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TOTAL SPACE IN RESOLUTION∗

ILARIO BONACINA† , NICOLA GALESI‡ , AND NEIL THAPEN§

Abstract. We show quadratic lower bounds on the total space used in resolution refutations
of random k-CNFs over n variables and of the graph pigeonhole principle and the bit pigeonhole
principle for n holes. This answers the open problem of whether there are families of k-CNF formulas
of polynomial size that require quadratic total space in resolution. The results follow from a more
general theorem showing that, for formulas satisfying certain conditions, in every resolution refutation
there is a memory configuration containing many clauses of large width.
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1. Introduction. The questions most frequently asked in propositional proof
complexity concern the size of proofs—as is well-known, NP = coNP if and only if
there is a proof system in which every tautology has a polynomial size proof [16].
There is a natural analogy between the size of a proof and the size of a circuit, or
the time taken by a Turing machine. Developing this analogy, [15, 18, 1] introduced
a notion of the space used by a propositional proof, similar to the notion of space for
Turing machines. Since then, space has been investigated in depth in proof complexity,
especially for the resolution proof system [18, 1, 4, 2] and in particular concerning
trade-offs [5, 21, 24, 7, 22], resolution over k-DNFs [17, 6], and more recently for
polynomial calculus [1, 20, 13, 19].

Resolution is a well-studied system for refuting formulas in conjunctive normal
form (CNFs). Each line in a resolution refutation is a clause, that is, a disjunction
of literals, and resolution has only one rule: from two clauses A ∨ x and B ∨ ¬x we
may infer the resolvent clause A∨B. A CNF is unsatisfiable if and only if the empty
clause can be derived from it using this rule.

Intuitively, the space required by a refutation is the amount of information we
need to keep simultaneously in memory as we work through the proof and convince
ourselves that the original CNF is unsatisfiable. This was made formal for resolution
in [18] as follows. A memory configuration, or just configuration, is a set of clauses. We
assume that a resolution refutation of ϕ is given in the form of a sequence M1, . . . ,Mt
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of configurations, where M1 is empty, Mt contains the empty clause, and each Mi+1

is derived from Mi in one of the following three ways:
(Axiom download) Mi+1 = Mi ∪ {C}, where C is a clause from ϕ.
(Erasure) Mi+1 = Mi \ {D}, where D is a clause from Mi.
(Inference) Mi+1 = Mi ∪ {D}, where D is the resolvent of two clauses in Mi.
This model is inspired by the definition of space complexity for Turing machines,

where a machine is given a read-only input tape from which it can download parts of
the input to the working memory as needed.

Following [18, 1] the clause space used by the refutation is the maximum number of
clauses in any configuration Mi in the sequence. The total space used is the maximum
over i of the total number of symbols needed to write down Mi. In other words, it is
the total number of instances of variables1 occurring in Mi (we ignore punctuation,
logical connectives, and the actual labels of the variables, which take O(log n) bits to
write).

Clause space and its relation with proof size are by now well-studied [6, 5, 7, 22, 2].
But much less is known about total space, although it captures more closely the
intuitive idea of the memory required by a refutation. As well as being of theoretical
interest, total space is also potentially a useful measure for SAT solving. Memory use
is a major problem for SAT solvers and a current goal of research is to understand the
resources of time and space in resolution proofs, how they are connected to each other,
and how they can be optimized in the design of new SAT solvers; see, for example,
the recent survey [23].

1.1. Results. Every unsatisfiable CNF ϕ over n variables can be refuted in
resolution in clause space n + 1, which is the pebbling number of the brute-force
treelike resolution refutation of ϕ [18]. Since every clause in the refutation has width
at most n, this gives an upper bound of n(n + 1) on the total space of refuting ϕ
(where the width of a clause is the number of literals in it).

The only previously known lower bounds for total space, other than the linear
bounds following trivially from lower bounds on width or clause space, are from [1].
There it is shown that the complete tree contradiction CTn requires Ω(n2) total space
to refute. CTn is a CNF formula of exponential size consisting of all 2n possible clauses
of width n over the variables x1, . . . , xn. This is the only explicit CNF we are aware
of which was previously known to require superlinear total space (in the number of
variables). A lower bound of Ω(n2) on the total space to refute the pigeonhole principle
PHPn also follows from [1], but this lower bound is linear in terms of the number of
variables of the CNF, as PHPn has Θ(n2) variables.

Improving these results, by finding a polynomial size CNF requiring at least
superlinear total space in the number of variables, is a problem posed in [1] which has
since appeared in many other works in proof complexity [4, 21, 6, 5, 7, 22]. We are
able to solve it in essentially an optimal way, showing that some standard families of
constant-width CNF contradictions, defined over n variables and of size O(n), require
Ω(n2) total space. More precisely, we prove in each case that every refutation of the
formula in question must pass through a configuration containing r clauses each of
width at least r, where r = Ω(n). Our main result is the following theorem.

Theorem 1.1. Let k ≥ 4 and ∆ > 1. There is a constant c > 0 such that, for
large n, if ϕ is a random k-CNF with n variables and ∆n clauses, then with high

1In [1] this is called variable space, but we follow [6, 5, 21, 7, 22] in calling it total space to
distinguish it from a different measure in which different occurrences of the same variable are not
counted.
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probability any resolution refutation of ϕ passes through a configuration containing cn
clauses of width at least cn.

We show similar lower bounds for some other CNFs. In particular, for the graph
pigeonhole principle G-PHP (see the beginning of section 6 for definitions) and the bit
pigeonhole principle BPHPn (see the beginning of section 3) we show the following.

Theorem 1.2. Let d ≥ 4 and ∆ > 1. There is a constant c > 0 such that, for
large n, if G is a random graph chosen from the set of bipartite graphs with left-
degree d with ∆n pigeon nodes on the left and n hole nodes on the right, then with
high probability any resolution refutation of G-PHP passes through a configuration
containing cn clauses of width at least cn.

Theorem 1.3. Let n = 2k for k an integer. Any resolution refutation of BPHPn
passes through a configuration containing n/4 clauses of width at least n/4.

The random formulas and the instances of G-PHP in Theorems 1.1 and 1.2 are
k-CNFs with O(n) variables, so in both cases our lower bound matches the quadratic
upper bound on total space, up to a constant factor. The bit pigeonhole principle
BPHPn is a (log n)-CNF with (n + 1) log n variables, so our lower bound is only
Ω(m2/(logm)2) in terms of the number m of variables (but the proof is much simpler
than for the other two principles).

1.2. Outline of paper. The next section contains a general theorem (Theo-
rem 2.4) from which our results follow. We define the notion of an r-free family of
assignments and show that if a CNF has such a family, then every resolution refutation
of it has a configuration containing r/2 clauses each of width at least r/2.

In section 3 we give two applications to illustrate the use of Theorem 2.4. One is
the total space lower bound for BPHPn (Theorem 1.3). The other is the observation
that from any constant-width CNF ϕ requiring width w to refute, we can construct a
constant-width CNF ϕ[⊕], the “xorification of ϕ,” which requires Ω(w2) total space
to refute (Theorem 3.1). In particular, this gives us a lower bound for certain Tseitin
formulas.

Section 4 is the only really technical part of the paper. We develop the tools we
will need to construct r-free families of assignments for random k-CNFs and G-PHP,
namely, certain families of substructures of bipartite graphs which we call r-covering
families. We show that in a random bipartite graph such a family exists with high
probability, that is, with probability 1− o(1).

In sections 5 and 6 we use this to prove our total space lower bounds respectively
for random k-CNFs and G-PHP.

In section 7 we discuss semantic resolution [1]. We show that resolution can
require much more total space than semantic resolution. We prove that if a CNF
has an r-free family, then it requires large total space in a weak version of semantic
resolution, in which we can derive a new clause if it is implied by some set of d clauses
in memory, where d is fixed (Theorem 7.1). We prove that every r-semiwide CNF
requires large semantic total space (Theorem 7.3—see Definition 7.2 for the definition
of r-semiwide formulas).

The most important parts of the paper are the definitions and main theorem
in section 2 and the application of this to give lower bounds for random k-CNFs
in section 5, building on technical results about bipartite expanders in section 4.
The result about BPHPn in Theorem 1.3 (which is already a big improvement over
previously known lower bounds) provides an example of a total space lower bound
that can be read without needing all the technicalities required for random k-CNFs.
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Many of our constructions are inspired by recent work on lower bounds on mono-
mial space (analogous to clause space) in the system PCR of polynomial calculus
resolution [13]. In particular, the partial assignments defining r-free families come
with some extra structure that means that they are not closed under taking sub-
assignments, as would usually be the case with similar constructions (as used, for
example, for clause space lower bounds). The definition of piecewise assignment is a
simplification of an admissible configuration from [13]. The definition of an r-free fam-
ily is new, and a crucial innovation is that we use the r-free family to explicitly pick
out a nicely behaved substructure of the resolution refutation and focus on showing
a total space lower bound on this substructure.

In the applications of our main theorem, the idea of an r-covering family and its
use with random k-CNFs and G-PHP extends a construction from [13]. The use of
BPHPn is inspired by its use in [20] and the observation about xorifications is modeled
on an analogous observation in [19].

1.3. Recent developments. During the preparation of the journal version of
this work, Theorem 1.1 was shown to hold also for k = 3, that is, for random
3-CNFs [9]. In the first author’s Ph.D. thesis [11] it was recently proven that given an
unsatisfiable k-CNF formula ϕ, if W and T are respectively the minimal width and
the minimal total space needed to refute ϕ, then T ≥ Ω((W − k)2).

The improvement in [9] relies on the constructions we build here and in particular
on Theorem 2.4 as it appeared in the conference version of this work [14]. The result
in [11] and [12] relies on simplifications of Definition 2.3 and Theorem 2.4 and on a
characterization of asymmetric width via families of assignments2 (Definition 21 and
Theorem 22 in [10]).

1.4. Open problems. A natural question is whether these lower bounds can be
extended to stronger proof systems such as bounded depth Frege, where very little is
known about space, or PCR. For unrestricted Frege systems a linear upper bound (in
the size of the CNF being refuted) on total space was shown in [1].

Finally, all of our lower bounds are for formulas which are already known to be
hard for resolution, in that they have no subexponential size refutations. It is open
whether there is a family of CNFs which have short refutations but which still require
quadratic, or at least superlinear, total space. By a result of [8], if a CNF has a
resolution refutation of size S, then it also has a refutation in which every clause has
width at most O(

√
n logS). Hence we cannot hope to use our arguments, which show

large space by finding many clauses of large width.

2. Main theorem. A partial assignment to X has the usual meaning of an
assignment of 0/1 values to a subset D of X, leaving the rest of the variables in X
unassigned. The domain of the partial assignment is the set D.

Definition 2.1. A piecewise assignment α to a set of variables X is a set of
nonempty partial assignments to X, with pairwise disjoint domains.

A piecewise assignment α to X naturally gives rise to a partial assignment to X,
namely

⋃
α, the union of all the partial assignments in α. It also gives rise to a

partition of the domain of
⋃
α, into the set of domains of all the members of α.

Therefore an alternative, but notationally less convenient, way to define a piecewise
assignment would be as such a pair of a partial assignment and a partition of its

2The family of assignments used in [10] to characterize asymmetric width share some properties
with our Definition 2.3 but the two concepts were introduced independently.
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domain, and we will often write α when our intended meaning is the partial assignment⋃
α. For example, we will write α(ϕ) for the evaluation of ϕ under

⋃
α and dom(α)

for the domain of
⋃
α.

We call the elements of α the pieces of α. For piecewise assignments α, β we will
write α v β to mean that every piece of α appears in β. We will write ‖α‖ to mean
the number of pieces in α. Note that “v” and “‖ · ‖” are formally exactly the same
as α ⊆ β and |α|, using the definition of α and β as sets of partial assignments. We
will use the following simple fact about piecewise assignments, which we record as a
lemma.

Lemma 2.2. Let α, β be piecewise assignments with α v β. Let Y ⊆ dom(β).
Then there exists a piecewise assignment β′ with α v β′ v β such that Y ⊆ dom(β′)
and ‖β′‖ ≤ ‖α‖+ |Y |.

Definition 2.3. A nonempty family H of piecewise assignments is r-free for a
CNF ϕ if it has the following properties:

(Consistency) No α ∈ H falsifies any clause from ϕ.
(Downward Closure) If α ∈ H, β is a piecewise assignment, and β v α, then
β ∈ H.
(Extension) If α ∈ H and ‖α‖ < r, then for every variable x /∈ dom(α) there
exist β0, β1 ∈ H with α v β0, β1 such that β0(x) = 0 and β1(x) = 1.

Theorem 2.4. Let ϕ be a CNF formula and let r ≥ 2 be an integer. If there is a
family of piecewise assignments which is r-free for ϕ, then any resolution refutation
of ϕ must pass through a memory configuration containing at least r/2 clauses each
of width at least r/2. In particular, the refutation requires total space at least r2/4.

Proof. Suppose that ϕ is unsatisfiable and that H is a family of piecewise assign-
ments which is r-free for ϕ. Let Π = (M1, . . . ,Ms) be a resolution refutation of ϕ,
given as a sequence of memory configurations.

Let S be the set of all clauses which are falsified by some member of H. There
is at least one clause in

⋃s
i=1(Mi ∩ S) with width strictly less than r/2, namely, the

empty clause. Let Mt be the first configuration in Π in which a clause of width strictly
less than r/2 occurs in Mt ∩ S and let C be such a clause. Let α ∈ H falsify C. By
Lemma 2.2 and the downward closure of H we may assume that ‖α‖ < r/2. Our goal
now is to show that there is some i < t such that |Mi ∩S| ≥ r/2. Since, by our choice
of t, for every i < t every clause in Mi ∩ S has width at least r/2, this will give the
theorem.

Suppose for a contradiction that |Mi∩S| < r/2 for each i < t. We will inductively
construct a sequence of piecewise assignments β1, . . . , βt in H such that for each i ≤ t
we have that α v βi and that βi satisfies every clause in Mi ∩ S. This will give a
contradiction when we reach βt, since α falsifies the clause C ∈Mt ∩ S.

The first configuration M1 is empty, so we can put β1 = α. Supposing that
1 ≤ i < t and that we already have a suitable βi, we distinguish three cases:

(Axiom download) Mi+1 = Mi ∪ {D}, where D is a clause from ϕ. By the
consistency property of H, D is not in S and we can simply put βi+1 = βi.

(Erasure) Mi+1 = Mi \ {D}, where D is a clause from Mi. We put βi+1 = βi.
(Inference) Mi+1 = Mi ∪ {D ∨E}, where D ∨E follows by resolution on some

variable x from two clauses D∨x and E ∨¬x in Mi. Using Lemma 2.2, since we have
‖α‖ < r/2 and |Mi ∩ S| < r/2 we may assume that ‖βi‖ ≤ ‖α‖+ |Mi ∩ S| < r.

If D∨E contains a variable outside dom(βi), then by the extension property of H
we can extend βi to some βi+1 ∈ H which satisfies D ∨ E, as required.
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Suppose that all variables in D∨E are set by βi. If x ∈ dom(βi) let βi+1 = βi, and
otherwise let βi+1 ∈ H be any extension of βi which assigns a value to x. Then βi+1

sets all variables in both D ∨ x and E ∨¬x. It cannot falsify either clause, since that
would imply that that clause is in S and thus is already satisfied by βi. Therefore it
must satisfy both clauses and thus also satisfy D ∨ E.

Informally, we can think of each element C of S as identified with a minimal
assignment αC in H which falsifies it. Then S contains the empty assignment and, by
the extension property of H, has a rich structure. In particular, if a clause C in Mi∩S
for some i has width less than r and was derived by resolution on a variable outside
dom(αC), then both parents of C in Π are in S. The proof of Theorem 2.4 then uses
an idea from [1], taking the first clause C in S with small width and applying the
usual clause space lower-bound argument to the substructure of S which derives C.

3. Two simple applications. Let n = 2k for k ∈ N. The formula BPHPn, the
bit pigeonhole principle on n holes, is an unsatisfiable CNF with variables {xuj : u ∈
[n+1], j ∈ [k]}. It asserts that for all distinct u, v ∈ [n+1], the length-k binary strings
xu1 . . . x

u
k and xv1 . . . x

v
k are distinct. We think of each element of [n + 1] as a pigeon

and of the string xu1 . . . x
u
k as the address, in binary, of the hole in [n] that pigeon u is

mapped to. Understood in this way, BPHPn asserts that there is an injective mapping
of n+ 1 pigeons into n holes. Formally the principle consists of the clauses

k∨
j=1

(xuj 6= hj) ∨
k∨
j=1

(xvj 6= hj)

for each u, v ∈ [n+ 1] with u < v and each binary string h1 . . . hk ∈ {0, 1}k. We recall
that the notation xuj 6= 0 stands for xuj and xuj 6= 1 stands for ¬xuj .

Restated Theorem 1.3. Let n = 2k for k an integer. Any resolution refutation
of BPHPn passes through a configuration containing n/4 clauses of width at least n/4.

Proof. By Theorem 2.4 it is enough to exhibit a family of piecewise assignments
which is n/2-free.

For any partial matching f of pigeons into holes, let αf be the piecewise assign-
ment that, for each pigeon u in dom(f), assigns to the variables xu1 . . . x

u
k the binary

string corresponding to the hole f(u). The pieces of αf correspond to the sets of
variables {xu1 , . . . , xuk} belonging to each pigeon. Let H be the family of all piecewise
assignments arising in this way for all partial matchings f .

Clearly H is nonempty and satisfies consistency and downward closure. For the
extension property, suppose we are given αf ∈ H and a variable xuj , with ‖αf‖ < n/2

and xuj /∈ dom(αf ). Then | ran(f)| < n/2 = 2k−1 and u /∈ dom(f), and it is sufficient

to find two holes h1 . . . hk and h′1 . . . h
′
k in {0, 1}k \ ran(f) with hj = 0 and h′j = 1.

But there are exactly 2k−1 holes h with hj = 0, so there must be at least one such
hole outside ran(f). A similar argument works for h′.

As a second application, we show that a CNF requiring large total space in reso-
lution can be constructed from any CNF which requires large width. This is modeled
on a similar result in [19] for monomial space in PCR.

Let ϕ be a CNF over a set of variables X. Let X ′ be a new set of variables
containing a disjoint pair {x1, x2} of variables for each x ∈ X. Following [19], for
each clause C in ϕ, let C[⊕] be the formula over X ′ obtained by replacing each
occurrence of xi in C with the expression (x1

i ⊕ x2
i ) and then converting the result

back into CNF. Let ϕ[⊕] be the conjunction of all the CNFs C[⊕].
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The width of a resolution refutation is the maximum width of any clause in it.
The refutation width of a CNF ϕ in resolution is the minimal width of any refutation
of ϕ.

Theorem 3.1. Let ϕ be a CNF and let w the minimal refutation width of ϕ in
resolution. Then any resolution refutation of ϕ[⊕] passes through a configuration
containing w/2 clauses of width at least w/2.

Proof. Using the characterization of width in resolution by Atserias and Dal-
mau [2], we know that there is a w-winning strategy for the duplicator in the spoiler-
duplicator game on ϕ. That is, there is a nonempty family K of partial truth
assignments such that

1. if f ∈ K, then f does not falsify any clause from ϕ;
2. if f ∈ K and g ⊆ f , then g ∈ F ;
3. if f ∈ K, |dom(f)| < w, and x is any variable, then there is some g ∈ K such

that f ⊆ g and x ∈ dom(g).
We will use K to build a w-free family H of piecewise assignments for ϕ[⊕]. The result
then follows by our main theorem.

Consider an assignment f ∈ K. For each variable x ∈ dom(f), let α0
x be the

partial assignment mapping (x1, x2) 7→ (0, f(x)) and let α1
x be the partial assignment

(x1, x2) 7→ (1, f(x)⊕ 1), so that for b = 0, 1 we have αbx(x1)⊕ αbx(x2) = f(x) and for
i = 1, 2 at least one of the partial assignments α0

x, α
1
x sets xi to 0 and at least one

sets xi to 1. For any map δ : dom(f) → {0, 1} let αδf be the piecewise assignment

{αδ(x)
x : x ∈ dom(f)}. Notice that for each clause C in ϕ, αδf falsifies C[⊕] if and only

if f falsifies C.
Let H contain the piecewise assignment αδf for each f ∈ K and each possible

map δ : dom(f) → {0, 1}. Consistency and downward closure for H follow from
properties 1 and 2 of K. For the extension property, suppose α ∈ H and xi is a
variable in X ′ such that ‖α‖ < r and xi /∈ dom(α). Then α must arise from some
f ∈ K, with |f | < r and x /∈ dom(f). By property 3 of K, there is an extension g ⊇ f
in K with x ∈ dom(g). By the construction of H there exist piecewise assignments β0

and β1 arising from g and extending α such that β0(xi) = 0 and β1(xi) = 1.

In particular this result is interesting when ϕ is a Tseitin formula over some
graph G. In this case ϕ[⊕] can be seen as a Tseitin formula over the graph G′ formed
by replacing each edge in G with a double edge.

We recall briefly what a Tseitin formula is. Let G = (V,E) be a connected graph
of degree d over n vertices. For each edge e ∈ E define a variable xe. Fix an odd-weight
function σ : V → {0, 1}, that is, a function σ such that

∑
v∈V σ(v) ≡ 1 (mod 2). For

each v ∈ V define PARITYv as a CNF expressing∑
e3v

xe ≡ σ(v) (mod 2).

The Tseitin formula T (G, σ) is then the conjunction
∧
v∈V PARITYv. It is well-known

that refutation width of T (G, σ) is at least the connectivity expansion of G (see for
example [1]).

Corollary 3.2. Let G = (V,E) be a 3-regular expander graph over n ver-
tices. Let G′ be G with each edge replaced with a double edge. Then for any odd
weight function σ : V → {0, 1} the total space needed to refute T (G′, σ) is at least
Ω(n2).
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Here T (G′, σ) is a 6-CNF. This corollary is a partial answer to the question posed
in open problem 2 of [1] about the space needed to refute T (G, σ) when G is a 3-regular
expander graph.

4. Bipartite expanders and 2-matchings. The goal of this section is to de-
fine certain families of substructures of bipartite graphs, which we call r-covering
families, and to show that in a random bipartite graph such a family exists with high
probability. See Definitions 4.10 and 4.11 and Corollary 4.14 at the end of the section.
We will need such families in our lower bounds for random formulas and for the graph
pigeonhole principle. The constructions in this section are adapted from [13], which
in turn is based on [4]. Our main innovation is Lemma 4.8, where we show a useful
property of the right-hand side of bipartite right-to-left expander graphs, which may
also be useful in other applications of expanders. Roughly, when building a family of
matchings in such a graph, given a partial matching and any node on the right we can
either extend the matching to cover that node or exclude the node from ever being
used in an extension of the matching.

We first introduce some notation. Let G = (U ∪ V,E) be a bipartite graph. For
a node a in G we will write N(a) for the set of neighbors of a, and for a set of nodes
A in G we will write N(A) for

⋃
a∈AN(a).

For sets A ⊆ U and B ⊆ V , a 2-matching σ of A into B is a subset of the edge
relation E such that each element of A has as neighbors under σ exactly two elements
of B, and no two elements of A share a neighbor under σ. We will sometimes use
functional notation for 2-matchings, as follows: for a ∈ A we will write σ(a) for the
pair of neighbors of a; for X ⊆ A we will write σ(X) for the set of all neighbors of X;
we will write dom(σ) for A and ran(σ) for σ(A). A fork in G is a 2-matching with a
domain of size one.

Definition 4.1. Let G = (U ∪ V,E) be a bipartite graph. For γ > 1, we say
that G is an (s, γ)-expander if

∀A ⊆ U, |A| ≤ s→ |N(A)| ≥ γ|A|.

We will usually be interested in (s, 2+ε)-expanders for some ε > 0. On subgraphs
of such graphs we can apply the following corollary of Hall’s theorem proved in [1].

Lemma 4.2. Let G = (U ∪ V,E) be a bipartite graph. If |N(A)| ≥ 2|A| for every
set A ⊆ U , then there is a 2-matching of U into V .

For the rest of this section (until Theorem 4.13), fix integers d and s and a real
number ε > 0. Let G = (U ∪ V,E) be a fixed bipartite graph of left-degree d which is
an (s, 2 + ε)-expander.

Definition 4.3. Given two sets A ⊆ U and B ⊆ V , we say that (A,B) has the
double-matching property if for every C ⊆ U \ A, if |A| + |C| ≤ s, then there exists
a 2-matching of C into V \B.

We have the following useful lemma, which applies the expansion property of G
to bound the size of a minimal witness C that the double-matching property fails.

Lemma 4.4. Let A ⊆ U and B ⊆ V be such that (A,B) does not have the double-
matching property. Then there is a set C ⊆ U \ A with |C| < 1

ε |B| such that there is
no 2-matching of C into V \B.

Proof. Let C ⊆ U \ A be minimal such that |C| ≤ s − |A| and there is no 2-
matching of C into V \ B. Then for every D ( C, there is a 2-matching of D into
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V \ B, so in particular |N(D) \ B| ≥ 2|D|. Hence we must have |N(C) \ B| < 2|C|,
since otherwise there would be a 2-matching of C into V \B by Lemma 4.2. On the
other hand, by expansion, since |C| ≤ s we have that |N(C)| ≥ (2 + ε)|C|.

Combining these, we get

(2 + ε)|C| ≤ |N(C)| ≤ |N(C) \B|+ |B| < 2|C|+ |B|

and hence |C| < 1
ε |B|.

Lemma 4.5. The pair (∅, ∅) has the double-matching property.

Proof. This follows directly from Lemma 4.2, since G is an (s, 2 + ε) expander.

Lemma 4.6 (left extension). Let A ⊆ U and B ⊆ V be such that (A,B) has the

double-matching property and d(d−1)
ε (|B|+ 2) + |A|+ 1 ≤ s. Then for each u ∈ U \A

there is a 2-matching π of u into V \B such that (A ∪ {u}, B ∪ π(u)) has the double-
matching property.

Proof. Let Π be the set of all 2-matchings π of u into V \ B. Since |A| + 1 ≤ s
and (A,B) has the double-matching property, we know that Π is nonempty. Suppose
for a contradiction that for every π ∈ Π, the pair (A ∪ {u}, B ∪ π(u)) does not
have the double-matching property. By Lemma 4.4, for every π ∈ Π there is a set
Cπ ⊆ U \ (A ∪ {u}) with |Cπ| < 1

ε |B ∪ π(u)| such that there is no 2-matching of Cπ
into V \ (B ∪ π(u)).

Let C =
⋃
π∈Π Cπ. Then |C| < d(d−1)

ε (|B| + 2), since |Π| ≤ d(d − 1). Hence,
by our assumption about the sizes of |A| and |B|, we have that |C ∪ {u}| ≤ s − |A|.
Furthermore C ∪ {u} ⊆ U \ A, so by the double-matching property for (A,B) there
is a 2-matching σ of C ∪ {u} into V \B.

There must be some π ∈ Π such that π(u) = σ(u). Let σ′ be σ with the fork
u 7→ π(u) removed. Then σ′ is a 2-matching of C into V \ (B∪π(u)) and in particular
contains a 2-matching of Cπ into V \ (B ∪ π(u)), contradicting the choice of Cπ.

Lemma 4.7 (left retraction). Let A ⊆ U and B ⊆ V be such that (A,B) has
the double-matching property and 1

ε |B|+ |A| ≤ s. Suppose that u ∈ A and there is a
2-matching π of u into B. Then (A\{u}, B \π(u)) has the double-matching property.

Proof. Let C ⊆ (U \ A) ∪ {u} with |C| ≤ s− |A \ {u}|. We want to show that
there is a 2-matching of C into (V \B) ∪ π(u). By Lemma 4.4, it is enough to consider
only sets C with |C| < 1

ε |B \ π(u)|.
If u ∈ C, then |C \ {u}| ≤ s− |A| so by the double-matching property for (A,B)

there is a 2-matching σ of C \ {u} into V \B. Hence σ ∪ π is a 2-matching of C into
(V \B) ∪ π(u).

If u /∈ C, then |C| ≤ s− |A| by our assumption about the sizes of |A| and |B|, so
by the double-matching property for (A,B) there is a 2-matching of C into V \B.

Lemma 4.8 (right extension). Let A ⊆ U and B ⊆ V be such that (A,B)
has the double-matching property. Let v ∈ V \ B have degree e, and suppose that
d(d−1)

ε (|B|+ 2e) + |A|+ e ≤ s. Then either
1. for some u ∈ U \A there is a 2-matching π of u into V \B such that v ∈ π(u)

and (A ∪ {u}, B ∪ π(u)) has the double-matching property, or
2. (A,B ∪ {v}) has the double-matching property.

Proof. Let D be N(v) \ A, so that |D| ≤ e. By applying Lemma 4.6 |D| many
times, we can find a 2-matching σ of D into V \ B such that (A ∪D,B ∪ σ(D)) has
the double-matching property. Notice that 1

ε (|B|+ |σ(D)|) + |A|+ |D| ≤ s so that,
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by Lemma 4.7, the double-matching property is preserved if we remove any number
of elements from D and the corresponding forks from σ.

There are now two cases. In the first case, there is u ∈ D and a corresponding
fork π in σ such that v ∈ π(u). In this case we may remove all other elements from D
and all other forks from σ and thus satisfy condition 1 of the lemma.

In the second case, v /∈ σ(D). Then the double-matching property for (A∪D,B∪
σ(D)) implies the double-matching property for (A ∪ D,B ∪ σ(D) ∪ {v}), since no
neighbors of v remain in U \(A∪D). As in the previous case, it follows by Lemma 4.7
that (A,B ∪ {v}) has the double-matching property, satisfying condition 2.

Lemma 4.9 (right retraction). Let A ⊆ U and B ⊆ V be such that (A,B) has
the double-matching property. For each v ∈ V , the pair (A,B \ {v}) has the double-
matching property.

Proof. This is trivial from the definition of the double-matching property.

The following combinatorial objects are central to our lower bounds. They allow
us to extend the space lower bound argument on standard matchings in bipartite
graphs (see, for example, [4]) to a generalization of 2-matchings, in which we also
allow single, unmatched points on the right which we call “singletons.” We will use
families of these objects to define our families of r-free assignments. The extension and
downward closure properties will follow from respectively the extension and retraction
properties in Definition 4.11.

Definition 4.10. A 2-structure κ in G is a pair (σ, S), where σ is a 2-matching
and S ⊆ V \ ran(σ). We think of κ as consisting of a set of forks (the forks in σ) and
a disjoint set of singletons (the elements of S).

The size of a 2-structure κ is defined to be |κ| = |dom(σ)| + |S|, that is, the
number of forks plus the number of singletons. Given two 2-structures κ = (σ, S) and
λ = (σ′, S′) we say that λ extends κ, written κ ⊆ λ, if σ ⊆ σ′ and S ⊆ S′. We say
that the 2-structure κ covers a node w in U ∪ V if w ∈ dom(σ) ∪ ran(σ) ∪ S.

Definition 4.11. A nonempty set F of 2-structures in G is called an r-covering
family if it has the following two properties:

(Retraction) If κ ∈ F and λ is a 2-structure in G with λ ⊆ κ, then λ ∈ F .
(Extension) If κ ∈ F with |κ| < r and w is any node of G, then κ can be
extended to a 2-structure in F which covers w.

Lemma 4.12. Let r = sε/6d2. Suppose that no node in V has degree more than r.
Then an r-covering family F of 2-structures exists on G.

Proof. For a 2-structure κ, let Aκ = dom(σ) and Bκ = ran(σ) ∪ S. We take F
to be the set consisting of all 2-structures κ in G for which (Aκ, Bκ) has the double-
matching property and 1

ε |Bκ|+ |Aκ| ≤ s.
This family is nonempty by Lemma 4.5 and has the retraction property by

Lemmas 4.7 and 4.9. For the extension property, suppose that |κ| < r, that is,
|dom(σ)| + |S| < r. Then |Aκ| < r and |Bκ| = 2|dom(σ)| + |S| < 2r. Since G is an
(s, 2 + ε)-expander of left-degree d, we must have ε < d, so r < s/6. Thus

d(d− 1)

ε
(|Bκ|+ 2r) + |Aκ|+ r <

4d2r

ε
+ 2r <

4s

6
+

2s

6
= s.

Hence the requirements on the sizes of Aκ and Bκ for Lemmas 4.6 and 4.8 are satisfied.
Now given v ∈ V , applying Lemma 4.8 we can extend κ to a 2-structure κ′ which
covers v, by adding either one more fork or one more singleton. In either case,
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(Aκ′ , Bκ′) still has the double-matching property and 1
ε |Bκ′ |+ |Aκ′ | ≤ s, so we remain

within F . Similarly, given u ∈ U we can apply Lemma 4.6 to extend κ to κ′ ∈ F
covering u.

We will say that a graph G is a (n, d,∆)-random bipartite graph if it is chosen
uniformly at random from the set of bipartite graphs (U ∪ V,E) of left-degree d with
|U | = ∆n and |V | = n. The next result is standard and can be found, for example,
in [3] and Lemma 5.1 in [4].

Theorem 4.13. For any d ≥ 3, ∆ ≥ 1 and any real constant ε ∈ (0, d− 2), there
is a constant γ = γd,ε,∆ such that, for large n, if G is a (n, d,∆)-random bipartite
graph, then, with high probability, G is a (γn, 1 + ε)-expander.

We are interested in (s, 2 + ε′)-expander graphs with ε′ > 0 since on such graphs
we can apply Lemma 4.2 and the constructions of this section. By Theorem 4.13 we
can guarantee that a bipartite graph is an (s, 2 + ε′)-expander by supposing that its
left-degree d is at least 4 and taking ε = 1 + ε′.

Lemma 4.14. Choose constants d ≥ 4 and ∆ > 1. There is a constant δ > 0 such
that, for large n, if G is a (n, d,∆)-random bipartite graph, then with high probability
there exists a δn-covering family of 2-structures on G.

Proof. Fix ε = 1.5. Let γ be the constant γd,ε,∆ from Theorem 4.13 and let
δ = γε/6d2. With high probability, G is a (γn, 2.5)-expander. To show that G has
a δn-covering family, by Lemma 4.12 it is enough to show that every node in V has
degree at most δn. The degree of such a node is the sum of independent Boolean
random variables and has expected value ∆d, so this is true with high probability by
the Chernoff bound (multiplicative version3).

5. Random k-CNFs. A random k-CNF with n variables and clause density ∆
is a CNF picked as follows: choose independently uniformly at random ∆n clauses
from the set of all possible clauses in the variables {x1, . . . , xn} containing exactly k
literals. As is well-known, there is a constant θk such that if ∆ > θk, then such a ϕ
is unsatisfiable with high probability for large n.

Restated Theorem 1.1. Let k ≥ 4 and ∆ > 1. There is a constant c > 0 such
that, for large n, if ϕ is a random k-CNF with n variables and ∆n clauses, then
with high probability any resolution refutation of ϕ passes through a configuration
containing cn clauses of width at least cn.

Proof. We associate with ϕ the bipartite graph G = (U ∪ V,E), where U is the
set of clauses of ϕ, V is the set {x1, . . . , xn} of variables, and an edge exists between a
clause C in U and a variable x in V if x appears in C (either positively or negatively).
Then G is an (n, k,∆)-random bipartite graph. Hence by Lemma 4.14 there is a
constant δ such that with high probability there exists a δn-covering family F of
2-structures on G. We will show how such a family F can be used to construct a
family H of piecewise assignments that is δn-free for ϕ. The theorem then follows by
Theorem 2.4, with c = δ/2.

3The precise version of the Chernoff bound we use is the following: letX1, . . . , Xm be independent
random variables such that for each Xi, 0 ≤ Xi ≤ 1 and let µ = E[X1] + · · · + E[Xm]; then for

any β ≥ 0, Pr[
∑m
i=1Xi≥(1+β)µ]≤exp(− β2

2+β
µ).
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Let κ = (σ, S) be any 2-structure in F and consider the following way of labeling
the forks and singletons of κ with partial assignments:

• Let π : u 7→ {xi, xj} be a fork in κ with i < j. Label π with an assignment
to {xi, xj} chosen as follows: either set xi to satisfy the clause u and set xj
arbitrarily or set xj to satisfy the clause u and set xi arbitrarily.

• Label each singleton xi in κ with an arbitrary assignment to xi.
Notice that for both forks and singletons, for every variable xi covered there is at
least one possible label which sets xi 7→ 1 and one label which sets xi 7→ 0.

Let L be an assignment of such a label to every fork and singleton in κ. All
the labels in L have disjoint domains. Hence we can use L to define a piecewise
assignment α as the set of all labels chosen for the forks in κ together with all labels
chosen for the singletons of κ. Then in particular ‖α‖ = |κ| and α satisfies every
clause C covered by κ. We take H to consist of every piecewise assignment α which
arises in this way from a 2-structure κ ∈ F and a labeling L of κ.

We now need to show that H satisfies Definition 2.1. It is clearly nonempty. For
the downward closure, observe that given two piecewise assignments β v α, if α ∈ H,
then there is some κ ∈ F such that α is a labeling of κ. We can obtain β from α
by removing some pieces from α. Let κ′ be the 2-structure obtained by removing the
corresponding forks and singletons from κ. Then β is a labeling of κ′ and κ′ ∈ F by
the retraction property for F . Hence β ∈ H.

For the consistency property, suppose for a contradiction that some α ∈ H falsifies
a clause C of ϕ. By the downward closure of H proved above, we may assume without
loss of generality that ‖α‖ ≤ k by removing any pieces of α which do not mention
a variable in C and remembering that |C| = k. The piecewise assignment α arises
as a labeling of some 2-structure κ ∈ F which cannot cover C, since otherwise α by
construction would satisfy C. Since |κ| = ‖α‖ ≤ k < δn for large n, by the extension
property for F we can extend κ to a 2-structure κ′ in F which does cover C and thus
contains some fork π : C 7→ {xi, xj}. Then in particular the variable xi appears in C
but is not in the domain of α, contradicting the assumption that α falsifies C.

For the extension property, suppose that α ∈ H is a labeling of κ ∈ F with
|κ| < δn, and let xi be any variable not in the domain of α. Then xi is not covered
by κ. By the extension property for F , we can extend κ to a 2-structure κ′ ∈ F
by adding either a fork or a singleton which covers xi, and by the properties of our
labelings we can extend α to a labeling α′ of κ′ which sets xi to whichever value we
choose.

6. The graph pigeonhole principle. Let G = (U ∪ V,E) be a bipartite graph
with |U | > |V |. We think of U as a set of pigeons and V as a set of holes. The formula
G-PHP, the graph pigeonhole principle for G, is an unsatisfiable CNF in variables
{xuv : (u, v) ∈ E}. It asserts that the variables describe a map, given by a subset of
the edges of G, in which each pigeon gets mapped to at least one hole but no hole
receives two pigeons. Formally, it is a conjunction of all clauses

1.
∨
{xuv : (u, v) ∈ E} for each u ∈ U ,

2. ¬xuv ∨ ¬xu′v for each distinct pair of edges (u, v) and (u′, v) in E.
We will call these clauses respectively the pigeon axioms and the hole axioms. Notice
that if G has left-degree d, then G-PHP is a d-CNF. We will write Xv for the set of
variables representing the edges touching the hole v.

Restated Theorem 1.2. Let d ≥ 4 and ∆ > 1. There is a constant c > 0 such
that, for large n, if G is a random graph chosen from the set of bipartite graphs with
left-degree d with ∆n pigeon nodes on the left and n hole nodes on the right, then with
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high probability any resolution refutation of G-PHP passes through a configuration
containing cn clauses of width at least cn.

Proof. The proof of this result closely follows the pattern of the proof of Theo-
rem 1.1. By Lemma 4.14 there is a constant δ such that with high probability there
exists a δn-covering family F of 2-structures on G. We will construct from such an F
a family H of piecewise assignments that is δn-free for G-PHP. The result follows by
Theorem 2.4.

Let κ = (σ, S) be any 2-structure in F and consider the following way of labeling
the forks and singletons of κ:

• Label each fork π : u 7→ {v, v′} in κ with an assignment απ to Xv∪Xv′ chosen
as follows: order the holes v, v′ arbitrarily as v1, v2. Map pigeon u to hole v1

and set the remaining variables in Xv1 to zero. Either choose any pigeon
u′ ∈ N(v2) and map it to hole v2 (we allow u′ = u), setting the remaining
variables in Xv2 to zero, or simply set all variables in Xv2 to zero.

• Label each singleton v in κ with an assignment αv to Xv chosen as follows:
either choose any pigeon u ∈ N(v) and map it to v, setting all other variables
in Xv to zero, or simply set all variables in Xv to zero.

Notice that in both cases, for every pigeon v covered and every variable x ∈ Xv, there
is at least one label which sets x 7→ 1 and one label which sets x 7→ 0.

As in the proof of Theorem 1.2, we can label κ with a piecewise assignment α
arising from our choice L of labels for the parts of κ. Notice that ‖α‖ = |κ|, that α does
not violate any hole axiom, and that α satisfies the pigeon axiom for each pigeon u
covered by κ. We take H to consist of every piecewise assignment α which arises in
this way from any κ ∈ F and any labeling L of κ. We now need to show that H
satisfies Definition 2.1.

Clearly H is nonempty. The downward closure and consistency properties follow
exactly as in Theorem 1.1, using the observation that no α ∈ H falsifies any hole
axiom. For the extension property, suppose that α ∈ H is a labeling of some 2-
structure κ ∈ F with ‖α‖ = |κ| < r, and let x be any variable not in the domain
of α. Then x must be in Xv for some hole v which is not covered by κ. By the
extension property for F , we can extend κ to a 2-structure κ′ ∈ F by adding either
a fork or a singleton which covers v. By the freedom in our choice of labelings, there
is an extension β0 of α to a labeling of κ′ which sets x to zero, and another such
extension β1 which sets x to one.

An alternative version of this theorem would be to show a total space lower bound
for G-PHP for all bipartite expanders of left-degree d with a suitable bound on the
right-degree (rather than for random graphs), applying Lemma 4.12 directly to get
the covering family of 2-structures.

7. Semantic total space. In this section we address a question raised in [1].
The space bounds in that paper hold not only for the usual versions of the proof
systems considered but also for semantic versions of the systems. In particular a
semantic resolution refutation of a CNF ϕ is a sequence of configurations where,
at each step in the refutation, we can either add an axiom from ϕ to the current
configuration Mi or replace Mi with any configuration Mi+1 with the property that
every clause in Mi+1 is implied by Mi.

In [1] the authors show that for any unsatisfiable CNF ϕ, the clause space required
to refute ϕ in resolution is no more than twice the clause space required in semantic
resolution, and they ask whether the same thing is true for total space.
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It follows from our lower bounds that, for total space, resolution can require
quadratically more space than semantic resolution. In particular, let ϕ be an unsat-
isfiable random k-CNF with n variables and clause density ∆, where n is large. We
can refute ϕ in semantic resolution by simply writing down all the clauses of ϕ and
then deriving the empty clause in one step. This uses total space ∆kn, the size of ϕ.
But by Theorem 1.1, a resolution refutation of ϕ requires total space Ω(n2).

On the other hand, the proof of Theorem 2.4 does not depend very much on
the details of the syntax of the resolution rule. The theorem generalizes easily to give
lower bounds for a weak form of semantic resolution, with the following inference rule:
from a configuration Mi we can move to a configuration Mi∪{C}, where the clause C
is implied by some set of at most d clauses in Mi, for a fixed integer d. Calling this
system d-bounded semantic resolution, we have the following theorem.

Theorem 7.1. Let ϕ be an unsatisfiable CNF formula and suppose d ≤ r. If
there is a family of piecewise assignments which is r-free for ϕ, then any d-bounded
semantic resolution refutation of ϕ must pass through a configuration containing at
least (r − d)/2 clauses each of width at least (r − d)/2.

Proof. The proof is the same as for Theorem 2.4, except that we replace the
bound r/2 with (r−d)/2 and use a different argument for the inference case, as follows.
Suppose Mi+1 = Mi ∪ {E}, where E is implied by clauses D1, . . . , Dd ∈ Mi. Since
‖α‖ < (r−d)/2 and |Mi∩S| < (r−d)/2 we may assume that ‖βi‖ ≤ ‖α‖+ |Mi∩S| <
r − d.

Either D1 is satisfied by βi or it is not. If it is, let γ1 = βi. If not, then D1 cannot
be in S, since βi satisfies all members of Mi ∩ S. It follows that D1 is not falsified
by βi either and thus must contain some literal not set by βi. In this case let γ1 ∈ H
be a minimal extension of βi which satisfies this literal.

We have found γ1 ∈ H which satisfies D1 with βi v γ1 and ‖γ1‖ < r − d+ 1.
Applying the same reasoning to D2, . . . , Dd in turn, we can build a sequence of ex-
tensions γ1 v γ2 v · · · v γd in H, finishing with γd which satisfies each of D1, . . . , Dd

and thus also satisfies E. We put βi+1 = γd.

Finally, in [1] the notion of an r-semiwide formula is defined, and it is shown that
any such formula requires clause space r in semantic resolution. We can strengthen
this, to show that such a formula also requires total space r2/4 in semantic resolution,
by a straightforward generalization of the total space lower bounds in [1] for PHPn
and CTn. For a CNF Z and a partial assignment α, we say that α is Z-consistent
if α can be extended to satisfy Z.

Definition 7.2. A CNF formula ϕ is r-semiwide if it is the conjunction of a CNF
Z and a CNF W , where Z is satisfiable, and for each Z-consistent partial assignment
α and each clause C from W , if |α| < r, then α can be extended to a Z-consistent
assignment which satisfies C.

Theorem 7.3. Let ϕ be an unsatisfiable r-semiwide formula. Then every seman-
tic resolution refutation of ϕ must pass through a configuration containing r/2 clauses
each of width at least r/2.

Proof. Let ϕ = Z ∧ W as in Definition 7.2 and let Π = (M1, . . . ,Ms) be a
refutation of ϕ. Let M∗i = {C ∈ Mi : Z 6|= C}. Take the first t such that there
exists a clause C ∈ M∗t of width strictly less than r/2. Fix such a clause C and
let α be the minimal partial assignment falsifying α. Then α is Z-consistent and
|dom(α)| = |C| < r/2.
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It is now enough to show that |M∗i | ≥ r/2 for some i < t, since for i < t every
clause in |M∗i | has width at least r/2. So suppose for a contradiction that |M∗i | < r/2
for all i < t. We prove by induction that for each i = 1, . . . , t there exists some
Z-consistent βi ⊇ α such that βi |= M∗i . This leads immediately to a contradiction
when i = t.

For the erasure case we trivially put βi+1 = βi. For semantic inference, that is,
Mi |= Mi+1, we let βi+1 be an extension of βi which satisfies Z. Then from the
fact that βi+1 |= M∗i ∧ Z it follows that βi+1 |= Mi and hence βi+1 |= Mi+1. For
axiom download, suppose Mi+1 = Mi ∪ {D} with D a clause from W . We may
assume without loss of generality that |dom(β)| ≤ |dom(α)| + |M∗i | < r. Hence by
r-semiwideness there is a Z-consistent βi+1 ⊇ βi such that βi+1 |= D.
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