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A Strong Exponential Time Hypothesis lower bound for resolution has the form 2(1−εk )n for 
some k-CNF on n variables such that εk → 0 as k → ∞. For every large k we prove that 
there exists an unsatisfiable k-CNF formula on n variables which requires resolution width (
1 − Õ (k−1/3)

)
n and hence tree-like resolution refutations of size at least 2

(
1−Õ (k−1/3)

)
n . 

We also show that for every unsatisfiable k-CNF ϕ on n variables, there exists a tree-like 
resolution refutation of ϕ of size at most 2

(
1−�(1/k)

)
n .

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Exponential Time Hypothesis (ETH) formulated by 
Impagliazzo and Paturi [6] states that the SAT problem 
requires exponential time. They also gave a strengthen-
ing of this, the so-called Strong Exponential Time Hypothesis
(SETH) which states that the complexity of k-SAT grows 
as k increases and it approaches that of exhaustive search. 
More precisely let σk = inf{δ : k-SAT can be solved in time
O (2δn)}. SETH states that limk→∞ σk = 1.

Of course these are both stronger than NP �= P and 
hence any proof is far beyond reach at the moment. How-
ever since the running times of the best known k-SAT al-
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gorithms have the form 2(1−εk)n where εk → 0 as k → ∞
(see e.g. [9]), one can ask whether SETH holds for specific 
algorithms, that is whether there are k-CNF instances on 
which the algorithms run for at least 2(1−εk)n steps. This 
turns out to be the case for certain classes of algorithms. 
For the PPSZ algorithm such a lower bound was proved by 
Chen et al. [5]. For DPLL the connection with resolution 
complexity has been used to derive SETH lower bounds: 
indeed it is well known that a run of a DPLL algorithm on 
an unsatisfiable k-CNF gives a tree-like refutation, there-
fore a tree-like resolution refutation lower bound would 
imply a DPLL running time lower bound. Pudlák and Im-
pagliazzo [8] constructed unsatisfiable k-CNF formulas that 
require tree-like resolution refutations of size �(2(1−εk)n)

where εk = O (1/k1/8). A recent construction by Beck and 
Impagliazzo [3] improves this to εk = Õ (1/k1/4), where the 
Õ notation is hiding log factors.

In this paper we clarify and simplify the result in [3]
making a further improvement to εk = Õ (1/k1/3). Our 
main contribution is an improvement of a strong width 
lower bound first proved in [3], where it was shown 
that there are k-CNFs in n variables which require Reso-
lution width at least (1 − Õ (1/k1/4))n. We improve this 
lower bound to (1 − Õ (1/k1/3))n which combined with the 
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width-size relationship of Ben-Sasson and Wigderson [4]
we immediately get the tree-like size lower bound. One 
can also ask how far this improvement can go. Using the 
Switching Lemma, we can show that for every unsatisfiable 
k-CNF on n variables, there exists a tree-like resolution 
of size at most 2

(
1−�(1/k)

)
n (Theorem 2.2). A similar ar-

gument was used by Miltersen et al. [7] to prove upper 
bounds on the size of decision trees for k-CNF’s. However, 
we are not aware of any adaptation of this in the proof 
complexity literature and will hence present a formal ac-
count of this observation.

Relation to [3] As already said this paper simplifies and 
improves the results from Beck and Impagliazzo [3]. In 
both papers the lower bounds are proven for a family 
of CNF formulas encoding unsatisfiable linear systems of 
equations over Fp with a certain kind of expansion prop-
erty (Definition 3.1 and Proposition 3.2). The main tech-
nical difference is in the way such linear systems are en-
coded using boolean variables. Our encoding is more ef-
ficient from the point of view of the number of boolean 
variables used and this is essentially the reason for the 
improved lower bounds (Definition 3.4). The main techni-
cal improvement over [3] is Lemma 3.3. Our width lower 
bound (Theorem 3.5) is a modification of the analogue of 
Theorem 5.5 of [3]. Then, for tree-like resolution, our SETH 
size lower bound (Corollary 3.6) will follow immediately 
from the size-width relationship of [4]. In [3] is shown that 
SETH lower bounds hold for regular resolution, a proof sys-
tem exponentially stronger than tree-like resolution. Their 
proof relies essentially on the properties of the linear sys-
tem of equation over Fp , which is exactly the same we use, 
and not on the encoding of such system as a CNF formula. 
Hence such proof still holds with the new encoding and 
our improvement from εk = Õ (1/k1/4) to εk = Õ (1/k1/3)

still carry on for regular resolution using their proof.

Notations Resolution (RES) is one of the most fundamen-
tal and extensively studied proof systems. Using this proof 
system one can refute unsatisfiable CNF formulas using the 
following inference rule

C ∨ x D ∨ ¬x

C ∨ D
,

where C and D are disjunctions of literals and x is some 
variable. Every resolution refutation induces a DAG in the 
following way. There is a node for each clause appearing 
in the proof and every such node will be connected by an 
edge to the nodes corresponding to the two clauses from 
which this clause was derived. Given a formula ϕ we de-
note a RES refutation of ϕ using the notation ϕ �π ⊥.

Tree-like resolution (treeRES) refers to a subclass of res-
olution for which the induced DAG is in fact a tree. Let C
be a clause, the width of C , |C |, is the number of literals 
appearing in C . The resolution width of a formula ϕ de-
noted by width(ϕ � ⊥) is the minimum of the width of the 
largest clause appearing in any resolution refutation of ϕ , 
more formally

width(ϕ � ⊥)

:= min max{|C | : ϕ �π ⊥ and C appears in π}.

π

A restriction on a set of variables X is a mapping ρ :
X → {0, 1, 	}. We call a variable unfixed by ρ if it is as-
signed 	, and we call it fixed otherwise. The domain of ρ , 
denoted by domρ , is the set of variables fixed by ρ and 
|ρ| := | dom(ρ)|. For a function f , we define f |ρ to be the 
function after setting values to the fixed variables accord-
ing to ρ . A random restriction leaving 
 variables free can 
be obtained as follows: first pick a subset S of the vari-
ables of size |X | − 
 uniformly at random, then set each 
x ∈ S to either 0 or 1 with equal probability.

2. Size upper bound

A decision tree for an unsatisfiable k-CNF ϕ is a binary tree 
where inner nodes are labeled with variables from ϕ and 
leaves are labeled with clauses from ϕ . Each path in the 
tree corresponds to a partial assignment where a variable x
gets the value 0 or 1 according whether the path branches 
left or right at the node labeled with x. The condition on 
the tree is that each clause on the leaves is falsified by the 
partial assignment given by the path reaching the clause. 
Decision trees for an unsatisfiable k-CNFs corresponds to 
treelike Resolution refutations (see e.g. [2]).

Following Beame [1] we define the canonical decision 
tree. Given a CNF ϕ = ∧

i Ci consider an ordering of the 
variables and an ordering of the clauses. The canonical de-
cision tree of ϕ , denoted by T (ϕ), is inductively defined as 
follows: look at the first clause C of ϕ according to the or-
dering and assume ϕ = C ∧ϕ′ . Then do a full decision tree 
on the variables of C respecting the order of the variables, 
i.e. along each path from the root to leaves the order on 
which the variables are appearing is compatible with the 
fixed ordering of the variables. To the leaf corresponding 
to the restriction which falsifies C , we assign C . For other 
leaves corresponding to restriction σ , we replace the leaf 
with T (ϕ′|σ ). Notice that canonical decision trees in [1] are 
defined for general CNFs, but we can adopt them for the 
unsatisfiable setting. The following variant of the Switch-
ing Lemma is due to Beame [1].

Lemma 2.1 (Switching Lemma). Let ϕ be a k-CNF on n vari-
ables. Let ρ be a random restriction chosen uniformly at random 
from the set of all restrictions that leave exactly 
 variables un-
set, with 
 ≤ n

7 . The probability that the canonical decision tree 

of ϕ|ρ has depth bigger than d is at most 
(

7k

n

)d
.

Theorem 2.2. For any unsatisfiable k-CNF ϕ on n variables

sizetreeRES(ϕ � ⊥) ≤ 2
(
1−�( 1

k )
)
n.

Proof. We follow an argument due to Miltersen et al. [7]
who showed that every k-CNF has a decision tree repre-

sentation of size 2
(
1−�( 1

k )
)
n and adjust it to the unsatisfi-

able setting. We set 
 = n/14k. By the Switching Lemma, 
for a 1 − 2−d fraction of restrictions σ with |σ | = n −
, we 
know that the depth of T (ϕ|σ ) is at most d.

Then, by an averaging argument, there exists a sub-
set S of the variables of ϕ with |S| = n − 
 such that the 
same statement holds for all restrictions fixing variables 
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only in S , that is for at least 1 − 2−d of the assignments σ
setting exactly the variables in S , T (ϕ|σ ) is at most d.

We can construct a decision tree for ϕ as follows: first 
we do a full decision tree on variables in S; then for 
each leaf with the corresponding restriction σ , we append 
T (ϕ|σ ) to that leaf. The number of leaves of this tree is 
upper bounded by

2d2n−
 + 2−d2n−
2
,

since at most a 2−d fraction of the leaves of the full deci-
sion tree on S can have maximal depth 2
 . Setting d := 
/2
the number of leaves of the tree is upper bounded by 
2n− 


2 +1 = 2
(
1−�( 1

k )
)
n . Hence the required upper bound on 

the size of the decision tree constructed. Since decision 
trees correspond to treelike resolution refutations we have 
the desired upper bound on the size of treelike refutations 
of ϕ . �
3. Size lower bound

Let v = (v1, v2, . . .) be a vector over Fp , then by 
supp(v) we denote the indices of v with non-zero entries, 
that is supp(v) := {i : vi �= 0 mod p}.

In what follows we construct a system of linear equa-
tions over Fp . Let m be the total number of equations, 
n the total number of variables. We use the letter E , with 
subscripts, to denote linear equations mod p, that is ex-
pressions of the form∑

j

a j z j = b mod p,

with a j, b ∈ Fp . We denote with supp(E) the set of indices 
j having non-zero a j s.

Definition 3.1 ((α, β, γ )-expander). Let α, β, γ ∈ R≥0,
m, n ∈ N and E := {E1, . . . , Em}, a set of m linear equa-
tions over Fp . We say that E is an (α, β, γ )-expander if 
and only if

∀v ∈ F
m
p , α ≤ | supp(v)| ≤ β ⇒

∣∣∣ supp
( m∑

i=1

vi Ei
)∣∣∣ ≥ γ .

The previous definition is essentially the same from [3]
and the next proposition is a particular case of Lemma 4.2 
from [3].

Proposition 3.2. Let p a sufficiently large prime. There exists a 
set E := {E1, . . . , En+1} of linear equations in n variables over 
Fp such that:

1. E is unsatisfiable,
2. for each Ei ∈ E | supp(Ei)| ≤ p2 ,
3. E is (δn, 3δn, (1 − cθ)n)-expander, where δ = O (1/p), 

θ = Õ (1/p) and c is a constant,
4. no subset of at most 3δn equations from E is unsatisfiable.

In [3] they encode each variable of the set of linear 
equations from Proposition 3.2 using a sum of roughly p2

boolean variables and show that with this encoding the 
linear system requires very large resolution width.
The key property of this representation used in the 
proof is the following: let z = ∑p2

i=0 xi , where xi are 
boolean variables. Even setting a lot of variables (i.e. 
p2 − p) we still can obtain all possible Fp values for z
setting the remaining variables.

In other words what Beck and Impagliazzo really re-
quire is a function that can extract log p bits even after 
many bits in the input are fixed. Our contribution is thus 
to show that a random function satisfies this property 
(Lemma 3.3), and we use this function instead of the sum 
of p2 boolean variables used by Beck and Impagliazzo. The 
arguments of [3] still goes through (Theorem 3.5). Beck 
and Impagliazzo use roughly p2 bits for each Fp variables, 
whereas with our construction we only require around p
bits and hence we get the improvement.

The following lemma is then the main technical im-
provement over the construction in [3].

Lemma 3.3. Let θ and p be the parameters coming from 
Proposition 3.2. Then there exists a function g : {0, 1}θ−1 log2 p

→ {0, 1}log p such that for any restriction σ with |σ | ≤
θ−1 log2 p − log2 p we have Img(g|σ ) = {0, 1}log p .

Proof. Let u := θ−1 log2 p and g be random function that 
assigns to every x ∈ {0, 1}u a value in {0, 1}log p indepen-
dently and uniformly at random. We bound the probability 
that there exist a y ∈ {0, 1}log p and a restriction σ with 
|σ | = u − log2 p such that y /∈ Img(g|σ ). This is easily given 
as follows

Pr[∃y,σ : y ∈ {0,1}log p, |σ | = u − log2 p, y /∈ Img(g|σ )]
≤ p

(
u

log2 p

)
2u−log2 p(1 − 1/p)2log2 p = o(1),

since u = Õ (p). Then clearly we have that there must exist 
at least one function g realizing the complementary event 
that we bounded. Such function works also for each σ
such that |σ | ≤ u − log2 p. �

Let {z1, . . . , zn} be a set of variables taking values over 
Fp . The function g : {0, 1}θ−1 log2 p → {0, 1}log p obtained 
from Lemma 3.3 can be used to define each variable 
zi over Fp using u = θ−1 log p new boolean variables 
xi1, . . . , xiu :

zi =
log p∑
j=1

2 j−1 g j(xi1, . . . , xiu), (1)

where g j represents the j-th coordinate of g . Hence a lin-
ear equation mod p in n variables, say∑

i

ai zi = b mod p,

can be transformed into a boolean function using equa-
tion (1) using N := nu = nθ−1 log2 p boolean variables xij :

n∑
aij

log p∑
2k−1 gk(xi1, . . . , xiu) = bi mod p
j=1 k=1
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Moreover if | supp(a1, . . . ,an)| ≤ d then the boolean en-
coding of this function as a CNF turns out to be a (du)-CNF. 
More precisely we have the following definition.

Definition 3.4. Take the set E := {E1, . . . , En+1} of linear 
equations in n variables over Fp from Proposition 3.2. Let 
Ei be the linear equation 

∑n
j=1 aij z j = bi mod p with 

aij, bi ∈ Fp . Replacing each z j with the expression given 
in (1) we obtain a boolean function

Eb
i :=

n∑
j=1

aij

log p∑
k=1

2k−1 gk(xi1, . . . , xiu) = bi mod p.

The CNF formula ϕ we will consider is the encoding of the 
following boolean function:

ϕ :=
m∧

i=1

Eb
i .

Note that since for each i we have | supp(Ei)| ≤ p2, ϕ is a 
(p2θ−1 log2 p)-CNF in N := nθ−1 log2 p variables.

Let E b := {Eb : E ∈ E } and μ(C) := min{|S| : S ⊆
E b ∧ S |= C}. We say that a clause C has medium complexity 
w.r.t. μ iff μ(C) ∈ ( 3

2 δn, 3δn], with δ the parameter coming 
from Proposition 3.2.

The proof of the following theorem is similar to the 
analogous result in [3].

Theorem 3.5. Let ϕ be the unsatisfiable CNF coming from Defi-
nition 3.4, μ as above and let C be a clause over the xij variables 
of medium complexity w.r.t. μ then

width(C) ≥ (1 − (c + 1)θ)N,

where c and θ are as in Proposition 3.2.

Proof. Let C be a clause of medium complexity, that is 
μ(C) ∈ ( 3

2 δn, 3δn] and by contradiction width(C) < (1 −
(c + 1)θ)N . Take the minimal restriction ρ setting C to ⊥, 
then |ρ| = width(C).

We say that a variable zi is free if and only if

|domρ ∩ {xi1, . . . , xiu}| ≤ u − log2 p.

First we prove that there are at least cθn free variables.
Let Z be the number of zi variables that are free. We 

have an upper bound for the number of xij variables non-
assigned by ρ:

(c + 1)θ N < N − width(C) ≤ (n − Z)(log2 p) + u Z .

Hence

cθ N + θ N < n log2 p − Z log2 p + u Z .

Now if Z ≤ cθn a contradiction follows immediately recall-
ing that N = un and θ N = n log2 p.

An extension of ρ to all the xij variables for i such that 
zi is not free induces a restriction over the zi variables 
mapping them in Fp : let ρ∗ denote such an extension. We 
look at it both as a restriction over the xij variables or a 
restriction (taking values in Fp ) over the zi variables.
So the zi variables that are free are exactly, by con-
struction, the ones unfixed by ρ∗ . As observed we have 
that the number of free variables is at least cθn and hence 
|ρ∗| ≤ n − cθn = (1 − cθ)n.

As C is of medium complexity, there exists some set of 
equations S ⊆ E b such that S |= C , |S| ∈ ( 3

2 δn, 3δn] and S
is minimal w.r.t. inclusion.

This implies that for each possible ρ∗ of the form de-
scribed above, {S|ρ∗ } is unsatisfiable. Moreover, by mini-
mality of S , for each equation E ∈ S there exists some ρ∗
such that E|ρ∗ is not an empty constraint.

The fact that, for each ρ∗ we have that S|ρ∗ is unsatisfi-
able means exactly that for all ρ∗ there exists some v ∈ F

m
p

(dependent on ρ∗) with | supp(v)| ≤ |S| and 
∑

i vi Ei |ρ∗
is unsatisfiable. Hence for each such ρ∗ supp(

∑
i vi Ei) ⊆

dom(ρ∗), otherwise we could use the variables unfixed 
by ρ∗ to satisfy 

∑
i vi Ei . Let Eρ∗ := ∑

i vi Ei |ρ∗ (where v
depends on ρ∗).

Take a random linear combination of all the Eρ∗
for 

all the possible ρ∗: 
∑

ρ∗ αρ∗ Eρ∗
. Again we have that 

supp(
∑

αρ∗ Eρ∗
) ⊆ ⋃

ρ∗ dom(ρ∗).
Each Ei from S appears in this sum and its coefficient 

is uniformly random, and hence by averaging, there exists 
a linear combination such that at least (1 − 1/p) 3

2 δn ≥ δn
of the Ei have non-zero coefficient. But this contradicts the 
expansion property as we have that | supp(

∑
ρ∗ αρ∗ Eρ∗

)| ≤
| ⋃ρ∗ dom(ρ∗)| = (1 − cθ)n. �
Corollary 3.6. For any large enough k ∈ N there exists an un-
satisfiable CNF ϕ in N variables such that

• ϕ is a k-CNF;

• sizetreeRES(ϕ � ⊥) ≥ 2(1−Õ (k−1/3))N .

Proof. Let ϕ be the unsatisfiable CNF formula coming from 
Definition 3.4. Recall that ϕ is a (p2θ−1 log2 p)-CNF in 
N := nθ−1 log2 p variables, where θ = Õ (1/p). We have 
that if C, D |= E then μ(E) ≤ μ(C) + μ(D) and hence 
in each possible refutation of ϕ there will be a clause 
of medium complexity. Hence from the previous Theo-
rem we have that width(ϕ � ⊥) ≥ (1 − Õ (1/p))N . Hence 
width(ϕ � ⊥) = (1 − Õ (k−1/3))N where k = p2θ−1 log2 p
is the width of ϕ . Then by the width-size relationship 
from [4] we have the size lower bound for treelike Res-
olution. �
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