ F[X]

p q
αp + βq

∀α,β ∈ F,
p

xp
∀x ∈ X.

To force 0/1 solutions, we always include the Boolean axioms {x2 − x}x∈X among the
initial polynomials, as in the case of the polynomial encoding of CNFs.

Polynomial Calculus with Resolution (PCR) is an algebraic proof system defined in
Alekhnovich et al. [2002] for polynomials in F[X, X], allowing a compact representation
of CNFs. Starting from a set of initial contradictory polynomials P in F[X, X], PCR
allows to derive the polynomial 1 using the same inference rules and axioms of PC over
F[X, X] and the further Boolean axioms {x + x − 1}x∈X to respect the intended meaning
of the variables.

With P ⊢ q we denote a derivation of q from P, which is a sequence of polynomials
(p0, . . . , pℓ) such that pℓ = q and each pi is either an initial polynomial (either in P or a
Boolean axiom) or it is inferred by previous polynomials in the sequence by one of the
inference rules. We call refutation a derivation of the polynomial 1.

PC and PCR are correct and complete proof systems: correctness come from the fact
that if P ⊢ g then g ∈ ideal(P) and obviously g vanish on the variety V (P), that is the
set of zeroes of P. Completeness comes as a corollary of Hilbert’s Nullstellensatz [Cox
et al. 1997] or by Gröebner bases algorithm [Clegg et al. 1996]. We do not require F to
be algebraically closed due to the fact that we always consider set of polynomials that
include the boolean axioms.
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In order to study space of proofs we rephrase the definition of derivation in PC/PCR
following the model proposed in Alekhnovich et al. [2002]. This model is inspired by
the definition of space complexity for Turing machines, where a machine is given a
read-only input tape from which it can download parts of the input to the working
memory as needed.

Definition 2.2 (PC/PCR Derivation). Given a set of initial polynomials P, a
PC/PCR derivation of a polynomial q from P (P ⊢PC q, respectively, P ⊢PCR q) is
a sequence (M0, . . . ,Mℓ) of sets of polynomials, called memory configurations, such
that: M0 = ∅, q ∈ Mℓ and for all i $ ℓ, Mi is obtained by Mi−1 by applying one of the
following rules.

Axiom Download. Mi = Mi−1 ∪ {p}, where p ∈ P.
Inference Adding. Mi = Mi−1 ∪ {p}, where p is some polynomial inferred from polyno-

mials occurring in Mi−1 using the inference rules of PC/PCR.
Erasure. Mi ⊆ Mi−1.

Let I be an ideal, a semantical PCR derivation of q from P with respect to I (P ⊢I q)
is a sequence of memory configurations (M0, . . . ,Mℓ) such that: M0 = ∅, q ∈ Mℓ and
for all i $ ℓ, Mi is obtained by Mi−1 by the following rule.

Semantical Inference with respect to I. Mi ⊆ ideal(Mi−1 ∪ {p}) + I, for some p ∈ P,
where ideal(Mi−1 ∪ {p}) + I is just the (standard) sum among ideals.

Semantical PCR derivations with respect to I are a generalization of semantical
PCR derivations as defined in [Alekhnovich et al. 2002]. A semantical PCR derivation
correspond to setting I = {0} in our previous definition.

Definition 2.3 (Monomial Space). The (monomial) space MSpace(S) of a set of poly-
nomials S is the number of distinct monomials occurring in S. The (monomial) space
MSpace(") of a semantical PCR refutation " is the maximal (monomial) space of a
memory configuration in ". We denote by

MSpace(P ⊢I 1)

the minimal MSpace(") over all semantical PCR refutations " of P. Analogously we
can define MSpace(P ⊢PC 1) and MSpace(P ⊢PCR 1). For a CNF formula ϕ the notation
MSpace(ϕ ⊢I ⊥) refers implicitly to MSpace(tr(ϕ) ⊢I 1).

Notice that MSpace(P ⊢PC 1) ! MSpace(P ⊢PCR 1) ! MSpace(P ⊢I 1) for any ideal
I, hence the lower bounds we give for MSpace(P ⊢I 1) hold also for MSpace(P ⊢PC 1)
and MSpace(P ⊢PCR 1). Moreover, given two ideals I, J, if I ⊆ J, then MSpace(P ⊢I
1) ! MSpace(P ⊢J 1).

2.3. Matchings and Expansion
Let G = (U ∪ V, E) be a bipartite graph and let k ! 1 be an integer. Let A ⊆ U ,
we say that π ⊆ E is a k-matching of A in V if the vertices in A are mapped by
π into pairwise disjoint subsets of V of size k. More precisely, for each u ∈ U let
π (u) = {v ∈ V : (u, v) ∈ π}. Then

(1) for each u ∈ A, π (u) is nonempty;
(2) for each u and u′, if u ̸= u′ then π (u) and π (u′) are disjoint sets;
(3) for each u ∈ A, |π (u)| = k.

Given A ⊆ U , let π (A) =
⋃

u∈A π (u).
Let NG (A) be the set of neighborhoods of A in the graph G . We use the following

application of Hall’s Theorem.
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LEMMA 2.4 [ALEKHNOVICH ET AL. 2002]. Let G = (U ∪ V, E) be a bipartite graph. If
for every set A ⊆ U, |NG (A)| ! 2|A|, then there exists a 2-matching of U in V .

This lemma immediately implies that if A ⊆ U is the smallest set not having a
2-matching in G , then |NG (A)| < 2|A|.

Definition 2.5 ((s, δ)-expansion). Let G = (U ∪ V, E) a bipartite graph, G is an
(s, δ)-expander if

∀A ⊆ U, |A| $ s → |NG (A)| ! δ|A|.
Notice that, from the previous lemma, for any ϵ > 0 if G = (U ∪ V, E) is a (s, 2 + ϵ)-

expander then every subset of U of size at most s has a 2-matching.

3. MAIN THEOREM
Throughout this section, we let X be a set of variables, F a field and I an ideal in F[X, X].
We consider partial assignments over X ∪ X respecting the intended meaning of the
variables X.

Let F be a family of partial assignments, dom(F) is the union of the domains of the
assignments in F. We say that a set of partial assignments F is flippable if and only
if, for all x ∈ dom(F), there exist α,β ∈ F such that α(x) = 1 − β(x). Two families of
partial assignments F and F ′ are domain-disjoint if dom(F) ∩ dom(F ′) = ∅.

Given H1, . . . , Ht nonempty pairwise domain-disjoint sets of assignments,1 the
product-family H = H1 ⊗ · · · ⊗ Ht is the following set of assignments

H = H1 ⊗ · · · ⊗ Ht = {α1 ∪ · · · ∪ αt : αi ∈ Hi},
or, if t = 0, H = {'}. dom(H) =

⋃
i dom(Hi) and we call the His the factors of H.

Notice that H = H1 ⊗ · · · ⊗ Ht defines implicitly the partition of dom(H) given by
{dom(H1), . . . , dom(Ht)}.2 Given a product family H = H1 ⊗ · · · ⊗ Ht, there could be
many ways of factorizing it, when we write H = H1 ⊗ · · · ⊗ Ht it means that we
fixed its representation as a product. Hence, two product-families with the same set of
assignments but with different factorization are different objects.

For a product-family H = H1 ⊗ · · · ⊗ Ht, the rank of H, ∥H∥ is the number of factors
of H different from {'}. We do not count {'} in the rank since H ⊗ {'} = H. Given two
product-families H and H′, we write H′ ⊑ H if and only if each factor of H′ different
from {'} is also a factor of H. In particular {'} ⊑ H for any H.

Definition 3.1 (2-Merge). Let H = H1 ⊗ · · · ⊗ Ht be a product-family. A 2-merge on
H is a product-family Z = ZJ1 ⊗ · · ·⊗ ZJr , where J1, . . . , Jr are pairwise disjoint subsets
of [t] of size at most 2, ZJ ⊆

⊗
j∈J Hj and Z #dom(Hj ) = Hj for all j ∈ [t]. Notice that, if

H is flippable, then Z is also flippable.

Consider the following example that will be central in the proof of the Locality Lemma
(Lemma 3.3).

Example 3.2. Let m be a monomial and H = H1 ⊗ H2 be a flippable product-family
such that var(m)∩dom(Hi) ̸= ∅ for i = 1, 2. Let Om,i = {α ∈ Hi : α(m) = 0}. We have that

Z = Z{1,2} = (Om,1 ⊗ H2) ∪ (H1 ⊗ Om,2)
is a 2-merge on H. Z is a product-family since it has only one factor.

1As said in Section 2.1, we always suppose that the partial assignments are respecting the intended meaning
of the variables in X, that is if x ∈ dom(α) then α(x̄) = 1 − α(x), hence, a variable x is in dom(Hi) if and only
if x̄ is in dom(Hi).
2These partitions were called pseudopartitions in the preliminary version of this article [Bonacina and Galesi
2013].
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As in Alekhnovich et al. [2002], a key property in our space lower bound proof is a
Locality Lemma. Informally it asserts that if a set S of polynomials is satisfiable by a
2-merge on a product family H, then it is possible to build a new 2-merge Z ′ on a new
product-family H′ such that Z ′ still satisfies S and H′ ⊑ H has rank bounded by the
monomial space of S.

LEMMA 3.3 (LOCALITY LEMMA). Let I be a proper ideal in F[X, X], S a set of polyno-
mials in F[X, X], H a flippable product-family and Z a 2-merge on H such that Z "I S.
Then there exist a flippable product-family H′ ⊑ H and Z ′ a 2-merge on H′ such that:
Z ′ "I S and ∥H′∥ $ 4 · MSpace(S).

PROOF. Let H = H1 ⊗ · · · ⊗ Ht and Z = ZJ1 ⊗ · · · ⊗ ZJr . Let G = (U ∪ V, E) be the
following bipartite graph: U is the set of all distinct monomials in S, V = {J1, . . . , Jr}
and (m, Ji) ∈ E if and only if a variable of m appears in dom(ZJi ). For a set M ⊆ U , let
NG (M) be the set of the neighbors of M in G and let HM and ZM be the following two
product-families:

ZM =
⊗

Ji∈NG (M)

ZJi , HM =
⊗

Ji∈NG (M)

⊗

j∈Ji

Hj .

Let M be a set of maximal size in U such that |NG (M)| $ 2|M|. Let Mc = U\M. By
maximality of M, for each A ⊆ Mc, |NG (A)\NG (M)| ! 2|A|. Hence, by Lemma 2.4, Mc

admits a 2-matching π into V \NG (M).
For each monomial m in Mc let π (m) = {Lm, Km}, where Lm, Km ∈ {J1, . . . , Jr}. By

definition of G , there is a variable x of m in dom(ZLm). Let ℓm ∈ Lm such that x in
dom(Hℓm) (if there are more than one possible ℓm, we choose one). Let km ∈ Km, obtained
analogously.

Define the product-family H′ as

H′ = HM ⊗
⊗

m∈Mc

Hℓm ⊗ Hkm.

We have that clearly H′ ⊑ H and hence it is a flippable product-family. The rank of H′

is ∥H′∥ = ∥HM∥ + 2|Mc|. Since |NG (M)| $ 2|M|, and since the Ji ’s are of size at most 2,
we have that ∥HM∥ $ 4|M|. Hence, putting it all together, ∥H′∥ $ 4|U | = 4 ·MSpace(S).

The construction of Z ′ goes as follows. Let Om,i = {α ∈ Hi : α(m) = 0}. Observe that
if a variable x of m is in dom(Hi) then Om,i is nonempty since Hi is flippable and hence
there is always an assignment in Hi setting x to satisfy m. As in Example 3.2, let

Z{ℓm,km} = (Om,ℓm ⊗ Hkm) ∪ (Hℓm ⊗ Om,km).
Let Z ′ be

Z ′ = ZM ⊗
⊗

m∈Mc

Z{ℓm,km}.

It is straightforward to see that Z ′ is a 2-merge on H′, hence is remaining to prove only
that Z ′ |=I S. Consider the following claim.

CLAIM 1. Z ′ ⊆ Z #dom(H′).

PROOF. By construction, ZM = Z #dom(HM), hence we have to prove that for each
m ∈ Mc,

Z ′ #dom(Hℓm)∪dom(Hkm) ⊆ Z #dom(Hℓm)∪dom(Hkm) .

This follows immediately from the following chain of inequalities

Z ′ #dom(Hℓm)∪dom(Hkm)
(⋆)= Z{ℓm,km}

(†)
⊆ Hℓm ⊗ Hkm

(⋆⋆)= Z #dom(Hℓm)∪dom(Hkm) .
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The equality (⋆) is by definition and the containment (†) follows by construction. The
equality (⋆⋆) follow since, by definition of Z, Z #dom(Hj ) = Hj and Lm and Km are disjoint
sets.

To prove that Z ′ "I S, let α ∈ Z ′. As Z ′ ⊆ Z # dom(H′), there exists β ∈ Z extending
α by setting variables not appearing in any m ∈ M. Hence, by construction, if m ∈ Mc,
then 0 = α(m) = β(m) and if m ∈ M then α(m) = β(m). Then, α and β give the same
value to the monomials in S and, by hypothesis, β "I S, hence α "I S.

The next definition is at the core of the proof of the Main Theorem (Theorem 3.5).
A family of flippable product-families is called a strategy and denoted by L .

Definition 3.4 (k-Winning Strategy). Let P be a set of polynomials in F[X, X] and I
a proper ideal in F[X, X]. A nonempty strategy L is k-winning for P with respect to I if
and only if for every H ∈ L the following conditions hold:

(1) H is I-consistent (consistency property);
(2) for each H′ ⊑ H, H′ ∈ L (restriction property);
(3) if ∥H∥ < k, then, for each p ∈ P, there exists a I-consistent flippable product-family

Hp, domain-disjoint from H, such that H ⊗ Hp ∈ L and H ⊗ Hp "I p (extension
property).

Notice that, by the restriction property, {'} is in any k-winning strategy.

THEOREM 3.5 (MAIN THEOREM). Let P be a contradictory set of polynomials in F[X, X],
I a proper ideal in F[X, X], and k ! 1 an integer. Suppose that there exists a nonempty
k-winning strategy L for P with respect to I. Then MSpace(P ⊢I 1) ! k/4.

PROOF. Let " = (M0, . . . ,Ms) be a semantical PCR refutation of P with respect to I.
Assume by contradiction that MSpace(") < k/4. By induction on i = 0, . . . , s, we show
the following inductive property:

there exist a nonempty product-family Hi ∈ L and a nonempty Zi
2-merge on Hi such that Zi "I ideal(Mi) + I. (1)

Before proving the statement, we show how the inductive property implies a contra-
diction. In the last step, then there exists some assignment α ∈ Zs such that for every
polynomial p ∈ ideal(Ms) + I, α(p) ∈ I. However, 1 ∈ Ms, hence 1 = α(1) ∈ I, which
instead is a proper ideal.

Initially set H0 = {'} ∈ L and Z0 = H0. Then H0 is trivially I-consistent, hence
trivially Z0 "I ideal(M0) + I = I.

Let Mi+1 = ideal(Mi ∪ {p}) + I with p ∈ P. If Zi "I p, we have nothing to do:
set Hi+1 = Hi ∈ L and Zi+1 = Zi. Otherwise, suppose that Zi !I p. By the Locality
Lemma, used with parameters H = Hi, Z = Zi and S = Mi, we find H′ ⊑ Hi and a
nonempty Z ′ 2-merge on H′ such that Z ′ "I Mi and ∥H′∥ $ 4 MSpace(Mi). Observe
that, as L is a k-winning strategy, then by the restriction property, H′ ∈ L , since
H′ ⊑ Hi and Hi ∈ L . By the I-consistency property of L , H′ is I-consistent and then Z ′

is I-consistent, hence Z ′ "I ideal(Mi) + I.
Since, by hypothesis, MSpace(Mi) < k/4, then ∥H′∥ < k and, by the extension property

applied to H′ and p, there is an I-consistent flippable product-family Hp, domain-
disjoint from H′, such that Hi+1 = H′ ⊗ Hp "I p and Hi+1 ∈ L . Set Zi+1 = Z ′ ⊗ Hp. It
remains to show that Zi+1 is a 2-merge on Hi+1 and Zi+1 "I ideal(Mi+1) + I.

The first property follows by the definition of Zi+1 and of Hi+1, since Z ′ is a
2-merge on H′. The second property, that is Zi+1 "I ideal(Mi+1) + I, follows because:
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(1) Zi+1 "I ideal(Mi) + I, since Z ′ "I ideal(Mi) + I and Hp is I-consistent, and (2)
Zi+1 "I p, since Hi+1 = Hi ⊗ Hp "I p and Zi+1 ⊆ Hi+1 as Zi+1 is a 2-merge on Hi+1.

In the Main Theorem, we do not make any assumption on the structure of the set
of initial polynomials P. If we have some assumptions on P, it is possible to have an
analogous result requiring k-winning strategies just for a subset of P. This in particular
can be useful when in P we have some monomials of high initial degree.

THEOREM 3.6. Let P = P1 ∪ P2 a contradictory set of polynomials in the variables
X ∪ X and let I be the trivial ideal I = {0}. Suppose that:

(1) there exists a nonempty k-winning strategy L for P1 with respect to the ideal I; and
(2) every polynomial in P2 is a monomial such that for each m ∈ P2 and for each H ∈ L

with ∥H∥ < k, then either there exists a variable in m not in dom(H) or H "I m.

Then, MSpace(P ⊢I 1) > k/4.

PROOF. The proof is essentially the same as in the Main Theorem (Theorem 3.5).
We use the same notation. Assume by contradiction that MSpace(") $ k/4. We have
to prove the induction property (property (1) in the proof of Theorem 3.5) only when
we download a monomial from P2, since in the other cases the proof is the same as in
Theorem 3.5. Let Mi+1 = Mi ∪ {m}, with m ∈ P2. Then, MSpace(Mi) $ k/4 − 1. By the
Locality Lemma, used with parameters H = Hi, Z = Zi and S = Mi, we find a H′ ∈ L ,
a nonempty Z ′ 2-merge of H′ such that Z ′ "I Mi and

∥H′∥ $ 4 MSpace(Mi) $ 4(k/4 − 1) $ k − 4.

By hypothesis (2), either H′ "I m or there exists a variable x ∈ var(m) \ dom(H′). In
the first case, just set Hi+1 = H′ and Zi+1 = Z ′. Since L is a k-winning strategy by
the extension property applied on H′ and x2 − x, there exists a product-family Hx2−x
domain-disjoint from H′ such that H′ ⊗ Hx2−x ∈ L and H′ ⊗ Hx2−x "I x2 − x. Since
x ̸∈ dom(H′), then x, x ∈ dom(Hx) and using closure of L under ⊑, we can assume that
Hx2−x is just one factor containing x in its domain. Hence, ∥H′ ⊗ Hx2−x∥ < k and then
either H′ ⊗ Hx2−x "I m or there is a variable y ∈ var(m) but not in dom(H′ ⊗ Hx2−x).
In the first case, set Hi+1 = H′ ⊗ Hx2−x and Zi+1 = Z ′ ⊗ Hx2−x. In the second case,
by the extension property of L applied to H′ ⊗ Hx2−x and y2 − y, we get a product-
family Hy2−y domain-disjoint from H′ ⊗ Hx2−x such that H′ ⊗ Hx2−x ⊗ Hy2−y ∈ L and
H′ ⊗ Hx2−x ⊗ Hy2−y "I y2 − y. Exactly as shown previously, for x, x̄, we have that y, ȳ ∈
dom(Hy2−y). Set Hi+1 = H′⊗Hx2−x ⊗Hy2−y and Zi+1 = Z ′⊗{α ∈ Hx2−x ⊗ Hy2−y : α "I m}.
Zi+1 "I Mi+1 and Zi+1 is a 2-merge on Hi+1.

4. FROM THE MAIN THEOREM TO KNOWN SPACE LOWER BOUNDS
In this section, we re-prove the known space lower bounds [Alekhnovich et al. 2002;
Filmus et al. 2012] for PCR as a consequence of the Main Theorem (Theorem 3.5) and
Theorem 3.6.

Complete Tree Tautologies. Let n be a natural number, the axioms of CTn are all the
possible n-clauses in the variables X = {x1, . . . , xn} plus the Boolean axioms.

THEOREM 4.1 [ALEKHNOVICH ET AL. 2002]. Let I be the trivial ideal I = {0}, then
MSpace(CTn ⊢I ⊥) > n/4.

PROOF. We use Theorem 3.6. Choose as P1 the Boolean axioms, as P2 the other axioms
of CTn.

Given i ∈ [n], let Hi be the following set of partial assignments of domain {xi, x̄i}
Hi = {{xi 4→ 0, x̄i 4→ 1}, {xi 4→ 1, x̄i 4→ 0}}.
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By construction Hi is flippable and I-consistent.
The strategy L is defined as follows: H ∈ L if and only if there exists A ⊆ [n] such

that

H =
⊗

i∈A

Hi.

We prove that L is a n-winning strategy for P1 with respect to the ideal I. L is non-
empty as for A = ∅ the definition implies that {'} ∈ L . By construction, H ∈ L imply
that H is I-consistent. The restriction and extension properties are clear.

Moreover, each H ∈ L with rank < n leaves a variable unassigned in every monomial
in P2.

The Pigeonhole Principle. Let m, n ∈ N be two integers such that m > n and X = {xij :
i ∈ [m], j ∈ [n]} be a set of variables. The intended meaning of xij is the truth value of
“the pigeon i goes into the hole j”. The standard encoding of the Pigeonhole Principle
PHPm

n is the conjunction of the following clauses:

(1) ¬xij ∨ ¬xi′ j for all i ̸= i′ ∈ [m] and for all j ∈ [n] (injectivity axioms);
(2) xi1 ∨ xi2 ∨ · · · ∨ xin for all i ∈ [m].

Notice that tr encodes the previous CNF as an unsatisfiable set of monomials of max-
imum degree n. It can be encoded in PCR also as a set of small degree polynomials
where axioms in (2) are substituted by

∑
j xij − 1. This makes sense when proving de-

gree lower bounds but it trivially implies space lower bounds, as already some axioms
require a large number of monomials.

The onto version of the Pigeonhole Principle, ontoPHPm
n , is the conjunction of the

following clauses:

(1) ¬xij ∨ ¬xi′ j for all i ̸= i′ ∈ [m] and for all j ∈ [n] (injectivity axioms);
(2) xi1 ∨ xi2 ∨ · · · ∨ xin for all i ∈ [m];
(3) for all j ∈ [n], x1 j ∨ x2 j ∨ · · · ∨ xmj (onto axioms).

Clearly, for any ideal, I, MSpace(PHPm
n ⊢I 1) ! MSpace(ontoPHPm

n ⊢I 1). We prove a
space lower bound for ontoPHPm

n .

THEOREM 4.2 ([ALEKHNOVICH ET AL. 2002]). Let I be the trivial ideal I = {0}, then
MSpace(ontoPHPm

n ⊢I ⊥) > n/4.

PROOF. We apply Theorem 3.6. Let P1 be the set of the Boolean axioms plus the
polynomial encoding of the axioms in (1); P2 is the set of polynomial encodings of the
axioms in (2) and (3).

Given j ∈ [n], let Hj be the following set of partial assignments of domain {xij, x̄i j :
i ∈ [m]}:

Hj = {α1 j, . . . ,αmj},
where αi j is the Boolean assignment setting xij to 1 and the other variables xi′ j to 0. By
construction, Hj is flippable and I-consistent.

The strategy L is defined as follows: H ∈ L if and only if there exists a set of holes
A ⊆ [n] such that

H =
⊗

j∈A

Hj .

We prove that L is a n-winning strategy for P1 with respect to the ideal I. L is non-
empty as for A = ∅ the definition implies that {'} ∈ L . By construction, H ∈ L imply
that H is I-consistent.
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The restriction property is immediate from the definition. For the extension property,
let p ∈ P1 and H ∈ L , with ∥H∥ < n such that H =

⊗
j ′∈A Hj ′ for some A ⊆ [n]. There is

exactly one j ∈ [n] such that var(p) ⊆ dom(Hj). If j ∈ A, then, by construction, H "I p
hence we take Hp = {'}. If j ̸∈ A, then Hj is domain-disjoint from H, H ⊗ Hj ∈ L and
by construction is such that H ⊗ Hj "I p. Take Hp = Hj in this case.

P2 satisfies the hypothesis of Theorem 3.6, since every H ∈ L of rank < n leaves
unset at least one variable in each each axiom in (2). Moreover, each axiom in (3) is
either set to 0 or unset by elements in L .

The Bit-Pigeonhole Principle. Let m, n ∈ N be two integers such that m > n and
n = 2k for k ∈ N. Let X = {xij : i ∈ [m], j ∈ [k]}, where xij is “the jth bit of
the binary representation of the hole where the pigeon i is mapped to”. The axioms
of the Bit-Pigeonhole Principle Bit-PHPm

n , are clauses Bh
i,i′ meaning that two distinct

pigeons i and i′ cannot go into the same hole h because they differ on some bit of
the binary representation of h. More formally, given distinct i, i′ ∈ [m] and h ∈ [n] let
Bh

i,i′ =
∨k

j=1
(
xij ̸= hj ∨ xi′ j ̸= hj

)
, where hj is the jth bit of the binary representation of

h. Bit-PHPm
n is the conjunction of the Bh

i,i′ for h ∈ [n] and i ̸= i′ ∈ [m].

THEOREM 4.3 [FILMUS ET AL. 2012]. Let I be the ideal generated by the Boolean ax-
ioms, then MSpace(Bit-PHPm

n ⊢I ⊥) ! n/8.

PROOF. We use the Main Theorem (Theorem 3.5) and we give a n/2-winning strategy
L for Bit-PHPm

n with respect to the ideal I.
Given a hole h with binary representation (h1, . . . , hk), let h̄ be (1 − h1, . . . , 1 − hk).

Given a set of holes A, A = {h̄ : h ∈ A}. The notation
[
i 4→ h, i′ 4→ h̄

]
where i, i′ ∈ [m] and

h ∈ [n] is a shortcut for the partial assignment α with domain {xij, xi′ j, x̄i j, x̄i′ j : j ∈ [k]}
such that α(xij) = hj and α(xi′ j) = 1 − hj . The assignment α is intended to respect the
meaning of the x̄i j , that is, α(x̄i j) = 1 − α(xij) and similarly for α(xi′ j).

Given h ∈ [n/2] and σ : {h, h̄} → [m] an injective mapping,3 let Hσ
h be the following

set of partial assignments of domain {xσ (h) j, xσ (h̄) j, x̄σ (h) j, x̄σ (h̄) j : j ∈ [k]}:

Hσ
h = {

[
σ (h) 4→ h, σ (h̄) 4→ h̄

]
,

[
σ (h) 4→ h̄, σ (h̄) 4→ h

]
}.

By construction, Hσ
h is flippable and I-consistent.

The strategy L is defined as follows: H ∈ L if and only if there exists a set of holes
A ⊆ [n/2] and there exists an injective mapping σ : A∪ A → [m] such that

H =
⊗

h∈A

Hσ
h .

We prove that L is a n/2-winning strategy for Bit-PHPm
n with respect to the ideal I. L

is nonempty as for A = ∅, the definition implies that {'} ∈ L . By construction, H ∈ L
imply that H is I-consistent.

The restriction property of L is obvious, hence we focus on the extension property. Let
H =

⊗
h∈A Hσ

h ∈ L such that ∥H∥ < n/2 and consider p = tr(Bh
i,i′). If both i, i′ ∈ σ (A∪ A),

then, by construction, H "I p, hence we can take Hp = {'}. Otherwise, without loss of
generality, assume i′ ̸∈ σ (A∪ A). As ∥H∥ = |A| < n/2, there is some hole h′ ∈ [n/2]\A
and σ ′ injective such that σ ′ = σ ∪ {h′ 4→ i′} ∪ {h̄′ 4→ j} with j outside σ (A ∪ A) ∪ {i′}.
If i ̸∈ σ (A∪ A), take j = i. Let Hp = Hσ ′

h′ : it is clearly I-consistent and domain-disjoint
from H. Define H′ = H⊗Hp =

⊗
h∈A′ Hσ ′

h ∈ L , where A′ = A∪ {h′}. Notice that H′ "I p,

3Notice that, as h ∈ [n/2], then h and h̄ are distinct.
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as each assignment in H′ set i and i′ to go into two distinct holes. More precisely,
if i ∈ σ (A ∪ A), then i goes somewhere inside A ∪ A and i′ goes either in h′ or h̄′. If
i ̸∈ σ (A∪ A), then, by construction, i goes in h̄′ and i′ goes to h′ or vice-versa.

The XOR-Pigeonhole Principle. Let m, n ∈ N be two integers such that m > n and let
X = {xi, j : i ∈ [m], j ∈ [n] ∪ {0}} be a set of variables. A pigeon i ∈ [m] is considered
assigned to a hole j ∈ [n] when xi, j−1 ̸≡ xi, j is true. The XOR-Pigeonhole Principle, in-
troduced in Filmus et al. [2012], expresses the following weaker form of the Pigeonhole
Principle: if each pigeon is assigned to an odd number of holes, then there exists a hole
with at least two pigeons. The formula XOR-PHPm

n is a contradictory 4-CNF encoding
the negation of the principle as follows:

(1) for each i ∈ [m], xi,0 ̸≡ xi,n, that is (xi,0 ∨ xi,n) ∧ (¬xi,0 ∨ ¬xi,n);
(2) for all distinct i, i′ ∈ [m] and all j ∈ [n] ∪ {0}, (xi, j−1 ≡ xi, j) ∨ (xi′, j−1 ≡ xi′, j), that is

(xi, j−1 ∨ ¬xi, j ∨ xi′, j−1 ∨ ¬xi′, j) ∧ (¬xi, j−1 ∨ xi, j ∨ ¬xi′, j−1 ∨ xi′, j)
∧ (xi, j−1 ∨ ¬xi, j ∨ ¬xi′, j−1 ∨ xi′, j) ∧ (¬xi, j−1 ∨ xi, j ∨ xi′, j−1 ∨ ¬xi′, j).

THEOREM 4.4 [FILMUS ET AL. 2012]. Let I be the ideal generated by the Boolean ax-
ioms, then MSpace (XOR-PHPm

n ⊢I ⊥) ! (n − 1)/4.

PROOF. Given i ∈ [m] and j ∈ [n], let Hi 4→ j be the following set of partial assignments
of domain {xij ′ , x̄i j ′ : j ′ ∈ [n] ∪ {0}}:

Hi 4→ j = {αi j,α
∗
i j},

where αi j(xij ′) = 1 if and only if j ′ < j and α∗
i j(xi′ j) = 1 − αi j(xij ′). Both αuv and α∗

v are
intended to respect the intended meaning of the x̄u′v, that is, α∗

v (x̄u′v) = 1 − α∗
v (xu′v) and

similarly for αuv. Both αi j and α∗
i j are intended to respect the meaning of the x̄i j ′ , that

is αi j(x̄i j ′) = 1 − αi j(xij ′ ) and similarly for α∗
i j . By construction, Hi 4→ j is flippable and

I-consistent.
The strategy L is defined as follows: H ∈ L if and only if there exists a set A ⊆ [m]

of size at most n − 1 and there exists an injective mapping µ : A −→ [n] such that

H =
⊗

i∈A

Hi 4→µ(i).

We prove that L is a (n−1)-winning strategy for XOR-PHPm
n with respect to the ideal

I. L is nonempty as for A = ∅ the definition implies that {'} ∈ L . By construction,
H ∈ L implies that H is I-consistent.

The restriction property is immediate from the definition. To prove the extension
property, let H =

⊗
i∈A Hi 4→µ(i) ∈ L with ∥H∥ < n− 1 and p the polynomial encoding of

a initial clause C from XOR-PHPm
n . Let us suppose first that C is a clause from some

(xi, j−1 ≡ xi, j) ∨ (xi′, j−1 ≡ xi′, j). If both i and i′ are in A, then, by construction, H "I p
and we can take Hp = {'}. If i ̸∈ A, then, as µ is an injective assignment of at most
n − 2 pigeons, we can find a hole h different from j which is not in µ(A). Then let
µ′ = µ ∪ {i 4→ h} and H′ =

⊗
ℓ∈A∪{i} Hℓ 4→µ′(ℓ) = H ⊗ Hi 4→h. By construction Hi 4→h "I p,

hence H′ "I p. In this case, take Hp = Hi 4→h. Similarly, if C = (xi,0 ̸≡ xi,n), we proceed
as before extending µ to assign the pigeon i somewhere (if needed).

Notice that in Filmus et al. [2012] is proved that MSpace(XOR-PHPm
n ⊢I ⊥) > n/4,

for the ideal I = {0}.
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5. BIPARTITE EXPANSION, RANDOM CNF FORMULAS AND THE GRAPH-PIGEONHOLE
PRINCIPLE

In this section, we build a !(n)-winning strategy for random k-CNFs in n variables
when k ! 4 and for the Graph Pigeonhole Principle. To this end, we use a variant of the
Matching Game devised in Ben-Sasson and Galesi [2003] to prove space lower bounds
for random k-CNFs in Resolution. Unlike previous works that deal with 1-matchings
in bipartite graphs [Ben-Sasson and Galesi 2003; Atserias 2004], here we consider
2-matchings. However, the proofs of the main properties remain similar and we follow
the simplified version of Atserias [2004].

Definition 5.1 ((r, s)-Double Matching Property). Let r, s ∈ N be two integers such
that r $ s and G = (U ∪ V, E) be a bipartite graph. Given two sets A ⊆ U and B ⊆ V
we say that (G , A, B) has the (r, s)-double matching property if |A| $ r, |B| = 2|A| and
for every C ⊆ U\A, if |C| $ s − |A| then there exists a 2-matching of C into V \B.

(G ,∅,∅) has the (s, s)-double matching property if G = (U ∪ V, E) is a (s, 2 + ϵ)-
expander bipartite graph for some positive constant ϵ. This follows immediately from
the expansion property and Lemma 2.4.

LEMMA 5.2 (EXTENSION LEMMA). Let ϵ be a positive constant and G = (U ∪ V, E) be
a bipartite graph of left degree at most d which is a (s, 2 + ϵ)-expander. Let A ⊆ U and
B ⊆ V be two sets such that |A| < r and (G , A, B) has the (r, s)-double matching property
with r $ ϵs

d(d−1)+ϵ
. Then, for each u ∈ U\A, there exists a 2-matching πu of u into V \B

such that (G , A∪ {u}, B∪ πu(u)) has the (r, s)-double matching property.

PROOF. Fix u ∈ U\A and let - be the set of 2-matchings of u into V \B, that is
- = {{(u, v), (u, w)} : v ̸= w ∧ v,w ∈ V \B}. - ̸= ∅ since |A| < r $ s and the (r, s)-double
matching property of (G , A, B) implies that {u} has at least one 2-matching into V \B.
Notice that |-| $

(d
2

)
= d(d − 1)/2.

Let A′ = A ∪ {u} and for each π ∈ - let Bπ = B ∪ π (u). Suppose, for the sake of
contradiction, that for each π ∈ -, (G , A′, Bπ ) does not have the (r, s)-double matching
property. We have that |A′| $ r, because |A| < r, and clearly for each π ∈ -, |Bπ | = 2|A′|.
This means that, for each π ∈ -, there exists a set Cπ ⊆ U\A′ of size at most s − |A′|
that does not admit a 2-matching into V \Bπ . Let Dπ be a minimal size Cπ with this
property. Then, by Lemma 2.4, we have that

∀π ∈ - |NG (Dπ ) ∩ (V \Bπ )| < 2|Dπ |, (2)

and by the expansion property of G , since |Dπ | $ s − |A′| < s, we have that

∀π ∈ - (2 + ϵ)|Dπ | $ |NG (Dπ )|. (3)

Using the fact that |NG (Dπ )| = |NG (Dπ ) ∩ (V\Bπ )| + |NG (Dπ ) ∩ Bπ | and then bounding
the first part of the sum using Eq. (2) and the second part using the trivial upper bound
|Bπ |, we obtain, by Eq. (3), (2 + ϵ)|Dπ | < 2|Dπ | + |Bπ |. Hence, it follows that

∀π ∈ - 2|A′| = |Bπ | > ϵ|Dπ |. (4)

The following claim will help us to find a lower bound for |Dπ∗ | for some π∗ ∈ -.

CLAIM 2. ! =
⋃

π∈- Dπ ∪ {u} does not admit a 2-matching into V \B.

PROOF. Assume by contradiction that there exists a 2-matching σ of ! into V \B.
Take πσ ∈ - such that πσ (u) = σ (u). As σ (Dπσ

) ⊆ V \B and, by construction of Dπσ
,

σ (Dπσ
) ̸⊆ V \Bπσ

, then σ (Dπσ
) ∩ πσ (u) ̸= ∅. Therefore, since u ̸∈ Dπσ

, we have found two
elements, u and some element in Dπσ

, both mapped by σ into the same element. This
is a contradiction.

Journal of the ACM, Vol. 62, No. 3, Article 23, Publication date: June 2015.



JACM6203-23 ACM-TRANSACTION June 9, 2015 13:58

A Framework for Space Complexity in Algebraic Proof Systems 23:15

We have that the set ! in the claim is such that ! ⊆ U\Aand (G , A, B), by hypothesis,
has the (r, s)-double matching property, so we must have that

|!| > s − |A|.
This implies that

∑
π∈- Dπ > s − |A| − 1, so there exists π∗ ∈ - such that

|Dπ∗ | >
s − |A′|

|-|
. (5)

Putting together Eqs. (4) and (5) and observing that |-| $ d(d − 1)/2, we obtain that

|A′| > ϵ
s − |A′|
d(d − 1)

.

From this, a contradiction arises immediately:

|A′| >
ϵ

d(d − 1) + ϵ
· s = r.

LEMMA 5.3 (RETRACTION LEMMA). Let ϵ be a positive constant and G = (U ∪V, E) be a
(s, 2+ϵ)- expander bipartite graph and let A ⊆ U and B ⊆ V two sets such that (G , A, B)
has the (r, s)-double matching property with r $ ϵs

2+ϵ
. Then, for each u ∈ A and for each

2-matching π of u into B, (G , A\{u}, B\π (u)) has the (r, s)-double matching property.

PROOF. Let A′ = A\{u} and B′ = B\π (u). Clearly, |A′| $ r and B′ = 2|A′|. Let C ⊆ U\A′

be of size at most s− |A′|. If u ∈ C, then C\{u} ⊆ U\A, and has size at most s− |A′|−1 =
s − |A|. Hence, there exists a 2-matching σ of C\{u} into V \B. By hypothesis, π is a
2-matching of u into B. So π ∪ σ is a 2-matching of C into V \B′.

If u ̸∈ C and |C| $ s − |A′| − 1 = s − |A|, then by the (r, s)-double matching property
we have a 2-matching of C into V \B.

The remaining case is when u ̸∈ C and |C| = s − |A′|, then for every w ∈ C, there
exists a 2-matching of C\{w} ⊆ U\A into V \B ⊆ V \B′. If C does not have a 2-matching
into V \B′, it follows that C is of minimal size. Using Lemma 2.4, it follows that

|NG (C) ∩ (V \B′)| < 2|C|. (6)

From the fact that G is a (s, 2 + ϵ)-expander, the fact that |C| $ s − |A′| $ s, and Eq. (6),
it follows that

(2 + ϵ)|C| $ |NG (C)| < 2|C| + |B′|.
So |B′| > ϵ|C|. Summarizing, we have |C| = s−|A′|, and 2|A′| = |B′|, so 2|A′| > ϵ(s−|A′|),
which implies the contradiction:

|A′| >
ϵs

2 + ϵ
= r.

5.1. Random k-CNFs
Let n, k,. ∈ N and let X = {x1, . . . , xn} be a set of nvariables. R(n,., k) is the probability
distribution obtained by the following experiment: choose independently uniformly at
random .n clauses from the set of all possible k-clauses over X. We are interested
in studying the asymptotic properties of a randomly chosen k-CNF ϕ ∼ R(n,., k) as
n approaches infinity. It is well known that when . exceeds a certain constant θk
(that only depends on k), ϕ is almost surely unsatisfiable. Hence, we always consider
ϕ ∼ R(n,., k), where . is a constant (depending on k) bigger than θk.

Let ϕ be a CNF and X be the set of variables appearing in ϕ. The adjacency graph of
ϕ is a bipartite graph Gϕ = (U ∪ V, E) such that U is the set of clauses of ϕ, V = X and
(C, x) ∈ E if and only if x or ¬x appears in C. If ϕ is a k-CNF, then Gϕ has left degree k.
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The proof of the next theorem is standard and can be found, for instance in Chvátal
and Szemerédi [1988], Beame and Pitassi [1996], Ben-Sasson and Wigderson [2001],
and Ben-Sasson and Galesi [2003].

THEOREM 5.4. For any k ! 4 and any constant ϵ with 0 < ϵ < k − 3, there is a
constant δ = δk,ϵ such that if ϕ ∼ R(n,., k), then, with high probability, the adjacency
graph of ϕ is a (s, 2 + ϵ)-expander, with s = δ.− 1+ϵ

k−3−ϵ n.

Lemma 5.1 in Ben-Sasson and Galesi [2003] is exactly the previous theorem for
k ! 3, for 0 < ϵ < k − 2 and for (s, 1 + ϵ)-expanders, with s = δ.− 1+ϵ

k−2−ϵ n. That proof can
be easily adapted for the expansion factor 2 + ϵ but requiring k ! 4.

THEOREM 5.5. Let k ! 4 be an integer and . ! θk be two constants. If ϕ ∼ R(n,., k),
then there exists a constant ck,. ! 1 such that, with high probability,

MSpace(ϕ ⊢I ⊥) ! n
4c.,k

,

where I is the ideal generated by the Boolean axioms.

PROOF. Fix a positive ϵ < k − 3 as required in Theorem 5.4. With high probability,
the adjacency graph Gϕ = (U ∪ V, E) of ϕ is a (s, 2+ ϵ)-expander, with s = δ.− 1+ϵ

k−3−ϵ n and
δ some constant depending on k and ϵ. Let c = c.,k,ϵ = ϵ−1δ−1.

1+ϵ
k−3−ϵ (k(k− 1) + ϵ), hence

n
c

= ϵs
k(k − 1) + ϵ

= min
{

s,
ϵs

2 + ϵ
,

ϵs
k(k − 1) + ϵ

}
. (7)

To prove the result, we give a n/c-winning strategy L for ϕ with respect to I.
Given a clause C in ϕ and a 2-matching π of C in V , let Hπ

C be the set of the partial
assignments α of domain π (C) ∪ {x̄ : x ∈ π (C)} such that α "I tr(C). For example, if
C = x ∨ ¬y ∨ C ′ and π (C) = {x, y}, then tr(C) = x̄y · tr(C ′) and

Hπ
C =

{{
x 4→ 0,
x̄ 4→ 1,

y 4→ 0,
ȳ 4→ 1,

}
,

{
x 4→ 1,
x̄ 4→ 0,

y 4→ 1,
ȳ 4→ 0,

}
,

{
x 4→ 1,
x̄ 4→ 0,

y 4→ 0,
ȳ 4→ 1,

}}
.

The strategy L is defined as follows: H ∈ L if and only if there exists a set A ⊆ U
and there exists a 2-matching π of A into V such that

(1) |A| $ n/c;
(2) (Gϕ, A,π (A)) has the (n/c, s)-double matching property4;
(3) H =

⊗
C∈A Hπ

C .

We prove that L is a n/c-winning strategy for ϕ with respect to the ideal I. L is
nonempty as Gϕ is an (s, 2 + ϵ)-expander so (Gϕ,∅,∅) has the (n/c, s)-double matching
property and so {'} ∈ L . By construction, H ∈ L imply that H is I-consistent.

For the restriction property, assume H′ ⊑ H with H =
⊗

C∈A Hπ
C ∈ L . Then H′ =⊗

C∈A′ Hπ ′

C , for some A′ ⊆ Awhere π ′ is the restriction of π to A′. Property (1) and (3) are
immediate. To prove property (2) we use the Retraction Lemma (Lemma 5.3). |A| $ n/c
and the parameter n/c in the (n/c, s)-double matching property of (Gϕ, A,π (A)) fulfills
the hypothesis of the Retraction Lemma. Hence, we obtain that (Gϕ, A′,π ′(A′)) has
the (n/c, s)-double matching property repeatedly applying the lemma to (Gϕ, A,π (A))
removing one by one the clauses C ∈ A\A′ and the corresponding π (C) from π (A).

4Recall that, as defined in Section 2.3, π (A) =
⋃

C∈A π (C).
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To prove the extension property, take H =
⊗

D∈A Hπ
D ∈ L with ∥H∥ < n/c and

let p = tr(C) be an axiom, where C ∈ ϕ. By construction, p is a monomial and we
can suppose that H !I p (otherwise, just take Hp = {'}). We apply the Extension
Lemma (Lemma 5.2) to (Gϕ, A,π (A)) since |A| < n/c and the parameter n/c fulfills
the hypothesis the lemma. Then there exists a 2-matching πC of C into V \π (A) such
that (G , A∪ {C},π (A) ∪ πC(C)) has the (n/c, s)-double matching property. Let Hp = HπC

C
be the set of the partial assignments α of domain πC(C) such that α "I C. Hp is an
I-consistent flippable family domain-disjoint from H. Let A′ = A∪ {C} and π ′ = π ∪ πC ,
then H ⊗ Hp =

⊗
D∈A′ Hπ ′

D is a flippable product-family in L and H ⊗ Hp "I p, as
already Hp "I p.

5.2. The Graph-Pigeonhole Principle
Let G = (U ∪ V, E) be a bipartite graph with U and V two disjoint sets of size respec-
tively n+ 1 and n and let X = {xu,v : (u, v) ∈ E}. The intuitive meaning of the variables
xu,v is the same as in PHPm

n , that is “the pigeon u goes to hole v”. The formula G -PHP is
the conjunction of the following clauses:

(1) ¬xu,v ∨ ¬xu′,v for all (u, v) ∈ E and (u′, v) ∈ E with u ̸= u′ (injectivity axioms);
(2) Pu =

∨
v : (u,v)∈E xu,v for all u ∈ U .

THEOREM 5.6. Let ϵ be a positive constant and G = (U ∪ V, E) be a bipartite graph
with left degree d. If G is a (s, 2 + ϵ)-expander, then MSpace (G -PHP ⊢I ⊥) ! r

4 , where
r = ϵs

d(d−1)+ϵ
and I is the ideal generated by the polynomial encoding of the injectivity

axioms of G -PHP and the Boolean axioms.

PROOF. Fix r = ϵs
d(d−1)+ϵ

. To prove the result, we give a r-winning strategy L for
G -PHP with respect to the ideal I.

Given v ∈ V , let Hv be the following set of partial assignments of domain {xu′v, x̄u′v :
u′ ∈ N(v)}

Hv = {α∗
v } ∪ {αuv : u ∈ N(v)},

where αuv is the Boolean assignment setting xuv to 1 and all the other variables xu′v to 0
and α∗

v is the Boolean assignment setting all the variables xu′v to 0. Both αuv and α∗
v are

intended to respect the meaning of the x̄u′v, that is, α∗
v (x̄u′v) = 1 − α∗

v (xu′v) and similarly
for αuv.

Given u ∈ U and v, v′ ∈ N(u) let Ou
{v,v′} be the following set of partial assignments of

domain dom(Hv) ∪ dom(Hv′):

Ou
{v,v′} = ({αuv} ⊗ Hv′ ) ∪ (Hv ⊗ {αuv′}).

By construction, Ou
{v,v′} is flippable, I-consistent and Ou

v,v′ "I tr(Pu).
The strategy L is defined as follows: H ∈ L if and only if there exists A ⊆ U and a

2-matching π of A into V such that:

(1) |A| $ r,
(2) (G , A,π (A)) has the (r, s)-double matching property5;
(3) H =

⊗
u∈A Ou

π(u).

We prove that L is a r-winning strategy for G -PHP with respect to the ideal I. L
is nonempty as (G ,∅,∅) has the (r, s)-double matching property and so {'} ∈ L . By
construction for each H ∈ L , H is I-consistent.

5Recall that, as defined in Section 2.3, π (A) =
⋃

u∈A π (u).
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For the restriction property assume H′ ⊑ H with H =
⊗

u∈A Ou
π(u) ∈ L . Then H′ =⊗

u∈A′ Ou
π ′(u), for some A′ ⊆ A where π ′ is the restriction of π to A′. Property (1) and

(3) are immediate. To prove property (2), we use the Retraction Lemma (Lemma 5.3).
|A| $ r and the parameter r in the (r, s)-double matching property of (G , A,π (A)) fulfills
the hypothesis of the Retraction Lemma. Hence, we obtain that (G , A′,π ′(A′)) has the
(r, s)-double matching property repeatedly applying the lemma to (G , A,π (A)) removing
one by one the clauses u ∈ A\A′ and the corresponding π (u) from π (A).

To prove the extension property, take H =
⊗

u′∈A Ou′

π(u′) ∈ L with ∥H∥ < r and let
p = tr(Pu) be an axiom, where Pu ∈ G -PHP. We can suppose that H !I p (otherwise,
just take Hp = {'}). We apply the Extension Lemma (Lemma 5.2) to (G , A,π (A)) since
|A| < r and the parameter r fulfills the hypothesis the lemma. Then there exists a
2-matching πu of u into V \π (A) such that (G , A∪ {u},π (A) ∪ πu(u)) has the (r, s)-double
matching property. Let Hp = Ou

πu(u) be the set of the partial assignments α of domain
πu(u) such that α "I p. Hp is an I-consistent flippable family domain-disjoint from H.
Let A′ = A∪ {u} and π ′ = π ∪πu, then H⊗Hp =

⊗
v∈A′ Ov

π(v) is a flippable product-family
in L and H ⊗ Hp "I p, as already Hp "I p.

THEOREM 5.7. There exists a constant degree d ! 4 bipartite graph G = (U ∪ V, E)
with |U | = n + 1 and |V | = n, such that

MSpace(G -PHP ⊢I ⊥) ! !(n/d3),

where I is the ideal generated by the polynomial encoding of the injectivity axioms of
G -PHP and the Boolean axioms.

PROOF. Theorem 2.46 and Lemma 2.29 in Ben-Sasson [2001] prove that there exists
a degree d bipartite graph G = (U ∪ V, E) with |U | = n + 1 and |V | = n which is a
(!(n/d), 7d/8−1)-expander. If d ! 4, then G is a (2+ϵ)-bipartite expander for a suitable
positive ϵ. The theorem then follows from the previous theorem applied to G -PHP.

6. OPEN PROBLEMS

Space lower bounds for 3-CNFs. For every unsatisfiable CNF formula ϕ in n variables
there is a trivial O(n) upper bound for the monomial space needed to refute it in PCR.
In particular, for formulas such as random 3-CNFs or the Tseitin contradiction over
a 3-regular expander graphs (see Table I). Is there a monomial space lower bound for
refuting those formulas in PCR asymptotically matching the trivial upper bound?

A partial result in this direction is obtained in Bennet et al. [2015] where it is proved
that, given a random 3-CNF ϕ in n variables, any PCR refutation of ϕ require, with
high probability, monomial space !(n).

Degree vs Space/Width vs Space. Is there a relation between space and degree in
PCR (or width in Resolution and Space in PCR), similar to the one between width and
space for Resolution [Atserias and Dalmau 2008]?
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