
On vanishing sums of roots of unity in polynomial
calculus and sum-of-squares
Ilario Bonacina #

Universitat Politècnica de Catalunya

Nicola Galesi #

Sapienza Università di Roma

Massimo Lauria #

Sapienza Università di Roma

Abstract
Vanishing sums of roots of unity can be seen as a natural generalization of knapsack from Boolean
variables to variables taking values over the roots of unity. We show that these sums are hard to
prove for polynomial calculus and for sum-of-squares, both in terms of degree and size.

2012 ACM Subject Classification Theory of computation → Proof complexity; Computing methodologies
→ Representation of polynomials

Keywords and phrases polynomial calculus, sum-of-squares, roots of unity, knapsack

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.18

Funding The first author was supported by the MICIN grants PID2019-109137GB-C22 and IJC2018-
035334-I, and partially by the grant PID2019-109137GB-C21.

1 Introduction

Statements from combinatorics, constraint satisfaction problems (CSP), arithmetic circuit
design, and algebra itself can be formalized either as statements about polynomial equalities
(and inequalities), or via propositional logic. The approach based on propositional logic is
amenable to state-of-the-art algorithms for satisfiability (SAT), usually variations of Conflict-
Driven-Clause-Learning SAT solvers (CDCL), see for instance [28, 29, 3]. These solvers are
surprisingly efficient, but their reasoning is ultimately based on the resolution proof system.
On problems coming from algebra, CDCL solvers do not exploit the algebraic aspects of
the problem, and therefore are typically unable to solve them. Switching to algebra allows
to leverage on tools as Hilbert’s Nullstellensatz and Gröbner basis computation in order to
solve systems of polynomial equations [10], or semidefinite programming to solve systems
of polynomial inequalities [30, 25]. These algebraic tools have been successful in practice
for instance to solve κ-coloring [11, 12, 13] and the verification of arithmetic multiplier
circuits [22, 21, 23]. κ-coloring, and in general CSP problems over finite domains of
size κ, are naturally encoded using κ-valued variables. In particular, the algebraic tools
for κ-coloring use the Fourier encoding, which represents values via complex variables z

subjected to the constraint zκ = 1 and hence such that

z ∈ {1, ζ, ζ2, . . . , ζκ−1} ,

where ζ is a primitive κth root of unity. A κ-valued variable z can be alternatively
represented as a collection of indicator Boolean variables x1, . . . , xκ equipped with the
additional constraint x1 + · · · + xκ = 1.

Picking the right encoding is essential to leverage the algebraic structure of the problem.
Even simple changes, for instance adding new variables to represent Boolean negations may
already give significant speedups both in theory and in practice [14, 20].

© Ilario Bonacina, Nicola Galesi, and Massimo Lauria;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bonacina@cs.upc.edu
mailto:nicola.galesi@uniroma1.it
mailto:massimo.lauria@uniroma1.it
https://doi.org/10.4230/LIPIcs.MFCS.2022.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

In this paper, following a general approach from proof complexity, we show that algorithms
leveraging Hilbert’s Nullstellensatz or Gröbner basis computations cannot prove efficiently
the unsatisfiability of some natural sets of polynomials equations over the Fourier variables.

The proof systems we consider are polynomial calculus and sum-of-squares. Polynomial
calculus is a well studied proof system that captures Hilbert’s Nullstellensatz and Gröbner
basis computations. It is a system that certifies the unsatisfiability of sets of polynomial
equations. It has been studied for polynomials over different fields or rings and, in particular,
also for polynomials over the complex numbers C, see for instance [7]. Given polynomials
p1, . . . , pm with coefficients in a field F, a refutation of {p1 = 0, . . . , pm = 0} in polynomial
calculus over F, denoted as PCF, is a sequence of polynomials p1, . . . , ps over F such that
ps = 1 and each pm+1, . . . , ps is either (1) r · pk for some polynomial r with coeffcients in F
and some k < i; or (2) a linear combination αpj + βpk for j, k < i and α, β ∈ F.

Regarding sum-of-squares, it is a systems to certify the unsatisfiability of sets of polynomial
equations and inequalities over R. A sum-of-squares SoSR refutation of the set of contraints
{p = 0 : p ∈ P} ∪ {h ≥ 0 : h ∈ H} is an identity of the form

−1 =
∑
p∈P

qp · p +
∑
h∈H

qh · h +
∑
s∈S

s2 ,

where the s, qp, qh are polynomials over R and moreover the qhs are sums of squared
polynomials. In presence of Boolean or {±1}-valued variables, SoSR p-simulates PCR [4, 34].

In this paper, we introduce a generalization of sum-of-squares with polynomials over
C, SoSC (see Section 2 for the formal definition). Since C is not an ordered field, this
generalization of sum-of-squares to C can only be used to certify the unsatisfiability of sets
of polynomial equations. For sets of polynomial equations over R and in the presence of
Boolean variables, SoSC coincides with the usual notion of sum-of-squares over R, but the
generalization is necessary to deal with Fourier variables or to reason about polynomials over
C. In presence of Fourier variables, SoSC p-simulates PCC, see Section 2 for more details.

PC and SoS can be used to solve computational problems once they are encoded as sets
of polynomials equations. It is customary to discuss sets of polynomial equations simply as
sets of polynomials. We adopt this custom and we say that a set of polynomials over C is
satisfiable when it has a common zero α ∈ Cn. The most naïve algebraic encoding is to use
variables ranging over {0, 1} to represent the truth values of variables. This Boolean nature
of a variable x is enforced via the polynomial x2 − x. With this encoding then, for example,
the satisfiability of a propositional clause x ∨ ¬y ∨ z can be encoded as the satisfiability of
the set of polynomials {(1 − x)y(1 − z), x2 − x, y2 − y, z2 − z}. Truth values of variables
are sometimes also encoded in the Fourier basis {±1} and, as we already mentioned, for
some CSPs it is convenient to use κ-valued variables using the κth roots of unity.

Finding deductions in PC/SoS may be hard, and in general there are important proxy
measures to estimate such hardness: the maximum degree of the polynomials involved in the
deductions, and the number of monomials involved in the whole proof when polynomials are
written explicitly as sums of monomials (size). The degree is a very rough measure of the
proof search space, the size is a lower bound on the time required to produce the proof.

Studying size and degree complexity in algebraic systems over Fourier encodings is
particularly relevant to understand how to leverage to proof complexity techniques like
the Smolensky’s method in circuit complexity [33]. He proved exponential lower bounds
to compute the MODp function by bounded-depth circuits using the unbounded gates in
{∧, ∨, MODq}, for p and q relatively prime, employing a reduction to low-degree polynomials
over GF(q) approximating such circuits. In proof complexity, it is a long-standing problem
to obtain lower bounds for proof systems over bounded-depth formulas with modular gates.

I. Bonacina, N. Galesi, M. Lauria 18:3

Non-trivial degree lower bounds for Fourier encodings were first obtained for the Nullstel-
lensatz proof system and PC by Grigoriev in [18] and Buss et al. in [7] for the Tseitin principle
over p-valued variables (instead of the usual {0, 1}) and the so-called MODp principles [7].

For PC/SoSR over Boolean variables we know degree and size lower bounds for the
encodings of several computational problems, see for instance [2, 17, 31, 32, 35]. For the
size lower bounds in PC and SoSR this is essentially due to degree-size tradeoffs: if a set of
polynomials over Boolean variables has no refutation in PC/SoSR of degree at most D, then
it has no refutation containing less than 2Ω

(
(D−d)2

n

)
monomials, see [1, 19].

No such degree-size relation holds for polynomials over the Fourier variables. For instance,
it is well-known that Tseitin contradictions over the Boolean variables {0, 1} require an
exponential number of monomials to be refuted in PC, while PC can refute them with a
linear number of monomials if the encoding uses the variables {±1}, see [7].

To the best of our knowledge, the first size lower bounds in PC/SoSR for polynomials with
{±1} variables are proved by [34] for the pigeonhole principle and random 11-CNFs. Moreover
that work provides a technique to turn strong degree lower bounds in that framework into
strong size lower bounds for the same polynomials composed with some carefully constructed
gadgets. We extend this latter approach to get size lower bound under the Fourier encoding
of κ-valued variables, and we apply it to a generalization of knapsack for these variables.

The classical knapsack problem corresponds to the set of polynomials{ n∑
i=1

cixi − r , x2
1 − x1, . . . , x2

n − xn

}
, (1)

where r, c1, . . . , cn ∈ C. For knapsack are known linear degree lower bounds in PC, see
[19, Theorem 5.1], and, when all the cis are 1 and r ∈ R, degree lower bounds in SoSR of
the form min{2⌊min{r, n − r}⌋ + 3, n}, see [17]. Size lower bounds are also implied by the
respective size-degree tradeoffs [19, 1].

Sums of roots of unity We consider the problem of when a sum of n variables with values
in the κth roots of unity can be equal to some value r ∈ C, that is the satisfiability of

SRUκ,r
n :=

{ ∑
i∈[n]

zi − r, zκ
1 − 1, . . . , zκ

n − 1
}

. (2)

Linear relations of the form
∑n

i=1 ciζi = 0, where ci are complex numbers and ζi are roots
of unity, arise naturally in several contexts [9], and have been extensively studied in the
literature, see for instance [16, 15]. When κ divides n, κ | n, it is easy to see that SRUκ,0

n is
satisfiable, because the κth roots of unity sum to zero.

When κ is a power of a prime number p, this is indeed the only possibility, that is SRUκ,0
n

is satisfiable over C if and only if p | n. (For the simple proof of this fact see the full version.)
For the general case of κ ∈ N, Lam and Leung [24] characterize exactly the set of natural
numbers n such that SRUκ,0

n is satisfiable. As a corollary of their results, if κ is not a power
of a prime then, there exists a n0(κ) s.t. for every n ≥ n0(κ) the set of polynomials SRUκ,0

n

is satisfiable.

Our results In this paper we show the hardness to certify in PC and SoSC the unsatisfiability
of SRUκ,0

n when κ is a prime and does not divide n. For simplicity, we leave the discussion
for the case when κ is a power of a prime for the journal version. Our main results regarding
PC/SoSC informally say that SoSC and PCC cannot capture divisibility arguments.

MFCS 2022

18:4 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

A linear degree lower bound for SRU2,0
n follows immediately, via a linear transformation,

from the known degree lower bound for knapsack in SoS, since the Grigoriev’s lower bound
in [17] can easily extended to SoSC. In this paper we generalize this result proving degree
and size lower bounds in SoSC for SRUκ,r

n for κ an odd prime.

▶ Theorem 1 (Degree lower bound for SRUκ,r
n). Let n, d ∈ N, κ be a prime, r ∈ C. Let r be

written as r1 + ζr2, where r1, r2 ∈ R and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ} ,

then there are no SoSC-refutations of SRUκ,r
n of degree at most d. In particular, SRUκ,0

n

requires refutations of degree Ω
(

n
κ

)
in SoSC.

From the set of polynomials in SRU2,r
n we can easily infer the polynomials in SRUκ,0

n , via
a linear transformation and a weakening. This is enough to prove degree lower bounds for
SRUκ,0

n in PCC since, Impagliazzo, Pudlák, and Sgall [19, Theorem 5.1] proved a linear degree
lower bound for knapsack and therefore SRU2,r

n for any r. This is not the case for SoSC:
SRU2,r

n is refutable in small degree and size in SoSC if r ∈ C \ R, see Example 4. In other
words, in SoSC, unlike the case of PC, it is not possible to reduce the hardness of SRUκ,0

n , for
κ > 2 to knapsack.

To prove the degree lower bound in SoSC for SRUκ,r
n (Theorem 1) first we construct a

candidate pseudo-expectation for SRUκ,r
n based on the symmetries of the set of polynomials.

Then we prove its correctness, following the approach by Blekherman [5, 6] as presented
in [27, Theorem B.11] but generalized to SoSC. Due to page limitations we only show in
Section 4 how to use the generalization of Blekherman’s theorem (Theorem 13) to prove
Theorem 1.

We also prove a size lower bound for SRUκ,0
n in SoSC. We lift degree lower bounds to size

lower bounds generalizing to κ-valued Fourier variables the lifting approach due to Sokolov
[34], originally designed for real valued polynomials and {±1}-variables.

▶ Theorem 2 (Size lower bound for SRUκ,0
n). Let κ be a prime and n ∈ N, if n ≫ κ then the

set of polynomials SRUκ,0
n has no refutation in SoSC within monomial size 2o(n).

Theorem 2, for κ = 2, follows easily from the techniques of Sokolov [34] and Grigoriev’s
degree lower bound for knapsack [17]. For κ > 2 it requires some non-trivial extension of the
lifting technique from [34]. That is, the composition of polynomials with appropriate gadgets
(see Definition 6). Our generalization of the lifting from [34] is Theorem 7 in Section 3.

Theorem 1 and Theorem 2 also hold for PCC, since SoSC simulates PCC.

Structure of the paper In the next section, we give the necessary preliminaries on roots of
unity and the formal definition of SoSC. In Section 3 we layout the proof of a way to lift
degree lower bounds to size lower bounds in SoSC for sets of polynomials over the Fourier
variables (Theorem 7) and we show how to prove Theorem 2 from Theorem 1 and Theorem 7.
The proof of Theorem 1 is in Section 4.

2 Preliminaries

Given n, k ∈ N, let [n] := {1, . . . , n}, and if k divides n we write k | n. For a ∈ R and
b ∈ N, let

(
a
0
)

:= 1 and
(

a
b

)
:= a(a−1)...(a−b+1)

b! for b ≥ 1. Boldface symbols indicate vectors,
and x denotes a vector with n elements (x1, . . . , xn). We denote with x Boolean variables,
with z κ-valued variables and with y generic variables or auxiliary variables. Given a set of

I. Bonacina, N. Galesi, M. Lauria 18:5

polynomials P ⊆ C[y], ⟨P ⟩ denotes the ideal generated by P in C[y]. Let i be the imaginary
unit in C, i.e. i2 = −1.

Roots of unity For a positive integer κ, a κth root of unity is a root of the polynomial
zκ − 1. All the roots of unity except 1 are also roots of the polynomial 1 + z + · · · + zκ−1,
indeed zκ − 1 = (z − 1) · (1 + z + · · · + zκ−1). A κth root of unity ζ is called primitive if
ζt ̸= 1 for all 1 ≤ t < κ. If this is the case the κth roots of unity are indeed 1, ζ, ζ2, . . . , ζκ−1.
Some of the results of this paper hold for roots of unity in generic fields but, for sake of
clarity, we only consider roots of unity in C. Notice that the complex conjugate of ζt is ζκ−t.
For concreteness, we denote as ζ a specific primitive κth root of unity, for instance e2πi/κ,
and as Ωκ the set {1, ζ, ζ2, . . . , ζκ−1}. We often denote as ω a generic element in Ωκ.

SoS over the complex numbers The key concept at the core of the sum-of-squares proof
system is that squares of real valued polynomials are always positive. For a complex valued
polynomial p ∈ C[y] we use that p ·p∗ ≥ 0, where p∗ is the function that maps the assignment
α to the complex conjugate of the value p(α). We need a polynomial representation of
function p∗ that we call formal conjugate of p. To have such polynomial, in general, we would
need to use a twin formal variable to represent x∗ for any original variable x. Furthermore
we would need to add to the proof system various axioms to relate x and x∗. In this work
we focus on SoSC under the Boolean and Fourier encodings, hence we can represent formal
conjugates as polynomials without any additional axiom or variable. For a Boolean variable
x ∈ {0, 1} we have that x∗ is x itself. For a Fourier variable z raised to an integer power
0 ≤ t < κ, the function (zt)∗ is zκ−t. Then the operator ∗ extends homomorphically on sums
and products, and it is equal to the usual complex conjugate on complex number. We are
now ready to define the sum-of-squares proof system over complex number.

▶ Definition 3 (Sum-of-Squares over C, SoSC). Fix an integer κ ≥ 2. Consider a set of
polynomials P ⊆ C[x, z] where P contains zκ − 1 and for each variable z, and contains
x2 − x for each variable x. A refutation of P in SoSC is an equality of the form

−1 =
∑
p∈P

qp · p +
∑
s∈S

s · s∗ ,

where the s ∈ S and qp for p ∈ P are in C[x, z] and each s∗ is the formal conjugate of s.
The degree of the refutation is max{deg(qp) + deg(p), deg(s · s∗) : p ∈ P, s ∈ S}. The

size of the refutation is the total number of monomials occurring with non-zero coefficients
among polynomials {qp, p : p ∈ P} ∪ {s, s∗ : s ∈ S}.

Notice that, for polynomials p, q ∈ R[x, z], (p + iq)(p − iq) = p2 + q2. Therefore for
P ⊆ R[x] and containing x2

i − xi for every i ∈ [n], the notion of SoSC and SoSR coincide.
By Hilbert’s Nullstellensatz, SoSC is complete: for every unsatisfiable set of polynomials

P there is a SoSC-refutation. Conversely, only unsatisfiable sets of polynomials have SoSC
refutations: for any assignment α of a polynomial s, polynomial s · s∗ evaluates to |s(α)|2

which is a non-negative real number.

▶ Example 4. The set of polynomials {
∑

j∈[n] xj − i, x2
1 − x1, . . . , x2

n − xn} has a simple
SoSC refutation:

−1 = −(
∑

j∈[n]

xj − i)(
∑

j∈[n]

xj + i) + (
∑

j∈[n]

xj)2 .

MFCS 2022

18:6 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

Via similar algebraic equalities it is not hard to see that SoSC can refute easily the set of
polynomials corresponding to knapsack in eq. (1) when r ∈ C \ R and all cis are real. By a
simple modification of [4, Lemma 3.1] and [34], we also have that, in presence of the axioms
yκ

i − 1, SoSC simulates PCC, that is PCC refutations can be converted to SoSC refutations
with just a polynomial increase in size.1 Impagliazzo, Pudlák, and Sgall in [19, Theorem 5.1]
prove that the set of polynomials in eq. (1) is hard for PCC, hence SoSC is strictly stronger
than PCC.

3 Size lower bounds in Sum-of-Squares

In this section we prove the size lower bound for SRUκ,0
n in SoSC from the the corresponding

degree lower bound. That is we show how to prove Theorem 2 from Theorem 1. On a
very high level, this is done composing the polynomials in SRUκ,r

n with some polynomials
g, obtaining then some new set of polynomials SRUκ,r

n ◦ g, and then via a lifting theorem
showing how degree lower bounds on SRUκ,r

n imply size lower bounds on SRUκ,r
n ◦ g.

▶ Definition 5 (composition of polynomials). Let x, y1, . . . yn be tuples of distinct variables
where yj = (yj1, . . . , yjℓj

). Given a polynomial p ∈ C[x] and g = (g1 . . . , gn) with gj ∈ C[yj]
we denote by p ◦ g the polynomial obtained substituting each instance of the variable xj in p

with the polynomial gj(yj) and then expanding the obtained algebraic expression as a sum of
monomials in the new variables. The polynomial p ◦ g then belongs to the ring C[y1, . . . , yn].

Similarly, for a set of polynomials P ⊂ C[x] we denote as P ◦ g the set of polynomials
{p ◦ g : p ∈ P}.

We are only interested in composing polynomials with g when g has some good properties.
Those are a generalization of the notion of compliant gadgets from [34, Definition 2.1].

▶ Definition 6 (compliant polynomial). A polynomial g ∈ C[y1, . . . , yℓ] is compliant if it is
symmetric and there exists a function h : Ωκ → Ωℓ

κ such that
1. g ◦ h = id, i.e. for all b ∈ Ωκ, g(h(b)) = b;
2. for each b ∈ Ωκ, the first κ coordinates of h(b) list all the elements of Ωκ; and
3.
∏

ω∈Ωκ
h(ω) is a constant function.

We say that g = (g1 . . . , gn) with gj ∈ C[yj] is compliant when each gj is compliant.

The original definition of [34, Definition 2.1] focuses on real polynomials and sets of values
{0, 1} and {±1}, while ours focuses on complex polynomials and the set of κth roots of unity.

The size lower bound on SRUκ,0
n in SoSC follows from the following general result.

▶ Theorem 7. Let P a finite set of polynomials of degree at most d0 in C[x] containing
the polynomials xκ

i − 1 for each i ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi]. If P requires degree D to be refuted in SoSC, then

P ◦ g ∪ {yκ
ij − 1 : i ∈ [n], j ∈ [ℓi]}

requires monomial size at least exp((D−d0)2

8ℓκ(κ−1)n) to be refuted in SoSC, where ℓ = maxi∈[n] ℓi.

1 The main difference with [4, Lemma 3.1] and [34] is to consider polynomials s · s∗ instead of squares s2

and then to use the algebraic equality (p + q)(p + q)∗ + (p − q)(p − q)∗ = 2pp∗ + 2qq∗ instead of the
one for the reals (p + q)2 + (p − q)2 = 2p2 + 2q2 .

I. Bonacina, N. Galesi, M. Lauria 18:7

This result is a generalization of [34, Theorem 4.2]. Before seeing how to prove this result
let us see how to apply it to prove a size lower bound for SRUκ,0

n , that is Theorem 2, restated
below for convenience of the reader.

▶ Theorem 2 (Size lower bound for SRUκ,0
n). Let κ be a prime and n ∈ N, if n ≫ κ then the

set of polynomials SRUκ,0
n has no refutation in SoSC within monomial size 2o(n).

Proof. Let n = (2κ + 1)n′ + b with b ∈ {0, . . . , 2κ}. Let ℓ1 = · · · = ℓb = 2κ + 2 and
ℓb+1 = · · · = ℓn′ = 2κ + 1. Consider the tuple g = (g1, . . . , gn′) where gi ∈ C[yi1, . . . , yiℓi

] is
the polynomial

gi(yi1, . . . , yiℓi
) := 1

κ
(
∑

j∈[ℓi]

yij − (ℓi − 2κ)) .

We have that SRUκ,0
n after renaming of variables is a subset of

SRUκ,r
n′ ◦ g ∪ {yκ

ij − 1 : i ∈ [n′], j ∈ [ℓi]} (3)

with r = − n′+b
κ . By Theorem 1, there are no SoSC refutations of SRUκ,r

n′ in degree n′

κ . Each
gi is compliant. Indeed, the polynomial gi is symmetric and we can take as hi : Ωκ → Ωℓi

κ

the function mapping

hi : ω 7→ (1, ζ, ζ2, . . . , ζκ−1, 1, 1, . . . , 1︸ ︷︷ ︸
ℓi−2κ

, ω, ω, . . . , ω︸ ︷︷ ︸
κ

) ,

where ζ is a primitive κth root of unity in C. Clearly, g ◦ h is the identity and∏
ω∈Ωκ

hi(ω) = ζκ(κ−1)/2ωκ = ζκ(κ−1)/2

since ω is a κth root of unity. By Theorem 7, the set of polynomials (3) requires SoSC

refutations of monomial size at least exp((n′
κ −κ)2

8ℓκ(κ−1)n′) = 2Ω(n) if n ≫ κ. Therefore SRUκ,0
n

requires refutations size 2Ω(n), too. ◀

We conclude this section with a proof sketch of Theorem 7. The overall structure of the
argument is that typical for size-degree trade-offs and can be found for instance in [8, 34, 1].
The idea is to show, on one side, that there exists a relatively long sequence of restrictions
such that the restricted polynomials have small degree refutations (Theorem 8) and that
each individual restriction can only make the degree decrease a little (Lemma 9). Those two
facts will imply that the sequence of restrictions must be very long and this will imply the
size-degree trade-off.

The reduced degree of a refutation in SoSC of a set of polynomials P containing the
polynomials xκ

j −1 is the degree of the refutation where we do not take in account the degrees
of the polynomials qp where p is xκ

j − 1 (see Definition 3).
Next theorem is the first ingredient for the proof of Theorem 7. It is a generalization

of [34, Theorem 4.1] and its proof, an adaptation of the argument given in [34], is in the full
version.

▶ Theorem 8. Let P be finite a set of polynomials of degree d0 in C[x] containing the
polynomials xκ

j − 1 for each j ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi

] and ω1, ω2, . . . , ωm ∈ Ωκ. If there is a SoSC refutation of P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [ℓi]} of size s then there exists a sequence of variables xi1 , . . . , xim with
m ≥ ℓκn ln(s)/D such that

MFCS 2022

18:8 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

1. ℓ = maxi ℓi;
2. the choice of xit

only depends on ω1, . . . , ωt−1;
3. there is a SoSC refutation of P↾xi1 =ω1,...,xim =ωm

of reduced degree at most D + d0.
The second ingredient for the proof of Theorem 7 is the following lemma.

▶ Lemma 9. Let P be a finite set of polynomials in C[x] containing the polynomials xκ
j − 1

for each j ∈ [n]. Suppose any SoSC refutation of P has reduced degree at least D. Then,
for any variable xj there is ω ∈ Ωκ such that SoSC refutations of P↾xj=ω must have reduced
degree at least D − 2κ + 2.

Proof. (sketch) For sake of contradiction, suppose there exists some variable x such that
for every ω ∈ Ωκ, P↾x=ω has a refutation of reduced degree D − 2κ + 1. For every ℓ ∈ N,
xℓ − ωℓ is a multiple of x − ω. Therefore, for every p ∈ P , the polynomial p − p↾x=ω belongs
to the ideal generated by x − ω. This means that we can transform refutations of P↾x=ω

into refutations of P ∪ {x − ω} without increasing the degree. Hence, there are refutations of
P ∪ {x − ω} of reduced degree D − 2κ + 1 for every ω ∈ Ωκ.

Let πω be a refutation of P ∪ {x − ω} of reduced degree D − 2κ + 1. Let qω(x) =∏
ω′ ̸=ω(x − ω′).

It is easy to see that multiplying πω by the polynomial qωq∗
ω we get a derivation of −qωq∗

ω

from P . This new derivation has reduced degree D−2κ+1+2(κ−1) = D−1. Now we can take
a linear combination (with non-negative real coefficients) of the previous derivations to get
the derivation of −1. More precisely we need numbers αω ≥ 0 such that

∑
ω∈Ωκ

αωqωq∗
ω −1 ∈

⟨xκ − 1⟩. Setting αω = 1/qω(ω)qω(ω)∗ we get that that
∑

ω∈Ωκ
αωqωq∗

ω − 1 is zero for all
ω ∈ Ωκ and therefore in the ideal ⟨xκ − 1⟩. This finally gives a SoSC refutation of P in degree
D − 1, contradicting the assumption on P . ◀

Proof of Theorem 7. Let s be the smallest size of a SoSC refutation of the set of polynomials
P ◦ g ∪ {yκ

ij − 1 : i ∈ [n], j ∈ [ℓi]}. We alternate applications of Theorem 8 to pick xit
with

applications of Lemma 9 to pick ωt, and in the end we have a sequence of variables/values xi1 =
ω1, . . . , xim = ωm. By these choices, the restricted set of polynomials P ↾xi1 =ω1,...,xim =ωm

requires refutations of reduced degree at least D − 2κm + 2m. By Theorem 8, we can set
m = ℓkn ln(s)/D′ for some D′ > 0 and get a refutation of reduced degree at most D′ + d0.
Hence, D′ + d0 ≥ D − 2m(κ − 1) and we get that ln(s) ≥ D′(D−D′−d0)

2ℓkn(κ−1) . The largest value is

attained for D′ = (D − d0)/2 and we get ln(s) ≥ (D−d0)2

8ℓkn(κ−1) . ◀

4 Degree lower bounds in SoSC

In this section we prove Theorem 1, restated here for convenience of the reader.

▶ Theorem 1 (Degree lower bound for SRUκ,r
n). Let n, d ∈ N, κ be a prime, r ∈ C. Let r be

written as r1 + ζr2, where r1, r2 ∈ R and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ} ,

then there are no SoSC-refutations of SRUκ,r
n of degree at most d. In particular, SRUκ,0

n

requires refutations of degree Ω
(

n
κ

)
in SoSC.

It is convenient to consider the following Boolean encoding of the sums of roots of unity,

bool-SRUκ,r
n :=

{ ∑
i∈[n]

(∑
j∈[κ]

ζj−1xij

)
− r, x2

ij − xij ,
∑
j∈[κ]

xij − 1 : i ∈ [n], j ∈ [κ]
}

. (4)

I. Bonacina, N. Galesi, M. Lauria 18:9

The set of equations SRUκ,r
n uses variables taking values in {1, ζ, ζ2, . . . , ζκ−1}, the encoding

in eq. (4) uses indicator variables to select the appropriate power of ζ. It is easy to see
that the degree needed to refute SRUκ,r

n in PCC/SoSC is at least the degree needed to
refute bool-SRUκ,r

n in PCC/SoSC. Hence, it is enough to show the degree lower bound for
bool-SRUκ,r

n . To show this we construct a degree-d pseudo-expectation for bool-SRUκ,r
n , i.e.,

a linear operator Ẽ : C[x] → C such that
Ẽ(1) = 1,
Ẽ(mp) = 0, for every p ∈ bool-SRUκ,r

n and m monomial such that deg(p) + deg(m) ≤ d,
Ẽ(s · s∗) ∈ R≥0, for every polynomial s s.t. deg(s · s∗) ≤ d.

It is easy to see that the existence of a degree-d pseudo-expectation for a set of polynomials
P implies that P cannot be refuted in degree-d SoSC. The construction of an appropriate
pseudo-expectation Ẽ for bool-SRUκ,r

n is the goal of this section.

Some notation In this section we consider fixed r ∈ C and r1, r2 ∈ R such that r = r1 +ζr2.
Let ej be the vector of dimension κ with the jth entry 1 and all other entries 0. For j ∈ [κ],
let x(j) := (x1j , . . . , xnj). That is, bool-SRUκ,r

n is a set of polynomials in C[x(1), . . . , x(κ)].
Given a tuple of sets I = (I1, . . . , Iκ), where Ij ⊆ [n], let XI :=

∏
j∈[κ]

∏
i∈Ij

xij . With ∥ · ∥
we always denote the 1-norm. So ∥x(j)∥ denotes the polynomial

∑
i∈[n] xij .

A potential satisfying assignment of bool-SRUκ,r
n consists of γ = (γ1, . . . , γκ), the

allocation of the n roots of unity in the directions ζ0, . . . , ζκ−1. The sum
∑

j∈[κ] ζj−1γj must
be equal to the target value r = r1 + ζr2, so we spread uniformly n − r1 − r2 among the γjs,
and then add r1 and r2 to γ1 and γ2 respectively. This leads to the definitions

γ1 = n−r1−r2
κ + r1 ,

γ2 = n−r1−r2
κ + r2 ,

γj = n−r1−r2
κ for j ≥ 3 .

(5)

Observe that ∥γ∥ = n. For ease of notation let γ̂ = n−r1−r2
κ and r3 = · · · = rκ = 0.

Therefore, we can write γj = γ̂ + rj for each j ∈ [κ].
Given I = (I1, . . . , Iκ) with Ij ⊆ [n], and variables v = (v1, . . . , vκ), let S(XI) be the

polynomial in the variables v defined by

S(XI) :=


(n − |

⋃
j∈[κ] Ij |)!
n!

∏
j∈[κ]

|Ij |−1∏
ℓ=0

(vj − ℓ) if the sets in I are pair-wise disjoint ,

0 otherwise .

(6)

By linearity, extend S(·) to all polynomials. That is, given p =
∑

I αIXI with αI ∈ C, let
S(p) :=

∑
I αIS(XI). We define

Ẽ(p) := S(p)(γ)

and we show that Ẽ is a pseudo-expectation for bool-Knκ,r
n .

Let B be the ideal ⟨x2
ij − xij , xijxij′ : i ∈ [n], j, j′ ∈ [κ], j ̸= j′⟩. Given polynomials

p, q ∈ C[x(1), . . . , x(κ)], we use the notation p ≡ q to denote that p − q ∈ B.

▶ Lemma 10. If p ≡ q then Ẽ(p) = Ẽ(q).

Proof. By definition p ≡ q means there exists a polynomial s ∈ B such that p = q + s. By
construction, Ẽ maps to 0 every polynomial in B, in particular Ẽ(s) = 0. By the linearity of
Ẽ, then Ẽ(p) = Ẽ(q). ◀

MFCS 2022

18:10 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

From the definition of Ẽ, it follows easily that the lifts of the polynomials in bool-SRUκ,r
n

are mapped to 0 by Ẽ.

▶ Theorem 11. For every I = (I1, . . . , Iκ) with Ij ⊆ [n] and i ∈ [n], and every p ∈
bool-SRUκ,r

n , Ẽ(XIp) = 0.

Proof. The fact that Ẽ(XI(x2
ij − xij)) = 0 is immediate by the definition of Ẽ.

Given a = (a1, . . . , aκ) ∈ [n]κ, let Ea := (n−∥a∥)!
n!

∏
j∈[κ]

∏aj−1
ℓ=0 (γj − ℓ). Notice that for

every j ∈ [κ], Ea+ej
= Ea

γj−aj

n−∥a∥ . If the sets Ij are not pair-wise disjoint then, by definition,
the pseudo-expectation is already 0, so it is enough to consider the case when the Ijs are
pair-wise disjoint.

Let t = (t1, . . . , tκ) where tj = |Ij |. To show that Ẽ(XI(
∑

j∈[κ] xij − 1)) = 0 we have two
cases. If i ∈

⋃
j∈[κ] Ij , then

Ẽ(XI(
∑
j∈[κ]

xij − 1)) = Et − Et = 0 .

If i /∈
⋃

j∈[κ] Ij , then

Ẽ(XI(
∑
j∈[κ]

xij − 1)) =
∑
j∈[κ]

Et+ej − Et = Et ·

(∑
j∈[κ]

γj − tj

n − ∥t∥ − 1

)
= Et ·

(
∥γ∥ − ∥t∥
n − ∥t∥ − 1

)
= 0 ,

since ∥γ∥ = n.
Finally we prove that Ẽ(XI(

∑
j∈[κ] ζj−1∥x(j)∥ − r1 − ζr2)) = 0:

Ẽ(XI(
∑
j∈[κ]

ζj−1∥x(j)∥ − r1 − ζr2)) = Et

∑
j∈[κ]

ζj−1tj +
∑

i/∈
⋃

j∈[κ]
Ij

(
∑
j∈[κ]

ζj−1Et+ej
) − (r1 + ζr2)Et

= Et

∑
j∈[κ]

ζj−1tj + (n − ∥t∥)
∑
j∈[κ]

ζj−1Et+ej
− (r1 + ζr2)Et

= Et

∑
j∈[κ]

ζj−1tj + Et

∑
j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)Et

= Et ·

∑
j∈[κ]

ζj−1tj +
∑
j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)


= Et ·

∑
j∈[κ]

ζj−1γj − (r1 + ζr2)


= Et ·

∑
j∈[κ]

ζj−1γ̂ +
∑
j∈[κ]

ζj−1rj − (r1 + ζr2)


= 0 ,

since γj = γ̂ + rj , rj = 0 for j > 2, and
∑

j∈[k] ζj−1 = 0. ◀

This result, together with Theorem 12 below, implies that Ẽ is a degree-d pseudo-
expectation for bool-SRUκ,r

n , and therefore a degree-d lower bound for the refutations of
bool-SRUκ,r

n and SRUκ,r
n in SoSC, i.e. Theorem 1. The idea is to use to Blekherman’s

approach in [27, Appendix B,C]. Let us recall first some useful notation.

I. Bonacina, N. Galesi, M. Lauria 18:11

Let Sn be the symmetric group of n elements. For a set J ⊆ [n] and a permutation
σ ∈ Sn, let σJ := {σ(j) : j ∈ J}. Consider variables y = (y1, . . . , yn). For a set J ⊆ [n] let
YJ :=

∏
j∈J yj . Given a polynomial p ∈ C[y], that is p(y) =

∑
J⊆[n] pJYJ , with pJ ∈ C, let

σp(y) :=
∑

J

pJYσJ .

Then define the symmetrization of p as the polynomial Sym(p) ∈ C[y] given by

Sym(p)(y) := 1
n!
∑

σ∈Sn

σp(y) .

▶ Theorem 12. For every polynomial p ∈ C[x(1), . . . , x(κ)] of degree at most d, if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ ,

then Ẽ(p · p∗) ≥ 0 where p∗ is the formal conjugate of p.

Proof. Let γ be defined as in eq. (5), and recall γ̂ = n−r1−r2
κ . Recall that the polynomial

S(XI) when evaluated on γ is exactly Ẽ(XI), see the comment after eq. (6). We have that

Ẽ(p · p∗) = S(p · p∗)(γ) [by the definition of Ẽ]
= S(p · p∗)(r1 + γ̂, r2 + γ̂, . . . , rκ + γ̂) [by the definition of γ]
= Sym(p↾ρ ·p↾∗

ρ)(γ̂e1) [by Theorem 14 below]

=
d∑

j=0
pd−j(γ̂) · p∗

d−j(γ̂)
j−1∏
i=0

(γ̂ − i)(n − γ̂ − i) , [by Theorem 13 below]

where ρ is the substitution given by ρ(xij) := yi + rj

n (recall that r3 = · · · = rκ = 0). Now,
pd−j(γ̂) · p∗

d−j(γ̂) is always real and non-negative since it is the module of the complex
number pd−j(γ̂), hence to enforce the non-negativity of Ẽ(p · p∗) it is enough to argue that∏j−1

i=0 (γ̂ − i)(n − γ̂ − i) ≥ 0. This is true if γ̂ − d + 1 ≥ 0 and n − γ̂ − d + 1 ≥ 0. I.e. if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ . ◀

▶ Theorem 13 (adaptation of [27, Theorem B.11]). Given variables y = (y1, . . . , yn) and
p, q ∈ C[y] with degree at most d ≤ n/2,

Sym(p · p∗)(y) ≡
d∑

j=0
pd−j(∥y∥) · p∗

d−j(∥y∥)
j−1∏
i=0

(∥y∥ − i)(n − ∥y∥ − i) ,

where pd−j is a univariate polynomial with coefficients in C, p∗
d−j is the formal conjugate of

pd−j and the degree of both polynomials is at most (d − j)/2.

This result is provable using exactly the same argument of Blekherman in [27, Theorem
B.11], adapted to complex numbers.

▶ Theorem 14. Given p ∈ C[x(1), . . . , x(κ)],

S(p)(r1 + ∥y∥, r2 + ∥y∥, r3 + ∥y∥, . . . , rκ + ∥y∥) ≡ Sym(p↾ρ)(y) ,

where ρ is the substitution given by ρ(xij) := yi + rj

n (recall that r3 = · · · = rκ = 0).

MFCS 2022

18:12 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

Proof. Given a vector of variables y = (y1, . . . , ym), let
(∥y∥

t

)
be the polynomial(

∥y∥
t

)
:= ∥y∥(∥y∥ − 1) · · · (∥y∥ − t + 1)

t! .

It holds that
(∥y∥

t

)
≡
∑

I⊆[n]
|I|=t

YI . (A proof of this fact is in the full version.) This immediately

implies that∏
j∈[κ]

(
∥x(j)∥

tj

)
≡

∑
I=(I1,...,Iκ), Ij⊆[n]

|Ij |=tj

XI . (7)

For a vector of sets I = (I1, . . . , Iκ) and a permutation σ ∈ Sn, let σI := (σI1, . . . , σIκ).
Given a polynomial p =

∑
I pIXI in C[x(1), . . . , x(κ)] and a permutation σ ∈ Sn let

σp :=
∑

I

pIXσI .

Now, for any polynomial p ∈ C[x(1), . . . , x(κ)]

1
n!
∑

σ∈Sn

σp ≡ S(p)(∥x(1)∥, . . . , ∥x(κ)∥) . (8)

To see this equivalence, by linearity, it is enough to show that for every I with Ij ⊆ [n]

1
n!
∑

σ∈Sn

XσI ≡ S(XI)(∥x(1)∥, . . . , ∥x(κ)∥) .

If the sets in I are not pair-wise disjoint it is immediate to see that 1
n!
∑

σ∈Sn
XσI ∈ B, and

therefore 1
n!
∑

σ∈Sn
XσI ≡ 0. Suppose then I = (I1, . . . , Iκ) and the sets Ij are pair-wise

disjoint. Let tj = |Ij |, then

1
n!
∑

σ∈Sn

XσI =
(n − ∥t∥)!

∏
j∈[κ] tj !

n! ·
∑

S=(S1,...,Sκ)
pair-wise disj.

|Sj |=tj

XS

≡
(n − ∥t∥)!

∏
j∈[κ] tj !

n! ·
∑

S=(S1,...,Sκ)
|Sj |=tj

XS

≡ (n − ∥t∥)!
n!

∏
j∈[κ]

tj ! ·
∏

j∈[κ]

(
∥x(j)∥

tj

)
(9)

= S(XI)(∥x(1)∥, . . . , ∥x(κ)∥) ,

where the equality in eq. (9) follows from eq. (7).
To conclude, it is then enough to observe that the statement we want to prove follows

from eq. (8) restricting both sides of the equality by ρ. To prove this we use that σXI↾ρ=
σ(XI↾ρ). ◀

5 Conclusions

The study of algebraic proof systems under Fourier encoding is still at its infancy. There are
many natural questions about its size efficiency. We understand reasonably well the strength

I. Bonacina, N. Galesi, M. Lauria 18:13

relation between resolution and PC in the Boolean encoding. Sokolov [34] stresses that we
do not even know yet whether PC with {±1} simulates resolution or not.

We mentioned already that the study of κ-coloring of graphs is a very natural application
of PC with Fourier encoding. There are some degree lower bounds in literature [26], but size
lower bounds are still unknown. Understanding size would allow to understand larger classes
of algebraic algorithms for this problem.

Acknowledgements The authors would like to thank Albert Atserias for fruitful discussions.

References
1 Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for sums-of-squares and

positivstellensatz proofs. In Amir Shpilka, editor, 34th Computational Complexity Conference,
CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 24:1–24:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.24.

2 Albert Atserias and Joanna Ochremiak. Proof complexity meets algebra. ACM Trans. Comput.
Logic, 20(1), December 2018.

3 Roberto J Bayardo Jr and Robert Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In AAAI/IAAI, pages 203–208, 1997.

4 Christoph Berkholz. The Relation between Polynomial Calculus, Sherali-Adams, and Sum-
of-Squares Proofs. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on
Theoretical Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 11:1–11:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

5 Grigoriy Blekherman, João Gouveia, and James Pfeiffer. Sums of squares on the hypercube.
Mathematische Zeitschrift, pages 1–14, 2016. doi:10.1007/s00209-016-1644-7.

6 Grigoriy Blekherman and Cordian Riener. Symmetric non-negative forms and sums of
squares. Discrete and Computational Geometry, 65(3):764–799, May 2020. doi:10.1007/
s00454-020-00208-w.

7 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

8 Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Gröbner basis algorithm
to find proofs of unsatisfiability. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May
22-24, 1996, pages 174–183. ACM, 1996.

9 John Conway and A. Jones. Trigonometric diophantine equations (on vanishing sums of
roots of unity). Acta Arithmetica, 30(3):229–240, 1976. URL: http://dx.doi.org/10.4064/
aa-30-3-229-240, doi:10.4064/aa-30-3-229-240.

10 David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms : An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3rd edition. Springer, 2007.

11 Jesús A De Loera, J. Lee, S. Margulies, and S. Onn. Expressing combinatorial problems
by systems of polynomial equations and Hilbert’s Nullstellensatz. Comb. Probab. Comput.,
18(4):551–582, July 2009. URL: http://dx.doi.org/10.1017/S0963548309009894, doi:10.
1017/S0963548309009894.

12 Jesús A De Loera, Jon Lee, Peter N Malkin, and Susan Margulies. Computing infeasibility
certificates for combinatorial problems through Hilbert’s Nullstellensatz. Journal of Symbolic
Computation, 46(11):1260–1283, 2011.

13 Jesús A De Loera, Susan Margulies, Michael Pernpeintner, Eric Riedl, David Rolnick, Gwen
Spencer, Despina Stasi, and Jon Swenson. Graph-coloring ideals: Nullstellensatz certificates,
Gröbner bases for chordal graphs, and hardness of Gröbner bases. In Proceedings of the 2015

MFCS 2022

https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.1007/s00209-016-1644-7
https://doi.org/10.1007/s00454-020-00208-w
https://doi.org/10.1007/s00454-020-00208-w
https://doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.4064/aa-30-3-229-240
http://dx.doi.org/10.4064/aa-30-3-229-240
https://doi.org/10.4064/aa-30-3-229-240
http://dx.doi.org/10.1017/S0963548309009894
https://doi.org/10.1017/S0963548309009894
https://doi.org/10.1017/S0963548309009894

18:14 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

ACM on International Symposium on Symbolic and Algebraic Computation, pages 133–140.
ACM, 2015.

14 Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The Power
of Negative Reasoning. In 36th Computational Complexity Conference (CCC 2021), volume
200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:24, 2021.
doi:10.4230/LIPIcs.CCC.2021.40.

15 R. Dvornicich and U. Zannier. Sums of roots of unity vanishing modulo a prime.
Archiv der Mathematik, 79(2):104–108, Aug 2002. URL: http://dx.doi.org/10.1007/
s00013-002-8291-4, doi:10.1007/s00013-002-8291-4.

16 Roberto Dvornicich and Umberto Zannier. On sums of roots of unity. Monatshefte für
Mathematik, 129(2):97–108, Feb 2000. URL: http://dx.doi.org/10.1007/s006050050009,
doi:10.1007/s006050050009.

17 D. Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Computational
Complexity, 10(2):139–154, December 2001.

18 Dima Grigoriev. Tseitin’s tautologies and lower bounds for Nullstellensatz proofs. In 39th
Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA, pages 648–652. IEEE Computer Society, 1998. doi:10.1109/
SFCS.1998.743515.

19 R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds for the polynomial calculus and the
Gröbner basis algorithm. Computational Complexity, 8(2):127–144, Nov 1999.

20 Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström. Adding dual variables
to algebraic reasoning for gate-level multiplier verification. In Proceedings of the 25th Design,
Automation and Test in Europe Conference (DATE’22), 2022.

21 Daniela Kaufmann and Armin Biere. Nullstellensatz-proofs for multiplier verification. In
Computer Algebra in Scientific Computing - 22nd International Workshop, CASC 2020,
Linz, Austria, September 14-18, 2020, Proceedings, pages 368–389, 2020. doi:10.1007/
978-3-030-60026-6_21.

22 Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combining
SAT and computer algebra. In 2019 Formal Methods in Computer Aided Design, FMCAD
2019, San Jose, CA, USA, October 22-25, 2019, pages 28–36, 2019. doi:10.23919/FMCAD.
2019.8894250.

23 Daniela Kaufmann, Armin Biere, and Manuel Kauers. From DRUP to PAC and back. In
2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble,
France, March 9-13, 2020, pages 654–657, 2020. doi:10.23919/DATE48585.2020.9116276.

24 T.Y Lam and K.H Leung. On vanishing sums of roots of unity. Journal of Algebra, 224(1):91–
109, 2000.

25 J. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. Integer Programming
and Combinatorial Optimization, pages 293–303, 2001.

26 Massimo Lauria and Jakob Nordström. Graph Colouring is Hard for Algorithms Based on
Hilbert’s Nullstellensatz and Gröbner Bases. In 32nd Computational Complexity Conference
(CCC 2017), volume 79, pages 2:1–2:20, 2017. URL: http://drops.dagstuhl.de/opus/
volltexte/2017/7541, doi:10.4230/LIPIcs.CCC.2017.2.

27 Troy Lee, Anupam Prakash, Ronald de Wolf, and Henry Yuen. On the sum-of-squares degree
of symmetric quadratic functions. In 31st Conference on Computational Complexity, volume 50
of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 17, 31. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2016.

28 João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. Computers, IEEE Transactions on, 48(5):506–521, 1999.

29 M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th annual Design Automation Conference, pages
530–535. ACM, 2001.

https://doi.org/10.4230/LIPIcs.CCC.2021.40
http://dx.doi.org/10.1007/s00013-002-8291-4
http://dx.doi.org/10.1007/s00013-002-8291-4
https://doi.org/10.1007/s00013-002-8291-4
http://dx.doi.org/10.1007/s006050050009
https://doi.org/10.1007/s006050050009
https://doi.org/10.1109/SFCS.1998.743515
https://doi.org/10.1109/SFCS.1998.743515
https://doi.org/10.1007/978-3-030-60026-6_21
https://doi.org/10.1007/978-3-030-60026-6_21
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.23919/DATE48585.2020.9116276
http://drops.dagstuhl.de/opus/volltexte/2017/7541
http://drops.dagstuhl.de/opus/volltexte/2017/7541
https://doi.org/10.4230/LIPIcs.CCC.2017.2

I. Bonacina, N. Galesi, M. Lauria 18:15

30 Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical programming, 96(2):293–320, 2003.

31 Aaron Potechin. Sum of Squares Bounds for the Ordering Principle. In Shubhangi Saraf,
editor, 35th Computational Complexity Conference (CCC 2020), volume 169 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 38:1–38:37, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/
opus/volltexte/2020/12590, doi:10.4230/LIPIcs.CCC.2020.38.

32 Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 593–602. IEEE Computer Society, 2008. doi:10.1109/FOCS.
2008.74.

33 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:
10.1145/28395.28404.

34 Dmitry Sokolov. (Semi)Algebraic proofs over {±1} variables. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing. ACM, jun 2020.

35 Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 303–312. ACM, 2009. doi:
10.1145/1536414.1536457.

MFCS 2022

https://drops.dagstuhl.de/opus/volltexte/2020/12590
https://drops.dagstuhl.de/opus/volltexte/2020/12590
https://doi.org/10.4230/LIPIcs.CCC.2020.38
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/1536414.1536457
https://doi.org/10.1145/1536414.1536457

	1 Introduction
	2 Preliminaries
	3 Size lower bounds in Sum-of-Squares
	4 Degree lower bounds in
	5 Conclusions

