
comput. complex. (2023) 32:12

c© The Author(s) 2023

1016-3328/23/020001-45

published online November 12, 2023

https://doi.org/10.1007/s00037-023-00242-z computational complexity

ON VANISHING SUMS OF ROOTS

OF UNITY IN POLYNOMIAL

CALCULUS AND

SUM-OF-SQUARES

Ilario Bonacina , Nicola Galesi ,

and Massimo Lauria

Abstract. We introduce a novel take on sum-of-squares that is able
to reason with complex numbers and still make use of polynomial in-
equalities. This proof system might be of independent interest since it
allows to represent multivalued domains both with Boolean and Fourier
encoding. We show degree and size lower bounds in this system for a
natural generalization of knapsack: the vanishing sums of roots of unity.
These lower bounds naturally apply to polynomial calculus as-well.
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1. Introduction

Problems in combinatorics, constraint satisfaction, arithmetic cir-
cuit design, or algebra, can be formalized in a variety of languages.
The popular propositional logic approach, based on the Conflict-
Driven-Clause-Learning SAT solvers (Bayardo Jr & Schrag 1997;
Marques-Silva & Sakallah 1999; Moskewicz et al. 2001), fails to
exploit the algebraic structure of the problem and often resorts to
inefficient brute-force.

Maintaining the algebraic representation allows to use Hilbert’s
Nullstellensatz, Gröbner basis computation, or semidefinite
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programming (Cox et al. 2007; Lasserre 2001; Parrilo 2003). These
tools have been successful in practice, for instance to solve κ-
coloring (De Loera et al. 2009, 2011, 2015) and to verify arith-
metic multiplier circuits (Kaufmann & Biere 2020; Kaufmann et al.
2019, 2020).

CSP problems over domains of size κ, e.g. κ-coloring, can
be naturally represented using either the Fourier encoding or the
Boolean encoding. The Fourier encoding represents values via com-
plex variables z subjected to the constraint zκ = 1 and hence
such that

z ∈ {1, ζ, ζ2, . . . , ζκ−1},

where ζ is a primitive κth root of unity. The Boolean encoding
uses {0, 1}-valued indicator variables x1, . . . , xκ, equipped with the
additional constraint x1 + · · · + xκ = 1.

A good encoding is essential to leverage the algebraic structure
of a problem: even simple variations may give significant speedups
both in theory and in practice (Kaufmann et al. 2022; de Rezende
et al. 2021).

In this paper, we show that algorithms leveraging Hilbert’s
Nullstellensatz or Gröbner basis computations cannot prove ef-
ficiently the unsatisfiability of some natural sets of polynomials
equations over the Fourier variables.

We focus on polynomial calculus and sum-of-squares proof sys-
tems. Polynomial calculus is a well-studied proof system that cap-
tures Hilbert’s Nullstellensatz and Gröbner basis computations,
and certifies the unsatisfiability of sets of polynomial equations
(Buss et al. 2001). Sum-of-squares certifies the unsatisfiability of
sets of polynomial equations and inequalities over R. A sum-of-
squares SoSR refutation of the set of constraints {p = 0 : p ∈
P} ∪ {h ≥ 0 : h ∈ H} is an identity of the form

−1 =
∑

p∈P

qp · p +
∑

h∈H

qh · h +
∑

s∈S

s2,

where the s, qp, qh are polynomials over R and moreover the qhs are
sums of squared polynomials. Sum-of-squares p-simulates poly-
nomial calculus over the reals on {0, 1}-valued and {±1}-valued
variables (Berkholz 2018; Sokolov 2020).
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In this paper, we introduce a generalization of sum-of-squares
with polynomials over C, SoSC (see Section 2 for the formal def-
inition). Since C is not an ordered field, this generalization of
sum-of-squares to C can only be used to certify the unsatisfiability
of sets of polynomial equations. For sets of polynomial equations
over R, and in the presence of Boolean variables, SoSC coincides
with the usual notion of sum-of-squares over R, but the generaliza-
tion is necessary to deal with Fourier variables or to reason about
polynomials with complex coefficients. As in the real case SoSC

p-simulates PCC, see Section 2 for more details.

Finding deductions in PC/SoS may be hard, and in general
there are important proxy measures to estimate such hardness:
the maximum degree of the polynomials involved in the deduc-
tions, and the size of the proof measured as number of monomials
involved in the whole proof when polynomials are written explic-
itly as sums of monomials. The degree is a very rough measure of
the proof search space, and the size is a lower bound on the time
required to produce the proof.

Studying size and degree complexity in algebraic systems over
Fourier encodings is particularly relevant to understand how to
leverage to proof complexity techniques such as the Smolensky’s
method in circuit complexity. Smolensky (1987) proved exponential
lower bounds to compute the MODp function by bounded-depth
circuits using the unbounded gates in {∧,∨, MODq}, for p and q
relatively prime, employing a reduction to low-degree polynomials
over GF(q) approximating such circuits. In proof complexity, it is
a long-standing problem to obtain lower bounds for proof systems
over bounded-depth formulas with modular gates.

Non-trivial degree lower bounds for Fourier encodings were first
obtained for the Nullstellensatz proof system and PC by Grigoriev
(1998) and Buss et al. (2001) for the Tseitin principle over p-valued
variables and the MODp principles.

For PC/SoSR over Boolean variables, we know degree and size
lower bounds for the encodings of several computational prob-
lems, see for instance (Atserias & Ochremiak 2018; Grigoriev 2001;
Potechin 2020; Schoenebeck 2008; Tulsiani 2009). Over Boolean
variables a strong degree lower bound implies immediately a size
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lower bounds thanks to degree-size trade-offs: if a set of polynomi-
als over Boolean variables has no refutation of degree at most D,

then it has no refutation containing less than 2Ω(
(D−d)2

n
) monomials

(Atserias & Hakoniemi 2019; Impagliazzo et al. 1999).

No such result exists for Fourier variables. Indeed, Tseitin con-
tradictions over {0, 1}-valued variables require an exponential num-
ber of monomials to be refuted in PC, while PC can refute them
with a linear number of monomials if the encoding uses {±1}-
valued variables (Buss et al. 2001).

To the best of our knowledge, the first size lower bounds in
PC/SoSR for polynomials with {±1}-valued variables are proved
by Sokolov (2020) for the pigeonhole principle and random 11-
CNFs. Moreover, (Sokolov 2020) gives a technique to turn strong
degree lower bounds to strong size lower bounds via the compo-
sition with some carefully constructed gadgets. We extend this
latter approach to get size lower bound under the Fourier encod-
ing of κ-valued variables, and we apply it to a generalization of the
knapsack problem.

The classical knapsack problem corresponds to the set of poly-
nomials

(1.1)

{ n∑

i=1

cixi − r , x2
1 − x1, . . . , x

2
n − xn

}
,

where r, c1, . . . , cn ∈ C.

knapsack requires a linear degree to be refuted in PC (Im-
pagliazzo et al. 1999, Theorem 5.1) regardless of the coefficients
r, c1, . . . , cn ∈ R.

Grigoriev (2001) showed that, when all the cis are 1 and r ∈ R,
knapsack requires degree at least min{2�min{r, n − r}� + 3, n}
to be refuted in SoSR.

Size lower bounds follow via the respective size-degree trade-
offs.

1.1. Sums of roots of unity. We consider the problem of when
a sum of n variables with values in the κth roots of unity can be
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equal to some value r ∈ C, that is the satisfiability of

(1.2) SRUκ,r
n :=

{∑

i∈[n]

zi − r, zκ
1 − 1, . . . , zκ

n − 1
}

.

Linear relations of the form
∑n

i=1 ciζi = 0, where ci are complex
numbers and ζi are roots of unity, arise naturally in several con-
texts (Conway & Jones 1976), and have been extensively studied
in the literature, for instance (Dvornicich & Zannier 2002, 2000).

When κ divides n, SRUκ,0
n is satisfiable, because the κth roots

of unity sum to zero. For κ that is a power of a prime number p
this is indeed the only possibility (Proposition 2.2 in Section 2).
Lam & Leung (2000) proved a complete characterization of when
SRUκ,0

n is satisfiable. In particular, when κ is not a power of a prime
there exists a n0(κ) s.t. for every n ≥ n0(κ) the set of polynomials
SRUκ,0

n is satisfiable.

1.2. Our results. In this paper, we show the hardness to certify
in PC and SoSC the unsatisfiability of SRUκ,0

n when κ is a prime
and does not divide n. A preliminary version of this work appeared
in the proceedings of MFCS’22 (Bonacina et al. 2022).

Our main results regarding PC/SoSC informally say that SoSC

and PCC cannot capture divisibility arguments.
A linear degree lower bound for SRU2,0

n follows immediately,
via a linear transformation, from the known degree lower bound
for knapsack in SoS, since Grigoriev (2001) lower bound extends
to SoSC. In this paper, we generalize this result proving degree
and size lower bounds in SoSC for SRUκ,r

n for κ an odd prime.

Theorem 1.3 (Degree lower bound for SRUκ,r
n ). Let n, d ∈ N, κ

be a prime, r ∈ C. Let r be written as r1 + ζr2, where r1, r2 ∈ R

and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ},

then there are no SoSC-refutations of SRUκ,r
n of degree at most d.

In particular, SRUκ,0
n requires refutations of degree Ω

(
n
κ

)
in SoSC.

From the set of polynomials in SRU2,r
n , we can easily infer the

polynomials in SRUκ,0
n , via a linear transformation and a weaken-

ing. This is enough to prove degree lower bounds for SRUκ,0
n in
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PCC since Impagliazzo et al. (1999, Theorem 5.1) proved a linear
degree lower bound for knapsack and therefore SRU2,r

n for any r
(see Section 3). This is not the case for SoSC: SRU2,r

n is refutable
in small degree and size in SoSC if r ∈ C \ R, see Example 2.4. In
other words, in SoSC, unlike the case of PC, it is not possible to
reduce the hardness of SRUκ,0

n , for κ > 2 to knapsack.

To prove the degree lower bound in SoSC for SRUκ,r
n (Theo-

rem 1.3), first we construct a candidate pseudo-expectation based
on the symmetries of SRUκ,r

n . Then, we prove its correctness, fol-
lowing a generalization to SoSC of the approach by Blekherman
et al. (2016) and Blekherman & Riener (2020) as presented in (Lee
et al. 2016, Theorem B.11).

We also prove a size lower bound for SRUκ,0
n in SoSC. The lift

of degree lower bounds to size lower bounds on κ-valued Fourier
variables generalizes the lifting approach due to Sokolov (2020) on
real valued polynomials and {±1}-variables.

Theorem 1.4 (Size lower bound for SRUκ,0
n ). Let κ be a prime

and n ∈ N, if n 
 κ then the set of polynomials SRUκ,0
n has

no refutation in SoSC within monomial size 2o(n).

For κ = 2, Theorem 1.4 follows easily from Sokolov’s (2020)
techniques and Grigoriev’s (2001) degree lower bound for knap-

sack.

For κ > 2, Theorem 1.4 requires some non-trivial generalization
of the lifting technique from (Sokolov 2020). This generalization is
Theorem 4.10 in Section 4.

Theorem 1.3 and Theorem 1.4 also hold for PCC, since SoSC

simulates PCC.

1.3. Related works. Recently and independently of us, Im-
pagliazzo et al. (2022) generalized Sokolov’s (2020) approach for
proving size and degree lower bounds in PC to the case of PCC

equipped with certain limited extension axioms and where vari-
ables are taking values in the κth roots of unity. They prove lower
bounds in PCC with limited extensions for unsatisfiable systems of
random linear equations lifted by certain hardness functions.
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Our results on the vanishing root principle SRUκ,r
n are incompa-

rable with the results from (Impagliazzo et al. 2022). First, SRUκ,r
n

is a generalization of the knapsack problem and, to our knowl-
edge, not related or reducible in PCC to the case of random linear
equations, even adding to PCC the extra limited extension axioms
used in (Impagliazzo et al. 2022). Furthermore, one of the main
results in our work is the degree lower bound for SRUκ,0

n in SoSC,
while the same degree lower bound for PCC follows essentially as a
corollary of known results.

SoSC and PCC proofs deal with arbitrary polynomial systems
rather than simply encodings of CNF formulas. In the litera-
ture, several algebraic proof systems extending PC were considered,
among these the Ideal Proof System (IPS) from (Grochow & Pitassi
2018), the Cone Proof System (CPS) from (Alekseev et al. 2020),
a version of PC working with bounded k-conjunctions (Galesi &
Lauria 2010), and a version of PC working with depth-d algebraic
circuits (Grigoriev & Hirsch 2003; Impagliazzo et al. 2020).

IPS and CPS are, at least on variables taking Boolean values,
strictly stronger than PC and SoS (Grochow & Pitassi (2018)). In-
terestingly to this work, the complexity of proofs for IPS and CPS
was studied by using a particular subset-sum principle, the Binary
Value Principle (BVP) expressing the fact that natural numbers
written in binary cannot be negative. Moving from a technique of
Forbes et al. (2021), Alekseev et al. (2020) proved that the BVP is
conditionally hard to refute in IPS modulo the Shub-Smale conjec-
ture on the hardness of computing factorials. Alekseev et al. (2020)
prove lower bounds on the magnitude of the coefficients and this is
completely different from the techniques developed in this article.
Despite being seemingly hard for a strong proof system like IPS,
the binary value principle is easy to refute in SoSC, contrary to
other subset-sum principles. Hence, to the best of our knowledge,
no immediate relation can be drawn between our results and the
previous results on BVP.

1.4. Structure of the paper. In the next section, we give the
necessary preliminaries on roots of unity and the formal definition
of SoSC. The proof of the main degree lower bound (Theorem 1.3)
is in Section 3. In Section 4, we lift degree lower bounds to size
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lower bounds for sets of polynomials over the roots of unity and
we prove Theorem 1.4. The main technical ingredient of this proof
is Theorem 4.8. Its proof is deferred to Section 5.

2. Preliminaries

Given n, k ∈ N, let [n] := {1, . . . , n}, and if k divides n we write

k | n. For a ∈ R and b ∈ N, let
(

a
0

)
:= 1 and

(
a
b

)
:= a(a−1)...(a−b+1)

b!

for b ≥ 1.
Boldface symbols indicate vectors, and x denotes a vector

with n elements (x1, . . . , xn). We usually denote with x Boolean
variables, with z κ-valued Fourier variables and with y generic
variables or auxiliary variables.

Given a set of polynomials P ⊆ C[y], 〈P 〉 denotes the ideal
generated by P in C[y].

2.1. Vanishing sums of roots of unity. For κ ∈ N, a κth root
of unity is a root of the polynomial Xκ − 1. All the roots of unity
except 1 are also roots of the polynomial 1+X + · · ·+Xκ−1, indeed
Xκ − 1 = (X − 1) · (1 + X + · · · + Xκ−1). A κth root of unity ζ is
called primitive if ζt �= 1 for all 1 ≤ t < κ. If this is the case, the
κth roots of unity are indeed 1, ζ, ζ2, . . . , ζκ−1. Some of the results
of this paper hold for roots of unity in generic fields but, for sake
of clarity, we only consider roots of unity in C. Notice that the
complex conjugate of ζt is ζκ−t. For concreteness, we denote as ζ
a specific primitive κth root of unity, for instance e2πi/κ, and as Ωκ

the set {1, ζ, ζ2, . . . , ζκ−1}. We often denote as ω a generic element
in Ωκ.

The κth cyclotomic polynomial is the unique irreducible uni-
variate polynomial in Z[X] that divides Xκ − 1 and does not di-
vides Xκ′ − 1 for any κ′ ∈ [κ − 1]. The κth cyclotomic polynomial
is denoted as Φκ(X). If κ is prime, then

Φκ(X) = 1 + X + · · · + Xκ−1.

Proposition 2.1. Let κ be a prime number. The set of polyno-
mials SRUκ,0

n is satisfiable over C if and only if κ | n.
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Proof. Let ζ be a primitive κth root of unity. That is ζ is a root
of the κth cyclotomic polynomial Φκ(X). If κ | n, say n = κ · a,
then a solution is trivial to construct:

1 + · · · + 1︸ ︷︷ ︸
a

+ ζ + · · · + ζ︸ ︷︷ ︸
a

+ · · · + ζκ−1 + · · · + ζκ−1

︸ ︷︷ ︸
a

= aΦκ(ζ) = 0.

Suppose now the set of polynomials SRUκ,0
n is satisfiable over

C. Let y1, . . . , yn be a solution. For j = 0, . . . , κ − 1, let

αj = |{� ∈ [n] : y� = ζj}|.

From the definition, it follows immediately that
∑κ−1

j=0 αj = n and
that for some j > 0, αj �= 0.

That is, ζ is a root of the polynomial p(X) =
∑κ−1

j=0 αjX
j, but

then ζ is also a root of p(X) − ακ−1Φκ(X) =
∑κ−2

j=0 (αj − ακ−1)X
j.

This polynomial has degree strictly less than κ−1 and hence it must
be identically 0, i.e. α0 = α1 = · · · = ακ−1. Since

∑κ−1
j=0 αj = n

this implies κ | n. �

If κ = pm for some prime p and integer m, then the κth cyclo-
tomic polynomial is

Φκ(X) = 1 + Xpm−1

+ X2pm−1

+ · · · + X(p−1)pm−1

.

Using this fact, it is immediate to generalize the proof of Proposi-
tion 2.1 to κ power of a prime.

Proposition 2.2. Let κ be a power of a prime number p. The
set of polynomials SRUκ,0

n is satisfiable over C if and only if p | n.

2.2. Proof systems. The proof systems of interest in this work
are polynomial calculus and a variant of Sum-of-Squares designed
to deal with complex numbers and complex roots of unity.

2.2.1. Polynomial calculus (PC) over C. Given a set of poly-
nomials P ⊂ C[y] and q ∈ C[y], a refutation of P in polyno-
mial calculus over C, denoted as PCC, is a sequence of polynomials
p1, . . . , ps in C[y] such that ps = 1, and each pi is either

1. a polynomial from the set P ;
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2. yj · pk for some variable yj and some k < i; or

3. a linear combination αpj + βpk for j, k < i and α, β ∈ C.

The degree of the refutation is maxi{deg(pi)} and the size of the
refutation is the sum of the number of monomials among all pis.

2.3. Sum-of-Squares (SoS) over C. The key concept at the
core of the sum-of-squares proof system is that squares of real
valued polynomials are always positive. For a polynomial p ∈ C[y],
we use that p · p∗ ≥ 0, where p∗ is the function that maps the
assignment α to the complex conjugate of the value p(α). We
need a polynomial representation of function p∗: we call it formal
conjugate of p. To have such polynomial representation, in general,
we would need to use a twin formal variable to represent x∗ for any
original variable x. Furthermore, we would need to add to the proof
system various axioms to relate x and x∗. In this work, we focus
on SoSC under the Boolean and Fourier encodings; hence, we can
represent formal conjugates as polynomials without any additional
axiom or variable. For a Boolean variable x ∈ {0, 1}, we have that
x∗ is x itself. For a Fourier variable z raised to an integer power t,
the conjugate (zt)∗ is zκ�t/κ�−t. In particular when 0 < t < κ the
conjugate of zt is zκ−t. For example consider κ = 7, then z3 is the
conjugate of z4, z11, z18, . . .

Then, the operator ∗ extends homomorphically on sums and
products, and it is equal to the usual complex conjugate on complex
number. We are now ready to define the sum-of-squares proof
system over complex number.

Definition 2.3 (Sum-of-Squares over C, SoSC). Fix an integer κ
≥ 2. Consider a set of polynomials P ⊆ C[x,z] where P contains
zκ −1 and for each variable z, and contains x2 −x for each variable
x. A refutation of P in SoSC is an equality of the form

−1 =
∑

p∈P

qp · p +
∑

s

s · s∗,

where s ∈ S and qp for p ∈ P are in C[x,z] and each s∗ is the
formal conjugate of s.
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The degree of the refutation is

max{deg(qp) + deg(p), deg(s · s∗) : p ∈ P, s ∈ S}.

The size of the refutation is the total number of monomials occur-
ring with non-zero coefficients among polynomials

{qp, p : p ∈ P} ∪ {s, s∗ : s ∈ S}.

Notice that, for polynomials p, q ∈ R[x,z], (p + iq)(p − iq) =
p2 + q2. Therefore, for P ⊆ R[x] and containing x2

i − xi for every
i ∈ [n], the notion of SoSC and SoSR coincide.

By Hilbert’s Nullstellensatz, SoSC is complete: for every unsat-
isfiable set of polynomials P there is a SoSC-refutation. Conversely,
only unsatisfiable sets of polynomials have SoSC refutations: for
any assignment α of a polynomial s, polynomial s · s∗ evaluates to
|s(α)|2 which is a non-negative real number.

To further clarify the notion of SoSC and formal conjugates
consider the following examples.

Example 2.4. Let i be the imaginary unit in C, i.e. i2 = −1 and
r ∈ C \ R, that is r = a + ib with a, b ∈ R and b �= 0. The set of
polynomials

{
∑

j∈[n]

cjxj − r, x2
1 − x1, . . . , x2

n − xn},

when all cj’s are real, has a simple SoSC refutation:

−b2 = −(
∑

j∈[n]

cjxj − a − ib)(
∑

j∈[n]

cjxj − a + ib) + (
∑

j∈[n]

cjxj − a)2,

that is, the set of polynomials corresponding to knapsack in
eq. (1.1) when r ∈ C \ R and all cis are real always has small
SoSC refutations. ♦

Impagliazzo et al. (1999, Theorem 5.1) proved that the previous set
of polynomials, when r ∈ R, is hard for PCC, but their argument
also works for r, c1, . . . , cn ∈ C.

Now we give an example over the Fourier encoding.
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Example 2.5. As a second example we consider a set of polyno-
mials saying that a sum of n Fourier variables equals 2n + 1. This
is the set of polynomials

{
∑

j∈[n]

zj − 2n − 1, zκ
1 − 1, . . . , zκ

n − 1}.

This has a simple SoSC refutation:

−1 =

(
1 −

∑
j∈[n] z

κ−1
j

2n + 1

)
(∑

j∈[n]

zj − 2n − 1
)

+
∑

j∈[n]

(1 − zj)(1 − zκ−1
j )

+
1

2n + 1
(
∑

j∈[n]

zj)(
∑

j∈[n]

zκ−1
j ). ♦

These examples hint that SoSC is strictly stronger than PCC,
indeed in presence of the axioms zκ

i −1, SoSC p-simulates PCC, that
is PCC refutations can be efficiently converted to SoSC refutations.

Proposition 2.6. Let z = (z1, . . . , zn) and let P ⊆ C[z]. For any
κ ≥ 2, if there is a PCC refutation of P ∪ {zκ

j − 1 : j ∈ [n]} of size
s and degree d, then there is a SoSC refutation of P ∪{zκ

j −1 : j ∈
[n]} of degree 2d and size sO(1).

The proof is a simple modification of Lemma 3.1 in (Berkholz
2018) and of an analogous result in (Sokolov 2020). We include it
here for completeness.

Proof. Let p1, . . . , pτ the PCC refutation of P ∪ {zκ
j − 1 : j ∈

[n]}. By induction over t ≤ τ , we show that there is a SoSC proof
of −ptp

∗
t of size sO(1) and degree 2d. This produces an efficient

simulation because −pτp
∗
τ = −1. Formally, for each polynomial pt

in the polynomial calculus proof, we build an SoSC proof

∑

p∈P

(−at,pp
∗)p +

∑

i≤t

ci,tqiq
∗
i + Zt = −ptp

∗
t ,
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where at,p and ci,t are real numbers, ci,t ≥ 0, qi are polynomials in
C[z], and Zt is a polynomial in the ideal 〈zκ

j − 1 : j ∈ [n]〉. We
consider different cases, depending on which rule was originally
used to derive pt.

If pt ∈ P then −p∗
t pt is a valid SoSC proof in this form because

p∗
t pt = ptp

∗
t .

If pt = zκ
j − 1, then −p∗

t pt is a valid SoSC proof in this form
since −p∗

t pt ∈ Zt.
If pt = zjpt′ for some j ∈ [n] and t′ < t observe that

−ptp
∗
t = −zjpt′z

κ−1p∗
t′ = −pt′p

∗
t′ + (1 − zκ

j )pt′p
∗
t′

and by induction hypothesis −pt′p
∗
t′ has an SoSC proof of the de-

sired form.
The remaining case is when pt = αpu + βpv for u, v < t and

α, β ∈ C. By induction we have

∑

p∈P

(−au,p · p∗)p +
∑

i≤u

cu,iqiq
∗
i + Zu = −pu · p∗

u

∑

p∈P

(−av,p · p∗)p +
∑

i≤v

cv,iqiq
∗
i + Zv = −pv · p∗

v

We do a positive combination of the two proofs. We set

a′
t,p = 2|α|2au,p + 2|β|2av,p

c′
t,i = 2|α|2cu,i + 2|β|2cv,i

Zt = 2|α|2Zu + 2|β|2Zv

and get

(2.7)
∑

p∈P

(−a′
t,p·p∗)p+

∑

i≤t−1

c′
t,iqiq

∗
i +Zt = −2|α|2pu·p∗

u−2|β|2pv·p∗
v .

We set qt := αpu − βpv and observe that

qtq
∗
t = (αpu − βpv)(αpu − βpv)

∗(2.8)

= 2|α|2pup
∗
u + 2|β|2pvp

∗
v − (αpu + βpv)(αpu + βpv)

∗(2.9)

= 2|α|2pup
∗
u + 2|β|2pvp

∗
v − ptp

∗
t .(2.10)
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Summing (2.11) and (2.8) and setting ct,t = 1 we get

(2.11)
∑

p∈P

(−a′
t,p · p∗)p +

∑

i≤t

c′
t,iqiq

∗
i + Zt = −pt · p∗

t .

Now we discuss size and degree of the proof we just built. Notice
immediately that the polynomial Zt is in a binomial ideal, i.e. all
generators have at most two monomials. For this reason, it is
immediate to see that the number of monomials in Zt is rest of the
proof. Likewise the degree of Zt is at most the degree of the rest of
the proof. Now we focus on the degree and size of the various qi.
By construction, each of them has degree at most d and the size at
most twice the size of the largest polynomial in the original proof.
Hence, the proof has degree at most 2d and size at most sO(1).

So far we argued about degree and monomial size, and now we
discuss the size of the coefficients. We define M to be the smallest
integer so that for any coefficient c occurring in the polynomial
calculus proof, we have 1

M
≤ 4|c|2 ≤ M . Observe that at each

step in our construction, the coefficients are multiplied by a factor
2|α|2 +2|β|2, for some α and β which are coefficients in the original
proof, thus we have 1

M
≤ 2|α|2 + 2|β|2 ≤ M . By the end of the

proof, all coefficients are between 1
Mτ and M τ , and therefore have

binary representation of length which is polynomial with respect to
the size of the original coefficients, and to the length of the proof. �

3. Degree lower bounds

We first prove a degree lower bound for a weighted version of SRUκ,r
n

in polynomial calculus. This is not hard: the lower bound essen-
tially is implied by the knapsack lower bound in polynomial calcu-
lus.

Theorem 3.1. Let c1, . . . , cn ∈ C \ {0}, r ∈ C and κ ∈ N. The
set of polynomials

(3.2)
{ n∑

i=1

cizi − r, zκ
1 − 1, . . . , zκ

n − 1
}

has no refutations of degree smaller than �n
2
� in PCC.
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Proof. Let ζ be a primitive κth root of unity. If the set of
polynomials in (3.2) is satisfiable, then the degree lower bound is
obviously true. Suppose then it is unsatisfiable. This means the
set of polynomials

(3.3)
{ n∑

i=1

cizi − r, (z1 − 1)(z1 − ζ), . . . , (zn − 1)(zn − ζ)
}

is unsatisfiable too. To prove a degree lower bound for the PCC-
refutations of (3.2) is then enough to prove a degree lower bound
for the PCC-refutations of (3.3).

Now, the set of polynomials in (3.3) is unsatisfiable if and only
if the set of polynomials

(3.4)
{ n∑

i=1

cixi −
r −
∑

i∈[n] ci

ζ − 1
, x2

1 − x1, . . . , x
2
n − xn

}

is unsatisfiable. Moreover, via a linear transformation we can
transform PCC-refutations of (3.3) into PCC-refutations of (3.4) and
viceversa. The linear transformation is zi = xi(ζ − 1) + 1. This
transformation does not preserve the size PCC-refutations but, be-
ing linear, it preserves the degree. By Theorem 5.1 in (Impagliazzo

et al. 1999)1 applied with m =
r−∑

i∈[n] ci

ζ−1
we get the desired degree

lower bound for (3.4) and hence for (3.3) and (3.2). �

Notice that, the lower bound in Theorem 3.1 also holds if in-
stead of zκ

1 − 1, . . . , zκ
n − 1, we have p(z0), . . . , p(zn) where p is an

arbitrary univariate polynomial with at least two distinct roots.

The rest of the section is to prove the degree lower bound for
SRUκ,r

n in SoSC (Theorem 1.3).

3.1. High level structure of the argument. To show a SoSC

degree-d lower bound for some set of polynomials P , it is enough
to construct a degree-d pseudo-expectation for P . That is a linear
operator Ẽ : C[x] → C such that

1We recall that the theorem was originally stated for real numbers, but it
holds for complex numbers, too.
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◦ Ẽ(1) = 1,

◦ Ẽ(mp) = 0, for every p ∈ P and m monomial such that
deg(p) + deg(m) ≤ d,

◦ Ẽ(s · s∗) ∈ R≥0, for every polynomial s s.t. deg(s · s∗) ≤ d.

It is immediate to see that the existence of a degree-d pseudo-
expectation for a set of polynomials P implies that P cannot be
refuted in degree-d SoSC.

It turns out it is easier to construct a pseudo-expectation for a
Boolean encoding of SRUκ,r

n . This Boolean encoding is bool-SRUκ,r
n .

First, we show (Proposition 3.6) that the degree needed to re-
fute SRUκ,r

n in PC and SoSC is at least the degree needed to refute
bool-SRUκ,r

n .

Secondly, we construct a pseudo-expectation for bool-SRUκ,r
n

and this implies a SoSC lower bound both for bool-SRUκ,r
n and

SRUκ,r
n .

After imposing some natural symmetry assumption there is
only one candidate pseudo-expectation Ẽ for bool-SRUκ,r

n satisfy-
ing the first two properties of the definition of pseudo-expectation
(Theorem 3.10). To show that the candidate pseudo-expectation
satisfies also the third property is more involved but it follows some
standard structure of the arguments used to construct pseudo-
expectations in the context of SoSR.

3.2. A Boolean encoding of SRUκ,r
n . We consider a Boolean

encoding of the sums of roots of unity. This is the set bool-SRUκ,r
n

consisting of the following polynomials for every i ∈ [n] and j ∈ [κ]

(3.5)
∑

i∈[n]

(∑

j∈[κ]

ζj−1xij

)
− r, x2

ij − xij,
∑

j∈[κ]

xij − 1.

The set of polynomials SRUκ,r
n uses variables taking values in Ωκ,

while the encoding in eq. (3.5) uses indicator variables to select the
appropriate power of ζ. To prove Theorem 1.3, it is enough to
prove the degree lower bound for bool-SRUκ,r

n .
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Proposition 3.6. The degree needed to refute SRUκ,r
n in PCC

(resp. SoSC) is at least the degree needed to refute bool-SRUκ,r
n

in PCC (resp. SoSC).

Proof. (sketch) Take a refutation of SRUκ,r
n of degree D. Neces-

sarily κ ≤ D. We want to argue that bool-SRUκ,r
n has a refutation

of degree D, as well. To avoid ambiguity, we consider SRUκ,r
n de-

fined on variables z and bool-SRUκ,r
n on variables x. We apply the

linear substitution
zi �→

∑

j∈[κ]

ζj−1xij,

to the degree D refutation of SRUκ,r
n . We get a refutation of degree

D of the resulting set of polynomials. It is sufficient to show we
can infer these polynomials in low degree PCC from the axioms of
bool-SRUκ,r

n . Indeed, from bool-SRUκ,r
n , we can easily infer xijxij′ =

0 for each i ∈ [n] and j �= j′ ∈ [κ]; hence, we have

(∑

j∈[κ]

ζj−1xij

)κ

=PC

∑

j∈[κ]

ζ(j−1)kxκ
ij =PC

∑

j∈[κ]

xij =PC 1,

where with p =PC q we mean that p − q is derivable in PC. The
whole derivation of bool-SRUκ,r

n has degree D. �

3.3. Notation. Consider fixed r ∈ C and r1, r2 ∈ R such that
r = r1 + ζr2. Let ej be the vector of dimension κ with the jth
entry 1 and all other entries 0. For j ∈ [κ], let x(j) = (x1j, . . . , xnj).
That is, bool-SRUκ,r

n is a set of polynomials in C[x(1), . . . ,x(κ)].
Given a tuple of sets I = (I1, . . . , Iκ), where Ij ⊆ [n], let |I| =
(|I1|, . . . , |Iκ|) and let XI =

∏
j∈[κ]

∏
i∈Ij

xij

With ‖ · ‖, we always denote the 1-norm. So ‖x(j)‖ denotes the
polynomial

∑
i∈[n] xij.

Given a variable X and t ∈ N, let
(

X
t

)
be the univariate poly-

nomial
X(X − 1) · · · (X − t + 1)

t!
.

Let B be the ideal 〈x2
ij −xij, xijxij′ : i ∈ [n], j, j′ ∈ [κ], j �= j′〉.

Given polynomials p, q ∈ C[x(1), . . . ,x(κ)], we use the notation
p ≡ q to denote that p − q ∈ B.
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Lemma 3.7. Given a vector of variables y = (y1, . . . , ym), we have
that (

‖y‖
t

)
≡
∑

I⊆[n]
|I|=t

YI .

Proof. To prove the equality proceed by induction on t. The
base case t = 1 is immediate:

(‖y‖
1

)
= ‖y‖ =

∑
i∈[n] yi. For t > 1,

∑

i∈[n]

yi

∑

I⊆[n]
|I|=t−1

YI ≡ t
∑

I⊆[n]
|I|=t

YI + (t − 1)
∑

I⊆[n]
|I|=t−1

YI .

That is, using the inductive hypothesis,

‖y‖
(

‖y‖
t − 1

)
≡ t
∑

I⊆[n]
|I|=t

YI + (t − 1)

(
‖y‖
t − 1

)
,

and therefore

∑

I⊆[n]
|I|=t

YI ≡ ‖y‖ − t + 1

t

(
‖y‖
t − 1

)
=

(
‖y‖
t

)
. �

3.4. The candidate pseudo-expectation. A potential satis-
fying assignment of bool-SRUκ,r

n consists of γ = (γ1, . . . , γκ), the
allocation of the n roots of unity in the directions ζ0, . . . , ζκ−1. The
sum

∑
j∈[κ] ζ

j−1γj must be equal to the target value r = r1 + ζr2,
so we spread uniformly n − r1 − r2 among the γjs, and then add
r1 and r2 to γ1 and γ2 respectively. This intuition leads to the
definitions

(3.8)

⎧
⎪⎨

⎪⎩

γ1 = n−r1−r2
κ

+ r1,

γ2 = n−r1−r2
κ

+ r2,

γj = n−r1−r2
κ

for j ≥ 3.

Observe that ‖γ‖ = n. For ease of notation let

γ̂ =
n − r1 − r2

κ
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and r3 = · · · = rκ = 0. Therefore, we can write

γj = γ̂ + rj

for each j ∈ [κ].
Given t = (t1, . . . , tκ) ∈ [n]κ, and variables v = (v1, . . . , vκ), let

St be the polynomial in the variables v given by

St(v) =
(n − ‖t‖)!

n!

∏

j∈[κ]

tj! ·
∏

j∈[κ]

(
vj

tj

)
.

Notice that for every j ∈ [κ], St+ej
(v) = St(v) · vj−tj

n−‖t‖ .

To define the candidate pseudo-expectation Ẽ, by linearity, it
is enough to define it on monomials. For a monomial of the form
XI we define it as

Ẽ(XI) =

{
S|I |(γ) if the sets in I are pair-wise disjoint,

0 otherwise.

For a general monomial m, possibly not multilinear, we define Ẽ(m)
as Ẽ(XI) where XI is the unique multilinear monomial equivalent
to m modulo B, that is such that m ≡ XI . We show that, for the
range of parameters of Theorem 1.3, Ẽ is a pseudo-expectation for
bool-Knκ,r

n .

Lemma 3.9. If p ≡ q then Ẽ(p) = Ẽ(q).

Proof. By definition p ≡ q means there exists a polynomial
s ∈ B such that p = q + s. By construction, Ẽ maps to 0 every
polynomial in B, in particular Ẽ(s) = 0. By the linearity of Ẽ,
then Ẽ(p) = Ẽ(q). �

The definition of Ẽ is to enforce that Ẽ(pq) = 0 for every p ∈
bool-SRUκ,r

n .

Theorem 3.10. For every I = (I1, . . . , Iκ) with Ij ⊆ [n] and
i ∈ [n], and every p ∈ bool-SRUκ,r

n , Ẽ(XIp) = 0.
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Proof. The fact that Ẽ(XI(x
2
ij − xij)) = 0 is immediate by the

definition of Ẽ.
If the sets Ij are not pair-wise disjoint then, by definition, the

pseudo-expectation is already 0, so it is enough to consider the
case when the Ijs are pair-wise disjoint. Let t = (t1, . . . , tκ) where
tj = |Ij|. To show that

Ẽ(XI(
∑

j∈[κ]

xij − 1)) = 0

we have two cases.
Case 1. If i ∈

⋃
j∈[κ] Ij, then

Ẽ(XI(
∑

j∈[κ]

xij − 1)) = St(γ) − St(γ) = 0.

Case 2. If i /∈
⋃

j∈[κ] Ij, then

Ẽ(XI(
∑

j∈[κ]

xij − 1)) =
∑

j∈[κ]

St+ej
(γ) − St(γ)

= St(γ) ·

⎛

⎝
∑

j∈[κ]

γj − tj
n − ‖t‖ − 1

⎞

⎠

= St(γ) ·
(

‖γ‖ − ‖t‖
n − ‖t‖ − 1

)

= 0,

since ‖γ‖ = n.
We now prove that

(3.11) Ẽ(XI(
∑

j∈[κ]

ζj−1‖x(j)‖ − r1 − ζr2)) = 0.

Let T be the LHS of eq. (3.11). The following chain of equalities
gives T = 0.

T = St(γ)
∑

j∈[κ]

ζj−1tj +
∑

i/∈⋃
j∈[κ] Ij

(
∑

j∈[κ]

ζj−1St+ej
(γ)) − (r1 + ζr2)St(γ)
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= St(γ)
∑

j∈[κ]

ζj−1tj + (n − ‖t‖)
∑

j∈[κ]

ζj−1St+ej
(γ) − (r1 + ζr2)St(γ)

= St(γ)
∑

j∈[κ]

ζj−1tj + St(γ)
∑

j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)St(γ)

= St(γ) ·

⎛

⎝
∑

j∈[κ]

ζj−1tj +
∑

j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)

⎞

⎠

= St(γ) ·

⎛

⎝
∑

j∈[κ]

ζj−1γj − (r1 + ζr2)

⎞

⎠

= St(γ) ·

⎛

⎝
∑

j∈[κ]

ζj−1γ̂ +
∑

j∈[κ]

ζj−1rj − (r1 + ζr2)

⎞

⎠

= 0,

since γj = γ̂ + rj, rj = 0 for j > 2, and
∑

j∈[k] ζ
j−1 = 0. �

We now use Blekherman’s approach (Lee et al. 2016, Appendix
B,C) to prove that, for a suitable range of parameters, Ẽ(p · p∗) ∈
R≥0.

First we introduce some notation on the symmetric group and
how it acts on polynomials. Let Sn be the group of permutations
over n elements. For a set J ⊆ [n] and a permutation σ ∈ Sn, let
σJ = {σ(j) : j ∈ J}. Consider variables y = (y1, . . . , yn). For a
set J ⊆ [n], let YJ =

∏
j∈J yj. Given a polynomial p ∈ C[y], that

is p(y) =
∑

J⊆[n] pJYJ , with pJ ∈ C, let

σp(y) =
∑

J

pJYσJ .

The symmetrization of p is the polynomial Sym(p) ∈ C[y] given by

Sym(p)(y) =
1

n!

∑

σ∈Sn

σp(y).

Lee et al. (2016, Theorem B.11), following Blekherman, prove a
decomposition for Sym(p2)(y) analog as the one in the following
theorem.
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Theorem 3.12 (adaptation of Lee et al. 2016, Theorem B.11).

Given Boolean variables y = (y1, . . . , yn) and p ∈ C[y] with
degree at most d ≤ n/2,

Sym(p ·p∗)(y) ≡
d∑

j=0

pd−j(‖y‖) ·p∗
d−j(‖y‖)

j−1∏

i=0

(‖y‖−i)(n−‖y‖−i),

where pd−j is a univariate polynomial with coefficients in C, p∗
d−j

is the formal conjugate of pd−j and the degree of both polynomials
is at most (d − j)/2.

Remark. Theorem B.11 in (Lee et al. 2016) is proved for real
polynomials and a crucial notion in its proof is the inner product
〈·, ·〉 on the space of degree-t homogenous multilinear polynomials:
for p =

∑
m pmm and q =

∑
m qmm, 〈p, q〉 is defined as

∑
m pmqm.

We can likewise define a Hermitian inner product 〈·, ·〉 on the space
of degree-t homogenous multilinear polynomials with complex co-
efficients as 〈p, q〉 =

∑
m pmq∗

m. With this change, the proof of
Theorem B.11 in (Lee et al. 2016) generalizes to complex polyno-
mials and gives Theorem 3.12.

We want to use Theorem 3.12 and to do so we extend the
polynomial S|I |(v) in the following way: given p =

∑
I αIXI with

αI ∈ C, let

S(p)(v) =
∑

I

αIS|I |(v).

The polynomial S(p) is useful since it is both connected to Ẽ and
to Sym(p). The connection with Ẽ is trivial: Ẽ(p) = S(p)(γ). The
connection with Sym(p) is the content of the following theorem.

Theorem 3.13. Given p ∈ C[x(1), . . . ,x(κ)],

S(p)(r1 + ‖y‖, r2 + ‖y‖, r3 + ‖y‖, . . . , rκ + ‖y‖) ≡ Sym(p�ρ)(y),

where ρ is the substitution given by

ρ(xij) = yi +
rj

n

where r3 = · · · = rκ = 0.
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Proof. Lemma 3.7 implies that

(3.14)
∏

j∈[κ]

(
‖x(j)‖

tj

)
≡

∑

I=(I1,...,Iκ), Ij⊆[n]
|Ij |=tj

XI .

For a vector of sets I = (I1, . . . , Iκ) and a permutation σ ∈ Sn,
let σI = (σI1, . . . , σIκ). Given a polynomial p =

∑
I pIXI in

C[x(1), . . . ,x(κ)] and a permutation σ ∈ Sn let

σp =
∑

I

pIXσI .

Now, for any polynomial p ∈ C[x(1), . . . ,x(κ)]

(3.15)
1

n!

∑

σ∈Sn

σp ≡ S(p)(‖x(1)‖, . . . , ‖x(κ)‖).

To see this equivalence, by linearity, it is enough to show that for
every I with Ij ⊆ [n]

1

n!

∑

σ∈Sn

XσI ≡ S(XI)(‖x(1)‖, . . . , ‖x(κ)‖).

If the sets in I are not pair-wise disjoint, it is immediate to see
that 1

n!

∑
σ∈Sn

XσI ∈ B, and therefore 1
n!

∑
σ∈Sn

XσI ≡ 0. Suppose
then I = (I1, . . . , Iκ) and the sets Ij are pair-wise disjoint. Let
tj = |Ij|, then

1

n!

∑

σ∈Sn

XσI =
(n−‖t‖)!

∏
j∈[κ] tj !

n!
·
∑

S=(S1,...,Sκ)
pair-wise disj.

|Sj |=tj

XS

≡ (n−‖t‖)!
∏

j∈[κ] tj !

n!
·
∑

S=(S1,...,Sκ)
|Sj |=tj

XS

≡ (n−‖t‖)!
n!

∏
j∈[κ] tj! ·

∏
j∈[κ]

(‖x(j)‖
tj

)

= S(XI)(‖x(1)‖, . . . , ‖x(κ)‖),(3.16)

where the equality in eq. (3.16) follows from eq. (3.14).
To conclude, it is then enough to observe that the statement

we want to prove follows from eq. (3.15) restricting both sides of
the equality by ρ. To prove this, we use that σXI�ρ= σ(XI�ρ). �
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We now prove the degree lower bound for SRUκ,r
n in SoSC, that

is Theorem 1.3, restated here for convenience of the reader.

Theorem 1.3 (Degree lower bound for SRUκ,r
n ). Let n, d ∈ N, κ

be a prime, r ∈ C. Let r be written as r1 + ζr2, where r1, r2 ∈ R

and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ},

then there are no SoSC-refutations of SRUκ,r
n of degree at most d.

In particular, SRUκ,0
n requires refutations of degree Ω

(
n
κ

)
in SoSC.

Proof. We show that Ẽ is a degree-d pseudo-expectation. The-
orem 3.10 already showed that for every p ∈ bool-SRUκ,r

n , Ẽ(qp) =
0. Therefore, it is enough to show that, whenever the condition on
d is satisfied, for every polynomial p ∈ C[x(1), . . . ,x(κ)] of degree
at most d, Ẽ(p · p∗) ∈ R≥0 where p∗ is the formal conjugate of p,

Let γ be defined as in eq. (3.8). Recall that γ̂ = n−r1−r2
κ

and

S(p)(γ) = Ẽ(p). We have that

Ẽ(p · p∗) = S(p · p∗)(γ)
= S(p · p∗)(r1 + γ̂, r2 + γ̂, . . . , rκ + γ̂) [by def. of γ]
= Sym(p�ρ ·p�∗

ρ)(γ̂e1) [by Theorem 3.13]

=
∑d

j=0 pd−j(γ̂) · p∗
d−j(γ̂)

∏j−1
i=0 (γ̂ − i)(n − γ̂ − i)

where the last equality follows from Theorem 3.12 and ρ is the
substitution given by ρ(xij) = yi +

rj

n
(recall that r3 = · · · =

rκ = 0). Now, pd−j(γ̂) · p∗
d−j(γ̂) is always real and non-negative

since it is the module of the complex number pd−j(γ̂), hence to
enforce the non-negativity of Ẽ(p · p∗) it is enough to argue that∏j−1

i=0 (γ̂ − i)(n − γ̂ − i) ≥ 0. This is true if γ̂ − d + 1 ≥ 0 and
n − γ̂ − d + 1 ≥ 0. That is if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ. �

4. Size lower bounds

In this section, we prove the size lower bound for SRUκ,0
n in SoSC

(Theorem 1.4) from the the corresponding degree lower bound
(Theorem 1.3).
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4.1. High level structure of the argument. A way to prove
Theorem 1.4 from Theorem 1.3 is the following. On a very
high level, this is done composing the polynomials in SRUκ,r

n with
some polynomials g, obtaining then some new set of polynomi-
als SRUκ,r

n ◦ g (see Definition 4.3). We are interested in compos-
ing polynomials with g with good properties (see Definition 4.1).
Then a lifting theorem shows that degree lower bounds on SRUκ,r

n

imply size lower bounds on SRUκ,r
n ◦g (Theorem 4.10). The overall

structure of this size lower bound it follows the typical structure of
size-degree trade-offs, see for instance (Atserias & Hakoniemi 2019;
Clegg et al. 1996; Sokolov 2020) for other examples of size-degree
trade-offs. The idea is to show, first, that there exists a relatively
long sequence of restrictions such that the restricted polynomials
have small degree refutations (Theorem 4.8) and, secondly, that
each individual restriction can only make the degree decrease a
little (Lemma 4.9). These two components will imply that the se-
quence of restrictions must be very long and this will imply the
size-degree trade-off (Theorem 4.10).

Finally, the size lower bound for SRUκ,r
n (Theorem 1.4) is just

a corollary of the size-degree trade-off (Theorem 4.10).

The rest of the section is just following this high level scheme.
We first introduce the notion of compliant polynomials.

4.2. Composition with compliant polynomials. Compliant
polynomials are a generalization of the compliant gadgets from
(Sokolov 2020, Definition 2.1). The main difference with Sokolov’s
gadgets is that compliant gadgets are polynomials with real coeffi-
cients and taking values in {0, 1} or {±1}, while ours are complex
polynomials taking values in the set Ωκ of κth roots of unity.

Definition 4.1 (compliant polynomial). A polynomial g ∈ C[y1,
. . . , y�] is compliant if it is symmetric and there exists a function
h : Ωκ → Ω�

κ such that

(i) g ◦ h = id, i.e. for all b ∈ Ωκ, g(h(b)) = b;

(ii) for each b ∈ Ωκ, the first κ coordinates of h(b) list all the
elements of Ωκ; and



12 Page 26 of 45 Bonacina, Galesi & Lauria cc

(iii) for each b ∈ Ωκ, the product of all the coordinates of h(b) is
a fixed constant.

We say that g = (g1 . . . , gn) with gj ∈ C[yj] is compliant when
each gj is compliant.

A relevant example of compliant polynomial is the following.

Example 4.2. Let y = (y1, . . . , y�). The polynomial

g(y) :=
1

κ
(
∑

j∈[�]

yj − (� − 2κ))

is compliant. Indeed, the polynomial g is symmetric and we can
take as h : Ωκ → Ω�

κ the function mapping

h : ω �→ (1, ζ, ζ2, . . . , ζκ−1, 1, 1, . . . , 1︸ ︷︷ ︸
�−2κ

, ω, ω, . . . , ω︸ ︷︷ ︸
κ

),

where ζ is a primitive κth root of unity in C. Clearly, g ◦ h is the
identity and the product of the coordinates of h(ω) is

ζκ(κ−1)/2ωκ = ζκ(κ−1)/2

since ω is a κth root of unity, and the product does not depend
on ω. ♦

Now we want to compose polynomials with compliant gadgets.
This is essentially the usual notion of composition of polynomials.

Definition 4.3 (composition of polynomials). Let x,y1, . . . yn

be tuples of distinct variables where yj = (yj1, . . . , yj�j
). Given

a polynomial p ∈ C[x] and g = (g1 . . . , gn) with gj ∈ C[yj]
we denote by p ◦ g the polynomial obtained substituting each
instance of the variable xj in p with the polynomial gj(yj) and
then expanding the obtained algebraic expression as a sum of
monomials in the new variables. The polynomial p ◦ g then
belongs to the ring C[y1, . . . ,yn].

Similarly, for a set of polynomials P ⊂ C[x], we denote as P ◦g
the set of polynomials {p ◦ g : p ∈ P}.
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To see a relevant example of composition of polynomials, we
continue Example 4.2. Essentially, our interest in the polynomials
in Example 4.2 is that they are linear and therefore, intuitively,
composing SRUκ,r

n with such polynomials results in a set of poly-

nomials containing SRUκ,r′
n′ .

Example 4.2 continued. Consider the tuple of variables yj =
(yj1, . . . , yj�j

) and a tuple of compliant polynomials g = (g1 . . . , gn)
with gj ∈ C[yj]. In this example, we see how to get essentially

SRUκ,0
n (after renaming of variables) as a subset of

(4.4) SRUκ,r
n′ ◦ g ∪ {yκ

ij − 1 : i ∈ [n′], j ∈ [�i]},

for some r′ and n′. The tuple of compliant polynomials g is based
on the compliant polynomial in Example 4.2.

Let n′ ∈ N with n′ > 2κ and b ∈ {0, . . . , 2κ} such that n =
(2κ + 1)n′ + b. Let �1 = · · · = �b = 2κ + 2 and �b+1 = · · · = �n′ =
2κ + 1. In particular, the number of yij variables is exactly n and∑

i∈[n′] �i = (2κ + 1)n′ + b.

Consider the tuple g = (g1, . . . , gn′) where gi ∈ C[yi1, . . . , yi�i
]

are the polynomials in Example 4.2, i.e. gi is the polynomial

gi(yi1, . . . , yi�i
) :=

1

κ
(
∑

j∈[�i]

yij − (�i − 2κ)).

We have that

(4.5)

⎧
⎨

⎩
1

κ

∑

i∈[n′],j∈[�i]

yij

⎫
⎬

⎭ ∪ {yκ
ij − 1 : i ∈ [n′], j ∈ [�i]}

is a subset of of

(4.6) SRUκ,r
n′ ◦ g ∪ {yκ

ij − 1 : i ∈ [n′], j ∈ [�i]}

for r = −n′+b
κ

. Notice that, the set of polynomials in (4.5) behaves
exactly as SRUκ,0

n from the point of view of PC/SoSC refutations.
Indeed, we can rename variables in a SRUκ,0

n refutation and rescale
everything by 1

κ
to get a refutation of (4.5) and viceversa. ♦
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4.3. The size-degree trade-off. To have a cleaner argument,
we consider the notion of reduced degree.

Definition 4.7 (reduced degree). The reduced degree of a refu-
tation in SoSC of a set of polynomials P containing the polyno-
mials xκ

j − 1 is the degree of the refutation where we do not take
in account the degrees of the polynomials qp where p is xκ

j − 1
(see Definition 2.3).

Recall that the overall structure of the size-degree trade-off
bound consists of two main components.

1. A theorem showing that there exists a relatively short se-
quence of restrictions such that the restricted polynomials
have small degree refutations. This is Theorem 4.8 below.

2. A theorem showing that each individual restriction can only
make the degree decrease a little. This is Lemma 4.9 below.

The first component is a generalization of (Sokolov 2020, The-
orem 4.1). We postpone the proof to Section 5.

Theorem 4.8. Let P be finite a set of polynomials of degree d0

in C[x] containing the polynomials xκ
j − 1 for each j ∈ [n]. Let g

be a tuple of compliant polynomials with gi ∈ C[yi1, . . . , yi�i
] and

ω1, ω2, . . . , ωm ∈ Ωκ. If there is a SoSC refutation of P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [�i]} of size s then there exists a sequence of
variables xi1 , . . . , xim with m = ��κn ln(s)/D� such that

(i) � = maxi �i;

(ii) the choice of xit only depends on ω1, . . . , ωt−1;

(iii) there is a SoSC refutation of P �xi1
=ω1,...,xim=ωm of reduced

degree at most D + d0.

The second component is the following lemma.
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Lemma 4.9. Let P be a finite set of polynomials in C[x] contain-
ing the polynomials xκ

j − 1 for each j ∈ [n]. Suppose any SoSC

refutation of P has reduced degree at least D. Then, for any vari-
able xj there is ω ∈ Ωκ such that SoSC refutations of P�xj=ω must
have reduced degree at least D − 2κ + 2.

Proof. For sake of contradiction, suppose there exists some
variable x such that for every ω ∈ Ωκ, P �x=ω has a refutation of
reduced degree D−2κ+1. For every � ∈ N, x� −ω� is a multiple of
x−ω. Therefore, for every p ∈ P , the polynomial p−p�x=ω belongs
to the ideal generated by x − ω. This means that we can trans-
form refutations of P�x=ω into refutations of P ∪ {x − ω} without
increasing the degree. Hence, there are refutations of P ∪ {x − ω}
of reduced degree D − 2κ + 1 for every ω ∈ Ωκ.

Let πω be a refutation of P∪{x−ω} of reduced degree D−2κ+1.
Let qω(x) =

∏
ω′ �=ω(x − ω′).

It is easy to see that multiplying πω by the polynomial qωq∗
ω we

get a derivation of −qωq∗
ω from P . This new derivation has reduced

degree D − 2κ + 1 + 2(κ − 1) = D − 1. Now we can take a linear
combination (with non-negative real coefficients) of the previous
derivations to get the derivation of −1. More precisely we need
numbers αω ≥ 0 such that

∑
ω∈Ωκ

αωqωq∗
ω − 1 ∈ 〈xκ − 1〉. Setting

αω = 1/qω(ω)qω(ω)∗ we get that that
∑

ω∈Ωκ
αωqωq∗

ω − 1 is zero for
all ω ∈ Ωκ and therefore in the ideal 〈xκ − 1〉. This finally gives a
SoSC refutation of P in degree D−1, contradicting the assumption
on P . �

Now we put together Theorem 4.8 and Lemma 4.9 to get the
size-degree trade-off, which is a generalization of (Sokolov 2020,
Theorem 4.2).

Theorem 4.10. Let P a finite set of polynomials of degree at
most d0 in C[x] containing the polynomials xκ

i − 1 for each i ∈ [n].
Let g be a tuple of compliant polynomials with gi ∈ C[yi1, . . . , yi�i

].
If P requires degree D to be refuted in SoSC, then

P ◦ g ∪ {yκ
ij − 1 : i ∈ [n], j ∈ [�i]}

requires monomial size at least exp( (D−d0)2

8�κ(κ−1)n
) to be refuted in SoSC,

where � = maxi∈[n] �i.
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Proof. Let s be the smallest size of a SoSC refutation of the
set of polynomials P ◦ g ∪ {yκ

ij − 1 : i ∈ [n], j ∈ [�i]}. We
alternate applications of Theorem 4.8 to pick xit with applications
of Lemma 4.9 to pick ωt, and in the end we have a sequence of
variables/values xi1 = ω1, . . . , xim = ωm. By these choices, the
restricted set of polynomials P�xi1

=ω1,...,xim=ωm requires refutations
of reduced degree at least D−2κm+2m. By Theorem 4.8, we can
set m = ��kn ln(s)/D′� for some D′ > 0 and get a refutation of
reduced degree at most D′ + d0. Hence, D′ + d0 ≥ D − 2m(κ − 1)

and we get that ln(s) ≥ D′(D−D′−d0)
2�kn(κ−1)

. The largest value is attained

for D′ = (D − d0)/2 and we get ln(s) ≥ (D−d0)2

8�kn(κ−1)
. �

Finally, using Theorem 1.3 and Theorem 4.10, we have the size
lower bound for SRUκ,0

n stated in Theorem 1.4.

Theorem 1.4 (Size lower bound for SRUκ,0
n ). Let κ be a prime

and n ∈ N, if n 
 κ then the set of polynomials SRUκ,0
n has

no refutation in SoSC within monomial size 2o(n).

Proof. We proceed as in Example 4.2 continued. Let n = (2κ+
1)n′ + b with b ∈ {0, . . . , 2κ}. Let �1 = · · · = �b = 2κ + 2 and
�b+1 = · · · = �n′ = 2κ + 1. Consider the tuple g = (g1, . . . , gn′)
where gi ∈ C[yi1, . . . , yi�i

] is the polynomial

gi(yi1, . . . , yi�i
) :=

1

κ
(
∑

j∈[�i]

yij − (�i − 2κ)).

As we saw in Example 4.2, each gi is a compliant polynomial. From
Example 4.2 continued, the set of polynomials

(4.11)

⎧
⎨

⎩
1

κ

∑

i∈[n′],j∈[�i]

yij

⎫
⎬

⎭ ∪ {yκ
ij − 1 : i ∈ [n′], j ∈ [�i]}

is a subset of

(4.12) SRUκ,r
n′ ◦ g ∪ {yκ

ij − 1 : i ∈ [n′], j ∈ [�i]}

for r = −n′+b
κ

. By Theorem 1.3, there are no SoSC refutations of

SRUκ,r
n′ in degree d = n′

κ
since

κd ≤ min{r + (κ − 1)n′ + κ, n′ − r + κ}.
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By Theorem 4.10, the set of polynomials (4.6) requires SoSC refu-

tations of monomial size at least exp(
(n′

κ
−κ)2

8�κ(κ−1)n′ ) = 2Ω(n) if n 
 κ.
Therefore, the same size lower bound must hold for the set of poly-
nomials in (4.11) and for SRUκ,0

n . �

5. Proof of Theorem 4.8

This section contains the proof of Theorem 4.8. We follow the
notations from Section 4, in particular the notion of compliant
polynomial (Definition 4.1). The argument given in this section is
a non-trivial generalization of the proof of (Sokolov 2020, Theorem
4.1).

5.1. Notation. Let �1, . . . , �n ∈ N. For each i ∈ [n] we have a
corresponding block of �i variables yi = (yi1, . . . , yi�i

) and a com-
pliant polynomial gi ∈ C[yi]. We use notation g for the tuple
(g1, . . . , gn), and ζ for some fixed primitive κth root of unity.

Let Tn be the set of terms in C[y1, . . . ,yn]. For i ∈ [n] and αi =
(αi1, . . . , αi�i

) ∈ N
�i , we denote as Y αi

i the monomial
∏

j∈[�i]
y

αij

ij .
We can uniquely write a term t ∈ Tn as

t =
∏

i∈[n]

Y αi
i ,

for suitable αi ∈ N
�i . We want to study the polynomials in

C[y1, . . . ,yn] under variable permutations of that do not swaps
variables between blocks. We denote the group of permutations
over the variables yi as Si. We are mostly interested in its κ-
cycles, and the compliance of gi guarantees that κ-cycles in Si

exists because �i > κ.
Fix some ı̂ ∈ [n] and some κ-cycle σ in Sı̂. We define the map

(σ; ı̂) : Tn → Tn on term t =
∏

i∈[n] Y
αi
i as

(σ; ı̂)

(∏

i∈[n]

Y αi
i

)
=

( ∏

j∈[�ı̂]

y
αı̂j

ı̂σ(j)

)
·
∏

i∈[n],i�=ı̂

Y αi
i .

The map (σ; ı̂) is extended by linearity to all polynomials in the
ring C[y1, . . . ,yn]. We say that a polynomial p is invariant under
(σ; ı̂) if (σ; ı̂)(p) = p.
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Given a polynomial p ∈ C[y1, . . . ,yn], the symmetrization of p
with respect to (σ; ı̂) is the polynomial

SYMσ,̂ı(p) =
κ−1∑

m=0

(σ; ı̂)m(p),

where (σ; ı̂)m is application of (σ; ı̂) m times, and (σ; ı̂)0 is the
identity.

Example 5.1. Say �1 = �2 = �3 = 4, κ = 3, and σ is the 3-cycle
(1 2 3). The term t = y1,2y

2
1,3y1,4y2,2 is Y α1

1 Y α2
2 with α1 = (0, 1, 2, 1)

and α2 = (0, 1, 0, 0). Then, the maps (σ; 1) and (σ; 2) map t into:

(σ; 1)(t) = y1,3y
2
1,1y1,4y2,2,

(σ; 2)(t) = y1
1,2y

2
1,3y1,4y2,3,

(σ; 3)(t) = y1,2y
2
1,3y1,4y2,2.

Moreover,

SYMσ,1(t) = (y1
1,2y

2
1,3 + y1

1,3y
2
1,1 + y1

1,1y
2
1,2)y1,4y2,2,

SYMσ,2(t) = y1,2y
2
1,3y1,4(y2,1 + y2,2 + y2,3),

SYMσ,3(t) = 3y1,2y
2
1,3y1,4y2,2. ♦

The example above already suggests the following lemma.

Lemma 5.2. Let p, q ∈ C[y1, . . . ,yn], ı̂ ∈ [n] and σ ∈ Sı̂. If q is
invariant under (σ; ı̂), then SYMσ,̂ı(pq) = SYMσ,̂ı(p)q.

Proof. The action of (σ; ı̂) is multiplicative, therefore

SYMσ,̂ı(pq) =
κ−1∑

m=0

(σ; ı̂)m(pq)

=
κ−1∑

m=0

(σ; ı̂)m(p) · (σ; ı̂)m(q)

=
κ−1∑

m=0

(σ; ı̂)m(p) · q [q is invariant under (σ; ı̂)]

= SYMσ,̂ı(p)q. �
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In the Boolean framework, it is possible to kill high degree
terms by setting variables to zero, but in the Fourier framework,
we cannot do that. Instead, we apply assignment βσ,̂ı to variables
y ı̂ so that, together with symmetrization SYMσ,̂ı(·), it acts as if it
was a partial restriction mapping some terms to 0.

Definition 5.3 (the partial assignment βσ,̂ı). For ı̂ ∈ [n] and a
κ-cycle σ = (j0 j1 . . . jκ−1), let βσ,̂ı be the partial assignment on
the variables y ı̂ mapping yı̂,jm to ζm, for every m = 0, . . . , κ−1 and
mapping the remaining variables yı̂,j to themselves. We denote the
partial assignment βσ,̂ı applied to a polynomial p as p�βσ,ı̂

.

Since we mostly consider SYMσ,̂ı(t) after the restriction by βσ,̂ı

we introduce the notation

Sσ,̂ı(t) = SYMσ,̂ı(t)�βσ,ı̂
.

Example 5.1 continued. Using the notation of Example 5.1,

Sσ,1(t) = (ζζ4 + ζ2 + ζ2)y1,4y2,2 = 3ζ2y1,4y2,2,
Sσ,2(t) = y1,2y

2
1,3y1,4(ζ

0 + ζ1 + ζ2) = 0,
Sσ,3(t) = 3y1,2y

2
1,3y1,4y2,2.

Notice that, Sσ,1(t) = 3t�βσ,1 and similarly Sσ,3(t) = 3t�βσ,3 . This
holds in general, as the next lemma shows. ♦

We show that Sσ,̂ı(t) acts as a sort of partial restriction that
either maps the term t to 0 or to a restriction of t.

Lemma 5.4. Let ı̂ ∈ [n] and j0, . . . , jκ−1 ∈ [�ı̂] be distinct indices.
Let σ be the κ-cycle (j0 j1 . . . jκ−1). Let t =

∏
i∈[n] Y

αi
i be a term

in Tn. Then

Sσ,̂ı(t) =

{
0 if κ �

∑κ−1
m=0 αı̂,jm

κ · t�βσ,ı̂
otherwise.

Proof. Since (σ; ı̂)0 is the identity, we have (σ; ı̂)0(t)�βσ,ı̂
= t�βσ,ı̂

.
For (σ; ı̂)1, we can see that now βσ,̂ı maps the variable yı̂jm to ζm+1,
that is

(σ; ı̂)1(t)�βσ,ı̂
= ω · t�βσ,ı̂

,
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where ω = ζ
∑κ−1

m=0 αı̂jm . Likewise, for every 0 ≤ m < κ, we have
that

(σ, ı̂)m(t)�βσ,ı̂
= ωm · t�βσ,ı̂

.

That is

Sσ,̂ı(t) =

( κ−1∑

m=0

ωm

)
t�βσ,ı̂

=

{
0 if w �= 1

κ · t�βσ,ı̂
otherwise,

where the last equality follows since ω is a power of ζ, all powers
of ζ except 1 are roots of polynomial 1+X +X2 + · · ·+Xκ−1, and
ω �= 1 if and only if κ �

∑k−1
m=0 αı̂,jm . �

An immediate consequence of Lemma 5.4 is that if Sσ,̂ı(t) = 0
then Sσ,̂ı(t

∗) = 0, where t∗ is the formal conjugate of t.

Lemma 5.5. If Sσ,̂ı(t) = 0 then Sσ,̂ı(t
∗) = 0, where t∗ is the formal

conjugate of t.

Proof. By Lemma 5.4, Sσ,̂ı(t) = 0 implies that κ �
∑k−1

m=0 αı̂,jm .
The exponent of the variable yı̂,j in t∗ is (κ�αı̂,j/κ�−αı̂,j), which is

equal to −αı̂,j modulo κ. Therefore κ �
∑k−1

m=0(κ�αı̂,jm/κ� − αı̂,jm).
Hence, again by Lemma 5.4, Sσ,̂ı(t

∗) = 0. �

Another immediate consequence of Lemma 5.4 is that given a
term t =

∏
i∈[n] Y

αi
i such the entries of the vector αı̂ are not all

equal modulo κ, then there exist a κ-cycle σ such that Sσ,̂ı(t) = 0.

Lemma 5.6. Let t =
∏

i∈[n] Y
αi
i a term in Tn, and suppose the

entries of the vector αı̂ are not all equal modulo κ. Then there
exist a κ-cycle σ such that Sσ,̂ı(t) = 0.

Proof. By Lemma 5.4, it is enough to show that there are κ
distinct indices j0, . . . , jκ−1 ∈ [�ı̂] such that κ � αı̂,j0 + · · · + αı̂,jκ−1 .
Consider two distinct indices j0, j1 such that αı̂,j0 �= αı̂,j1 modulo
κ. Now consider arbitrary distinct indices j2, . . . , jκ ∈ [�ı̂]. We
can find those indices since �ı̂ ≥ κ + 1. It must be that either
κ � αı̂,j0 +

∑κ
m=2 αı̂,jm or κ � αı̂,j1 +

∑κ
m=2 αı̂,jm . �

By linearity, define Sσ,̂ı(p) for every p ∈ C[y1, . . . ,yn]. We show
now this operator is well-behaved on polynomials of the form pp∗.
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Lemma 5.7. For every polynomial p ∈ C[y1, . . . ,yn], every ı̂ ∈ [n]
and every κ-cycle σ ∈ S�ı̂

, there are polynomials s0, . . . , s(κ−1) such
that

Sσ,̂ı(pp
∗) =

κ−1∑

j=0

sjs
∗
j ,

and moreover the total number of monomials in
∑κ−1

j=0 sjs
∗
j before

cancellations is at most the number of monomials in pp∗ (again
before cancellations).

Proof. The permutation σ is a κ-cycle, say (j0 j1 . . . jκ−1).
We focus on the set A of tuples of exponents for the variables
yı̂j0 , . . . , yı̂jκ−1 that occur in the polynomial p. For each such α ∈ A,

we define its norm ‖α‖ =
∑κ−1

m=0 αı̂,jm .
Let t(α) be the monomial

∏κ−1
m=0 y

αı̂jm

ı̂jm
. By construction, the

formal conjugate of t(α) can be written as t(κIα − α) where Iα

is some vector of integers.
We can partition A in A0, A1, . . . , A(κ−1) based on the residue

of their norm modulo κ. Namely Am = {α ∈ A : ‖α‖ = m
(mod κ)}. Then, we can write

p =
∑

α∈A0

pαt(α) +
∑

α∈A1

pαt(α) + · · · +
∑

α∈A(κ−1)

pαt(α).

where each pα is a polynomial not containing variables among
yı̂j0 , . . . , yı̂jκ−1 .

Observe that the polynomial Sσ,̂ı(t(α)t(α′)∗) is non-zero if and
only if κ divides ‖α‖+‖κIα −α′‖ (by Lemma 5.4), which happens
if and only if ‖α‖ = ‖α′‖ modulo κ.

By linearity of SYMσ,̂ı(·) and this observation, we have that

Sσ,̂ı(pp
∗) =

∑

α,α′∈A

pαp∗
α′Sσ,̂ı(t(α)t(α′)∗)

=
κ−1∑

j=0

∑

α,α′∈Aj

pαp∗
α′Sσ,̂ı(t(α)t(α′)∗)

= κ
κ−1∑

j=0

∑

α,α′∈Aj

pαp∗
α′t(α)�βσ,ı̂

t(α′)∗�βσ,ı̂
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= κ
κ−1∑

j=0

(∑

α∈Aj

pαt(α)�βσ,ı̂

)
·
(∑

α∈Aj

pαt(α)�βσ,ı̂

)∗

=
κ−1∑

j=0

sjs
∗
j ,

where each sj is
√

κ ·
∑

α∈Aj
pαt(α)�βσ,ı̂

. We conclude the proof
discussing the size. Let cj be the number of monomials in the poly-
nomial

∑
α∈Aj

pαt(α). The polynomial sj has no more monomials
than cj, being its restriction. Hence, the total count of monomials
in
∑κ−1

j=0 sjs
∗
j before cancellations is at most

∑κ−1
j=0 c2

j which is less

than
(∑κ−1

j=0 cj

)2
, the number of monomials in pp∗ before cancella-

tions. �

We now restate and prove Theorem 4.8.

Theorem 4.8. Let P be finite a set of polynomials of degree d0

in C[x] containing the polynomials xκ
j − 1 for each j ∈ [n]. Let g

be a tuple of compliant polynomials with gi ∈ C[yi1, . . . , yi�i
] and

ω1, ω2, . . . , ωm ∈ Ωκ. If there is a SoSC refutation of P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [�i]} of size s then there exists a sequence of
variables xi1 , . . . , xim with m = ��κn ln(s)/D� such that

(i) � = maxi �i;

(ii) the choice of xit only depends on ω1, . . . , ωt−1;

(iii) there is a SoSC refutation of P �xi1
=ω1,...,xim=ωm of reduced

degree at most D + d0.

Proof. Let π be a SoSC refutation of

P ◦ g ∪ {yκ
ij − 1 i ∈ [n], j ∈ [�i]}

of size s. Proof π has the form

(5.8) −1 =
∑

p∈P◦g

qp · p +
∑

i∈[n]
j∈[�i]

qij(y
κ
ij − 1) +

∑

q∈Q

q · q∗,
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where qp, qij, qs are polynomials in C[y1, . . . ,yn]. Without loss
of generality we can consider a “multilinearized” version of (5.8)
where all variables in polynomials qp, qs are raised to powers at
most κ−1. This assumption increases proof size only polynomially.

We say a term t =
∏

i∈[n] Y
αi
i is fat when there are at least

D/κ distinct indices i so that the entries of the vector αi are not
all equal. By Lemma 5.6, if a term is fat there are at least D/κ
maps (σ; i) with distinct indices i such that Sσ,i(t) = 0.

Let F be the set of fat terms in the qps and in q · q∗ before
cancellations.2 For each block of variables yi we have at most
�(� − 1) . . . (� − κ + 1)/κ ≤ �κ/κ possible κ-cycles in total, hence
the maps (σ; i) are at most n · �κ/κ. By averaging, we have a pair
(σ1, i1) such that the number of fat terms t ∈ F where Sσ1,i1(t) = 0
are at least k

�κn
· D

κ
· |F | = D

�κn
|F |.

Fix an arbitrary ω1 ∈ Ωκ. By applying (σ1; i1)
0, . . . , (σ1; i1)

κ−1

to (5.8), summing and restricting by βi1,σ1 we obtain the equality

−κ =
∑

p∈P◦g

Sσ1,i1(qp · p) +
∑

i∈[n]
j∈[�i]

Sσ1,i1(qij(y
κ
ij − 1))

+
∑

q∈Q

Sσ1,i1(q · q∗).(5.9)

Now, since g is symmetric, p is invariant under the action of
(σ1; i1) and, by Lemma 5.2, then

Sσ1,i1(qp · p) = Sσ1,i1(qp) · p�βi1,σ1
.

For the same reason

Sσ1,i1(qij(y
κ
ij − 1)) = Sσ1,i1(qij)(y

κ
ij − 1)�βi1,σ1

.

Therefore, by Lemma 5.7, the expression in (5.9) is a SoSC refuta-
tion π′

1 of (P ◦g)�βi1,σ1
. Again, symmetry and the other compliance

properties of g let us extend βi1,σ1 to some β′ that sets all remaining
variables in yi1 and ensures gi1(β

′(yi1,1), . . . , β
′(yi1,�i1

)) = w1.

2This set of polynomials is the analog of the quadratic representation in
(Sokolov 2020).



12 Page 38 of 45 Bonacina, Galesi & Lauria cc

Restricting π′
1 by β′ we obtain a SoSC refutation of the set of

polynomials (P�xi1
=ω1)◦g. Let π1 be this refutation. By Lemma 5.4

and Lemma 5.7, π1 has size at most s and, by construction, contains
at most (1 − D

�kn
)|F | fat terms.

By repeating this process m times, we get a partial assignment
xi1 = ω1, . . . , xim = ωm and a SoSC refutation π′ of the set of
polynomials (P �xi1

=ω1,...,xim=ωm) ◦ g. Since by assumption m =
��κn ln(s)/D�, the resulting π′ does not have fat terms anymore,
because

(
1 − D

�κn

)m

s ≤ exp

(
− Dm

�κn
+ ln(s)

)
< 1.

To conclude the argument, we need to transform π′ into an SoSC

refutation of P�xi1
=ω1,...,xim=ωm of reduced degree at most D + d0.

More concretely for any unassigned xi, we need to set variables yij

to some univariate polynomial over xi, so that the corresponding
gi(yi) evaluates to xi itself.

We need the indicator function χa(X) for a ∈ {0, . . . , κ − 1}.
More specifically, χa(X) is the univariate polynomial that evaluates
to 1 when X = ζa and to 0 when X = ζb with b �= a. That is,
χa(X) is defined as

χa(X) :=
1∏

0≤i<κ,i�=a(ζ
a − ζ i)

∏

0≤i<κ,i�=a

(X − ζ i)

expanded as a sum of monomials. Finally, we substitute all the
occurrences of the variable yij in π′ for each i ∈ [n] and j ∈ [�i]
with

(5.10)
κ−1∑

a=0

hi(ζ
a)jχa(xi).

We recall that hi : Ωκ → Ω�i
κ is the function witnessing that gi is

compliant, and that hi(ζ
a)j is the jth coordinate of its value on ζa.

Let π′′ be the result applying the substitution (5.10) to π′. We
have that no monomial in π′′ has degree bigger than D

κ
(κ−1) < D.

We now modify π′′ to get a proper refutation of P�xi1
=ω1,...,xim=ωm .
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The part of π′′ that is a “sum-of-squares”, i.e., a sum of poly-
nomials of the form ss∗, still remains a sum-of-squares after the
substitution.

The only missing part is to derive in degree at most D + d0

the axioms (P�xi1
=ω1,...,xim=ωm)◦g to which substitution (5.10) was

applied. We set up useful notation: given polynomials p, q ∈ C[x],
we write p ≡ q to denote the fact that p−q is in the ideal generated
by xκ

1 − 1, . . . , xκ
n − 1. The following two equivalences

(5.11) gi

(
κ−1∑

a=0

hi(ζ
a)1χa(xi), . . . ,

κ−1∑

a=0

hi(ζ
a)�i

χa(xi)

)
≡ xi

and

(5.12)

(
κ−1∑

a=0

hi(ζ
a)jχa(xi)

)κ

≡ 1

are enough to see that proof π′′ can be modified into a proof of
P �xi1

=ω1,...,xim=ωm with reduced degree not exceeding D + d0, and
to conclude the proof.

To prove (5.11) and (5.12) notice that χa(xi)
2 ≡ χa(xi) and,

when a �= b, that χa(xi)χb(xi) ≡ 0 To see (5.12) we have the
calculation
(

κ−1∑

a=0

h(ζa)jχa(xi)

)κ

=
∑

0≤a1,...,ak<κ

∏

�∈[κ]

h(ζa�)jχa�
(xi)

≡
κ−1∑

a=0

h(ζa)κ
j · χa(xi) =

κ−1∑

a=0

χa(xi) = 1.

A similar calculations gives (5.11).

gi

(
κ−1∑

a=0

hi(ζ
a)1χa(xi), . . . ,

κ−1∑

a=0

hi(ζ
a)�i

χa(xi)

)

≡
κ−1∑

a=0

gi ◦ hi(ζ
a) · χa(xi)

=
κ−1∑

a=0

ζa · χa(xi) = xi
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The last equality holds because
∑κ−1

a=0 ζaχa(xi) and xi are two poly-
nomials of degree < κ and are equal on all the κth roots of unity. �

6. Conclusions

The study of algebraic proof systems under Fourier encoding is
still at its infancy. There are many natural questions about its
size efficiency. We understand reasonably well the strength rela-
tion between resolution and PC in the Boolean encoding. Sokolov
(2020) stresses that we do not even know yet whether PC with
{±1} simulates resolution or not.

We mentioned already that the study of κ-coloring of graphs
is a very natural application of PC with Fourier encoding. There
are some degree lower bounds in literature Lauria & Nordström
(2017), but size lower bounds are still unknown. Understanding
size would allow to understand larger classes of algebraic algo-
rithms for this problem.
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Rome, Italy
massimo.lauria@uniroma1.it


	On vanishing sums of roots of unity in polynomial calculus and sum-of-squares
	Introduction
	Sums of roots of unity
	Our results
	Related works
	Structure of the paper

	Preliminaries
	Vanishing sums of roots of unity
	Proof systems
	Polynomial calculus () over C

	Sum-of-Squares ([]) over C

	Degree lower bounds
	High level structure of the argument
	A Boolean encoding of 
	Notation
	The candidate pseudo-expectation

	Size lower bounds
	High level structure of the argument
	Composition with compliant polynomials
	The size-degree trade-off

	Proof of Theorem 4.8
	Notation

	Conclusions




