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Abstract
Given an unsatisfiable k-CNF formula ϕ we consider two complexity measures in Resolution:
width and total space. The width is the minimalW such that there exists a Resolution refutation
of ϕ with clauses of at most W literals. The total space is the minimal size T of a memory used
to write down a Resolution refutation of ϕ, where the size of the memory is measured as the
total number of literals it can contain. We prove that T = Ω((W − k)2).
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1 Introduction

Resolution is a well known propositional proof system introduced by Blake in [16] and
proposed by Robinson in [38] for automated theorem proving. Since then this proof system
became the most studied proof system in the sub-area of complexity theory that is Proof
Complexity. Given a set of clauses ϕ, that is a set of disjunctions of literals or, equivalently,
given a formula in Conjunctive Normal Form, Resolution is a method to infer new clauses
according to the following inference rule:

C ∨ x D ∨ ¬x
C ∨D

, (1)

where C,D are clauses and x is a variable. Resolution is sound and complete, that is it is
possible to derive the empty clause ⊥ if and only if ϕ is unsatisfiable. A Resolution refutation
of ϕ is then just a sequence of clauses C1, . . . , C` with C` = ⊥ and each clause of the sequence
is either a clause from ϕ or it is inferred by previous clauses in the sequence according to the
inference rule in equation (1).

Nowadays, the main reason for the interest in Resolution comes from a practical per-
spective: it is at the core of most of the state-of-the-art SAT solvers since the introduction
of the DPLL algorithm [22, 23] and its improvements, the so called Conflict Driven Clause
Learning (CDCL) algorithms [4, 32, 40]. The track of the running of such algorithms on
unsatisfiable instances produces a (particular form of) Resolution proofs. Hence Resolution
is a valuable tool to study their performances and limitations. In this work we are interested
in more theoretical questions about the Resolution proof system and the reader interested
in more details on the connections between Resolution and SAT solvers could look at the
recent survey [35].

∗ The author was was partially funded by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement no. 279611. A full version of
this paper is available online on ECCC [18].
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2 Width and total space in resolution

Given an unsatisfiable ϕ we are interested in measuring how complex a Resolution proof of
ϕ must be. Certainly there are many ways of measuring the complexity of proofs and in this
work we are interested in connecting two of such measures. The main complexity measure we
can associate to ϕ in Resolution, and by far the most important, is the minimal length of a
Resolution refutation of ϕ. This measure is denoted with size(ϕ ` ⊥) and, since a long time
now, we know that there are certain formulas ϕn requiring exponentially long proofs, e.g.
the encodings of the Pigeonhole Principle [28] or Tseitin formulas [39, 42]. Another, easier to
study, complexity measure is the width. Suppose that we focus on Resolution refutations
of a formula ϕ with clauses up to a certain length w. The minimal w such that we have a
refutation of ϕ with clauses of length at most w is the width, width(ϕ ` ⊥). We have a trivial
upper bound connecting size and width, that is for every set of clauses ϕ in n variables

size(ϕ ` ⊥) 6 nO(width(ϕ`⊥)),

and indeed this trivial bound could be asymptotically tight, cf. [3]. Another, more useful,
connection between width and size is the following result from the seminal paper by Ben-
Sasson and Wigderson [12]:

log2 size(ϕ ` ⊥) > (width(ϕ ` ⊥)− k)2

16n , (2)

where ϕ is a collection of clauses over n variables and each of them has at most k literals. Hence,
if width(ϕ ` ⊥) = ω(

√
n logn) then, immediately by the previous inequality, size(ϕ ` ⊥) is

super-polynomial. Moreover this size-width inequality is essentially optimal [21].
Regarding the space complexity of proofs, its investigation was proposed in 1998 by

Armin Haken as a natural analogue of the space complexity in the context of Turing machines
and the first definitions of space measures in Resolution were given in [25, 1]. When talking
about space, Resolution proofs are seen as a sequence of memory configurations M0, . . . ,M`,
where each Mi is a set of clauses, ⊥ ∈M` and each Mi+1 derive from Mi in one of the two
following ways:
Axiom download Mi+1 ⊆Mi ∪ {C}, where C ∈ ϕ;
Inference Mi+1 = Mi ∪ {D ∨ E}, where both D ∨ x and E ∨ ¬x belong to Mi, for some

variable x.
We then have some notions of how “spacious” a memory configuration can be. The most
natural space measure for a memory configuration is of course the number of bits needed
to write down it. Unfortunately it turns out that this notion of space is quite hard to
study and hence some alternative notions of space were introduced [25, 1]. For example, the
clause space of a memory configuration is the number of distinct clauses it can contain. The
total space1 of a memory configuration instead is the total number of literals it can contain.
The minimal s such that we have a refutation of ϕ with memory configurations with total
space at most s is the Total Space (needed to refute ϕ), TSpace(ϕ ` ⊥). Similarly for the
clause space we obtain CSpace(ϕ ` ⊥). A more formal definition of TSpace(ϕ ` ⊥), to avoid
misunderstandings, is provided in Section 2.

We now recall some known results about space complexity measures. Given any unsatis-
fiable set of clauses ϕ in n variables, in [25] it was proven that

CSpace(ϕ ` ⊥) 6 n+ 1,

1 In [1] this space complexity measure is called variable space, but we follow [10, 9, 33, 11, 34] in calling
it total space. This is due to distinguish it from a different space complexity measure in which different
occurrences of the same variable are not counted, the variable space, investigated for instance in [43].
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and, as a trivial consequence, we have that

TSpace(ϕ ` ⊥) 6 n(n+ 1).

Both upper bounds are asymptotically tight, for example for random k-CNF formulas [8, 20].
Regarding lower bounds, in [2] it is proved that

CSpace(ϕ ` ⊥) > width(ϕ ` ⊥)− k + 1, (3)

where ϕ consists of clauses of at most k literals. Clearly TSpace(ϕ ` ⊥) > CSpace(ϕ ` ⊥)
and whenever TSpace(ϕ ` ⊥) = ω(CSpace(ϕ ` ⊥)) we say to have a non-trivial total space
lower bound.

The total space measure was introduced in [1] and there the first non-trivial lower
bounds were proven, for two particular class of formulas the Complete Tree formulas and
the Pigeonhole Principle formulas. After that, in [20] it was introduced a technique to prove
total space lower bounds in Resolution. That technique was sufficiently strong to prove
asymptotically optimal total space lower bounds for instance for random k-CNFs [20, 13]
but the proofs given there are quite long and involved. This paper, as a corollary, deeply
simplify such proofs. Space complexity measures are also studied concerning trade-offs with
other complexity measures, see for example [9, 36, 11, 34, 7, 5].

1.1 Contributions
This work is about proving an analogue of the inequality in (3) for the total space. This will
add a nice bit to our knowledge of the lattice of relations between complexity measures in
Resolution; it will simplify the proofs of existing total space lower bounds and it will imply
new non-trivial total space lower bounds.

I Theorem 1.1. Let ϕ be a k-CNF formula, then

TSpace(ϕ ` ⊥) > 1
16 (width(ϕ ` ⊥)− k − 4)2

.

The general idea of the proof is the following: given a Resolution refutation, we identify
a memory configuration where some small clause appear and then show that before that
moment there must have been some memory configuration with a lot of clauses (and hence
with large total space). This idea was originally used in [1] in some particular cases and in
more generality in [20]. Indeed the proof we show has some close structural similarities with
the total space lower bound from [20] and essentially it is a simplification of the proof of
Theorem 2.5 from the author’s PhD. Thesis [17]. The proof we give is not direct since it
involves another, less studied, complexity measure: the asymmetric width, awidth(ϕ ` ⊥),
and families of assignments closely related to it. The asymmetric width was introduced in
[29, 30] and the definition is quite technical so we defer it to Section 2 where we collect all
the preliminary definitions and notations. The proof of Theorem 1.1 is purely combinatorial
and implicitly uses some properties from a characterization of the asymmetric width from
[15], cf. Section 3 for more details, together with a result tightly connecting the width and
the asymmetric width, Theorem 2.1 (Lemma 8.5 from [29]).

Although defined quite differently, asymmetric width and width indeed share many
properties. For instance, an analogue of the size-width inequality by Ben-Sasson and
Wigderson [12]: given an unsatisfiable CNF formula ϕ in n variables

ln (size(ϕ ` ⊥)) > awidth(ϕ ` ⊥)2

8n ,
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cf. Theorem 6.12 of [31]. For more information and history on the asymmetric width we refer
to [15].

1.2 Examples of applications (and limitations) of Theorem 1.1
Since the seminal work of Ben-Sasson and Wigderson [12], the width measure has become
one of the main tool to study Resolution proofs and their complexity. Hence we already have
many relevant width lower bounds for many interesting class of formulas and then the range
of applications of Theorem 1.1 is quite large. Below we recall some relevant examples.

Tseitin formulas. Given a d-regular graph G over n vertices, the Tseitin formula over G,
Tseitin(G), is a CNF formula over dn/2 variables based on a propositional encoding of the
fact that the total degree in any graph is even, see for example [12] for a formal definition.
Such formulas were used by Tseitin to prove the first super-polynomial size lower bound
for Resolution size [41]. Since then, Tseitin formulas became one of the standard tools in
proof complexity to prove lower bounds and trade-offs, see for example [39, 43, 12, 25, 7].
In particular given a connected 3-regular graph G over n vertices which is an expander,
we have that width(Tseitin(G) ` ⊥) > Ω(n), cf. [12]. Hence, by Theorem 1.1, we have an
asymptotically optimal total space lower bound: TSpace(Tseitin(G) ` ⊥) = Θ(n2). This
answers the open question 4 from [1] in the case of Resolution.

Random k-CNFs. A random k-CNF with n variables and clause density ∆ is a CNF
formula picked as follows: choose independently uniformly at random ∆n clauses from
the set of all possible clauses in the variables {x1, . . . . , xn} containing exactly k literals. If
∆ = o(n1/4), Beame et al. [6] showed that random k-CNFs require exponential size Resolution
proofs. Such result was simplified in [12] by showing a lower bound on width: if ϕ is a
random k-CNF (k > 3) in n variables and ∆n clauses, and ∆ is a constant for simplicity, then
with high probability width(ϕ ` ⊥) > Ω(n). Hence, by Theorem 1.1, with high probability
TSpace(ϕ ` ⊥) > Ω(n2). That is, almost every k-CNF require asymptotically optimal total
space to be refuted in Resolution. This result was proven in [20] for k > 4 and for k = 3 in [13]
with some explicit but quite involved constructions. Instead, as we saw, an asymptotically
optimal total space lower bound for such formulas follows immediately from Theorem 1.1.

Formulas with short proofs. Bonet and Galesi [21] showed that the size-width inequality
by Ben-Sasson and Wigderson [12] is essentially optimal. That is they showed that there are
arbitrarily large 3-CNF formulas ϕn with Θ(n3) clauses, Θ(n2) variables and such that

width(ϕn ` ⊥) = Θ(n),
CSpace(ϕn ` ⊥) = Θ(n),

but ϕn has some Resolution proof of size O(n3), width O(n) and clause space O(n). Theorem
1.1 in this case tells us that TSpace(ϕn ` ⊥) = Ω(n2), which is just a linear lower bound
in the number of variables of ϕn. On the other hand this is a non-trivial total space lower
bound since TSpace(ϕn ` ⊥) = ω(CSpace(ϕn ` ⊥)).

Regarding the limitations, Theorem 1.1 suffers from the same kind of limitations of
size-width inequality, equation (2), and the clause space-width inequality, equation (3). That
is it became trivially vacuous for CNF formulas in n variables with clauses with many literals.
For example we see such phenomenon when considering encodings of the negation of the
Pigeonhole Principle as CNFs having clauses of n literals, the PHPn+1

n formulas. For such
formulas width(PHPn+1

n ` ⊥) = Θ(n) and hence no size lower bound or clause space lower
bound could be implied directly from equations (2) - (3). The same applies for Theorem
1.1. On the other hand, by different techniques, we still have size lower bounds [42, 37],
size(PHPn+1

n ` ⊥) > 2Ω(n), clause space lower bounds [1], CSpace(PHPn+1
n ` ⊥) > n, and

total space lower bounds [1, 20], TSpace(PHPn+1
n ` ⊥) > 1

4n
2.
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1.3 Organization of the paper
Section 2 contains all the preliminary definitions and notations needed for the proof of
Theorem 1.1. In Section 3 we prove Theorem 1.1 and we give some more detailed comments
on the proof. Section 4 contains some open questions about total space.

2 Preliminaries

We consider fixed a set of variables X and, given a natural number n, we denote as [n] the
set {1, . . . , n}. Given a set A,

(
A
62
)
is the subset of the power set of A consisting of all the

subsets of size at most 2.
Partial assignments. Given a set of variables X, a partial (Boolean) assignment over X

is a function α : X → {0, 1} ∪ {?}. The domain of α is dom(α) = α−1({0, 1}) and we say
that α assigns a value to x if x ∈ dom(α). Given two partial assignments over X, α and β
we say that α extends β, β ⊆ α, if for all x ∈ X, β(x) ∈ {α(x), ?}. We denote by {x 7→ b}
the partial assignment with domain the variable x mapped to b ∈ {0, 1}. Given two partial
assignments α and β with disjoint domains, with α ∪ β we denote the partial assignment
with domain dom(α) ∪ dom(β) such that for each x ∈ dom(α) ∪ dom(β)

α ∪ β(x) =
{
α(x) if x ∈ dom(α),
β(x) if x ∈ dom(β).

CNF formulas. A literal is a variable in X or the negation of a variable in X. A clause
C is a formula of the form `1 ∨ · · · ∨ `k, where the `i are literals and m is the width of the
clause C, denoted as |C|. A formula in Conjunctive Normal Form (CNF) is a formula ϕ with
variables in X of the form C1 ∧ · · · ∧ Cm, where the Cjs are clauses. A k-CNF formula is a
CNF formula where each clause has at most k distinct literals. With var(ϕ) we denote the
set of variables occurring in the formula ϕ.

Given a CNF formula ϕ over a set of variables X and a partial assignment α over X, we
can apply α to ϕ, obtaining a new CNF formula, denoted as ϕ �α or α(ϕ), in the following
way: for each variable x ∈ dom(α) substitute each occurrence of x in ϕ with α(x). Then
simplify the resulting CNF according to the following rules: ¬0 ≡ 1, ¬1 ≡ 0, 0 ∨ A ≡ A,
1 ∨ A ≡ 1, 1 ∧ A ≡ A, 0 ∧ A ≡ 0. We say that α satisfies ϕ if α(ϕ) = 1 and we say that α
falsifies ϕ if α(ϕ) = 0. Similarly, we can apply a partial assignment α to set of formulas
A = {C1, . . . , C`} component-wise: A �α= {C1 �α, . . . , C1 �α}. Given a set of formulas F
and a partial assignment α we say that α satisfies F , α |= F , if and only if for every formula
ϕ ∈ F , α(ϕ) = 1.

Resolution proofs. A Resolution derivation of a clause C from a CNF formula ϕ is a
sequence of clauses π = (C1, . . . , C`) such that C` = C and each Ci is either a clause from
ϕ or it is inferred from Cj , Ck with j, k < i and such that Cj Ck

Ci
is a valid instance of the

Resolution rule:
C ∨ x D ∨ ¬x

C ∨D
where C,D are clauses and x is a variable; or, Ci is inferred from a Cj with j < i and such
that Cj

Ci
is a valid instance of the weakening inference rule2

C

C ∨D

2 Notice that the weakening rule is not really needed but it will make simpler the exposition when dealing
with restrictions of Resolution proofs.
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where C,D are clauses. A Resolution refutation of a CNF formula ϕ is a Resolution derivation
of the empty clause ⊥ from ϕ. Resolution is sound and complete, that is it is possible to
infer the empty clause ⊥ from ϕ if and only if ϕ is unsatisfiable.

Width. Given a sequence of clauses π = (C1, . . . , C`) we recall that

width(π) = max
Cj∈π

|Cj |

and the minimal width needed to refute ϕ in Resolution is

width(ϕ ` ⊥) = min
π

width(π),

where the min is taken over all refutations of ϕ in Resolution3.
Asymmetric width. The notion of asymmetric width was introduced in [30, 31]. Let ϕ

be a CNF formula and π = (C1, . . . , C`) be a Resolution derivation from ϕ. To define the
asymmetric width of π, awidth(π) we preliminary need the notion of witness function. A
witness function for π = (C1, . . . , C`) is a function σ : [`]→

( [`]
62
)
∪ {?} witnessing the fact

that π is a derivation from ϕ, that is such that
σ(i) = {j, k} implies that j, k < i and Cj Ck

Ci
is a valid instance of the inference rule of

Resolution and if j = k we require Cj

Ci
to be a valid instance of the weakening rule; and

σ(i) = ? implies that Ci is a clause from ϕ.

Given π = (C1, . . . , C`) a Resolution derivation from ϕ and a witness function σ for π,
the asymmetric width of Ci with respect to π and σ, awπ,σ(Ci), is defined as follows

awπ,σ(Ci) =
{

0 if σ(i) = ?, that is Ci ∈ ϕ,
minj∈σ(i) |Cj | otherwise.

Then awidth(π) is the minimum over all the possible functions σ witnessing the validity of π
of the maximum over i of awπ,σ(Ci), that is

awidth(π) = min
σ

max
Ci∈π

awπ,σ(Ci).

Finally, the asymmetric width needed to refute ϕ, awidth(ϕ ` ⊥), is the minimum of awidth(π)
over all possible sequence of clauses π = (C1, . . . , C`) that are Resolution refutations of ϕ.

Clearly it holds that awidth(ϕ ` ⊥) 6 width(ϕ ` ⊥). Interestingly, the width cannot be
much bigger than the asymmetric width.

I Theorem 2.1 (Lemma 8.5 of [29]). Let ϕ be an unsatisfiable k-CNF formula, then

width(ϕ ` ⊥) 6 awidth(ϕ ` ⊥) + max{awidth(ϕ ` ⊥), k}.

A self-contained proof of this result, essentially based on [14], is proven in the full version of
this paper [18].

Total Space. As we saw in the introduction, a Resolution refutation of a CNF formula
ϕ can be seen as a sequence of memory configurations π = (M0, . . . ,M`), where each Mi is
a set of clauses, ⊥ ∈M` and each Mi+1 derive from Mi in one of the two following ways:
Axiom download Mi+1 ⊆Mi ∪ {C}, where C ∈ ϕ;

3 If ϕ is a satisfiable CNF formula then is customary to define width(ϕ ` ⊥) = ∞.
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Inference Mi+1 = Mi ∪ {D ∨ E}, where both D ∨ x and E ∨ ¬x belong to Mi, for some
variable x.

Given π as above, the total space of π is

TSpace(π) = max
i∈[`]

∑
C∈Mi

|C|

and given an unsatisfiable CNF formula ϕ, the total space needed to refute ϕ in Resolution is

TSpace(ϕ ` ⊥) = min
π

TSpace(π),

where the min is taken over all the possible Resolution refutations of ϕ given as a sequence
of memory configurations4.

3 Proof of Theorem 1.1

First let’s prove the main result of this work, Theorem 1.1, for convenience of the reader
restated below. We postpone more detailed comments on the proof after the proof itself.

I Restated Theorem 1.1. Let ϕ be a k-CNF formula, then

TSpace(ϕ ` ⊥) > 1
16 (width(ϕ ` ⊥)− k − 4)2

.

Proof. Let awidth(ϕ ` ⊥) = r + 1. We prove that

TSpace(ϕ ` ⊥) > 1
4(r − 1)2,

or, more precisely, we prove that every Resolution refutation of ϕ must pass through a
memory configuration of at least (r − 1)/2 clauses each of width at least (r − 1)/2. Once we
prove this, the desired lower bound between total space and width follows:

TSpace(ϕ ` ⊥) > 1
4(r − 1)2 >

1
16 (width(ϕ ` ⊥)− k − 4)2

,

where the last inequality uses that width(ϕ ` ⊥) 6 2(r+1)+k, a consequence of Theorem 2.1.
Let Ξ and Ψ be two functions respectively mapping subsets of clauses into subsets of

partial assignments and viceversa. Given a set of clauses A,

Ξ(A) = {α partial assignment : ∀C ∈ A,α(C) 6= 0},

and given a set of partial assignments F ,

Ψ(F ) = {C clause : ∃α ∈ F, α(C) = 0}.

Notice that, by construction, for every set of clauses A, A ∩ Ψ ◦ Ξ(A) = ∅ and ⊥ ∈ Ψ(F )
whenever F is non-empty. We consider the following special set:

Wr = {C clause : awidth(ϕ ` C) 6 r},

and its images Ξ(Wr) and S = Ψ ◦Ξ(Wr). The main reason to consider the set Ξ(Wr) is the
following property:
4 If ϕ is a satisfiable CNF formula then is customary to define TSpace(ϕ ` ⊥) = ∞.
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I Claim 3.1 (extension property of Ξ(Wr)). Let α be a ⊆-maximal partial assignment
in Ξ(Wr) and x a variable not in dom(α), then for every β ⊆ α such that |dom(β)| < r

both β ∪ {x 7→ 0} and β ∪ {x 7→ 1} are in Ξ(Wr).

Proof. By contradiction let β ⊆ α such that |dom(β)| < r and b ∈ {0, 1} such that
βb = β∪{x 7→ b} 6∈ Ξ(Wr). Without loss of generality we can restrict to consider b = 0.
Since β0 6∈ Ξ(Wr) it means that there exists a clause D in Wr such that β0(D) = 0
but α(D) 6= 0. This means that D = D′ ∨ x, |D| 6 r and β(D′) = α(D′) = 0. By
maximality of α then both α0 = α∪{x 7→ 0} 6∈ Ξ(Wr) and α1 = α∪{x 7→ 1} 6∈ Ξ(Wr).
In particular there exists a clause E ∈ Wr such that α1(E) = 0, so, as before, we
must have that E = E′ ∨ ¬x and α(E′) = 0. But now

D′ ∨ x E′ ∨ ¬x
D′ ∨ E′

is a valid instance of the Resolution rule. Hence, by definition of asymmetric width,

awidth(ϕ ` D′ ∨ E′) 6 max{awidth(ϕ ` D), awidth(ϕ ` E), r} 6 r,

since both D and E belong to Wr and |D| 6 r. So D′ ∨E′ ∈Wr and α(D′ ∨E′) = 0
which is a contradiction. J

Let π = (M0, . . . ,M`) be a Resolution refutation of ϕ given as a sequence of memory
configurations. By definition of Wr, ⊥ 6∈Wr and hence the empty partial assignment is in
Ξ(Wr), so, in particular ⊥ ∈ S. Hence the following set is non-empty:

A = {i ∈ [`] : ∃C ∈Mi ∩ S, |C| < (r − 1)/2}.

Let t = minA and let C ∈ Mt ∩ S be a clause of width less than (r − 1)/2. Since C ∈ S
there must exists a partial assignment α ∈ Ξ(Wr) that falsifies C and let αC be the minimal
partial assignment contained in α falsifying C. Notice that |dom(αC)| = |C| < (r − 1)/2.
Our goal now is to show that there exists some i < t such that |Mi ∩ S| > (r − 1)/2. Since
for every i < t every clause in Mi ∩ S has width at least (r − 1)/2, this will give the desired
result.

For sake of contradiction, suppose that for each i < t, |Mi∩S| < (r−1)/2. We inductively
construct a sequence of assignments β0, . . . , βt in Ξ(Wr) such that for each i 6 t we have
that αC ⊆ βi and that βi |= Mi ∩ S. This immediately give a contradiction when we reach
βt, since αC falsifies the clause C ∈Mt ∩ S and βt ⊇ αC .

The first memory configuration M0 is empty, so we can put β0 = α. Supposing that
0 ≤ i < t and that we already have a suitable βi, we construct βi+1 distinguishing between
two cases.

Axiom download case. Mi+1 ⊆ Mi ∪ {D}, where D is a clause from ϕ. Since each
clause D from ϕ belongs to Wr and we have that Wr ∩ S = ∅, then Mi ∩ S = Mi+1 ∩ S and
hence we can simply put βi+1 = βi.

Inference case. Mi+1 ⊆ Mi ∪ {D ∨ E} where D ∨ E follows by Resolution on some
variable x from two clauses D ∨ x and E ∨ ¬x in Mi. Then, by the inductive hypothesis,
there exists βi ∈ Ξ(Wr) such that βi |= Mi ∩ S, let β̄i ∈ Ξ(Wr) be a ⊆-maximal partial
assignment containing βi and let β be an assignment contained in β̄i ⊆-minimal such that
αC ⊆ β and β |= Mi ∩ S. We have that

|dom(β)| 6 |dom(αC)|+ |Mi ∩ S| < (r − 1)/2 + (r − 1)/2 = r − 1,
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where the first inequality follows easily from the fact that to satisfy a clause F ∈Mi ∩ S an
assignment just have to satisfy a single literal in F . Notice that since |dom(β)| 6 r − 2 the
extension property from Claim 3.1 can be applied twice and we will use this later. The main
property of β that we now use is the following:

I Claim 3.2. Let γ ∈ Ξ(Wr) and F be any clause in Mi, if var(F ) ⊆ dom(γ) and
β ⊆ γ, then γ |= F .

Proof. Since var(F ) ⊆ dom(γ), then γ(F ) ∈ {0, 1}. If by contradiction γ(F ) = 0,
then, by construction F ∈ S and, again by construction, β |= Mi ∩ S. So β |= F ,
which is is a contradiction since β ⊆ γ. J

The remaining part of the proof is just case analysis. If there is some variable y in D ∨E
unassigned by β̄i then we can use the extension property (Claim 3.1) extending β to some
β′ ∈ Ξ(Wr) setting y and satisfying D ∨ E.

If var(D ∨ E) ⊆ dom(β) then we can extend β to some assignment β′ ∈ Ξ(Wr) setting x
to some value (either by choosing β̄i if x ∈ dom(β̄i) or otherwise by the extension property).
Then var(D ∨ x) ⊆ dom(β′), and, by the previous claim, β′ |= D ∨ x. The same happens for
E ∨ ¬x and hence β′ |= D ∨ E by the soundness of the Resolution rule.

The only remaining possibility is that var(D ∨E) 6⊆ dom(β) but var(D ∨E) ⊆ dom(β̄i),
and without loss of generality suppose that var(D) 6⊆ dom(β). If x ∈ dom(β̄i) then, by the
previous claim β̄i |= (D ∨ x) ∧ (E ∨ ¬x) so β̄i |= D ∨E. Suppose then that x 6∈ dom(β̄i). By
Claim 3.1 we have that β′ = β ∪ {x 7→ 0} ∈ Ξ(Wr). Take a ⊆-maximal assignment in Ξ(Wr)
containing β′, let β̄′ be such assignment. If var(D∨x) ⊆ dom(β̄′) then, by the previous claim,
β̄i |= D ∨ x, but β′(x) = 0 so β̄′ |= D and hence β̄′ |= D ∨ E. If var(D ∨ x) 6⊆ dom(β̄′) then
there is some variable y in D ∨ x not assigned by β̄′ and since |dom(β′)| = |dom(β)|+ 1 < r

we can apply the extension property to β′ extending it setting y and satisfying D. J

First of all notice that we proved something actually stronger, that is we proved that
given an unsatisfiable CNF formula ϕ, every Resolution refutation of ϕ must pass through
a memory configuration of at least 1

2 (awidth(ϕ ` ⊥) − 2) clauses each of width at least
1
2 (awidth(ϕ ` ⊥)− 2).

A crucial point in the proof of Theorem 1.1 is Claim 3.1. It is related with the following
characterization of asymmetric width in Resolution by [15].

I Theorem 3.3 (Theorem 22 from [15]). Let ϕ be an unsatisfiable CNF formula, then the
followings are equivalent:
1. awidth(ϕ ` ⊥) > r,
2. there exists a non-empty set F of partial assignments such that:

Consistency for every α ∈ F and every clause C of ϕ, α(C) 6= 0;
Extension If α ∈ F and β ⊆ α is such that |dom(β)| < r, then for every variable
x /∈ dom(α) and for every ε ∈ {0, 1} there exist βε ∈ F with β ⊆ βε such that
βε(x) = ε.

Claim 3.1 is based on the proof of the implication from 1. to 2. in the previous theorem.
The other implication (easier to prove) is not needed for Theorem 1.1. Indeed it is easy to
see that given 1. the set of ⊆-maximal partial assignments in Ξ(Wr) satisfies the properties
claimed in 2., and the crucial extension property is essentially Claim 3.1.
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4 Open questions

We conclude this work with some open questions about the behaviour of the total space
measure. Most of the questions are motivated by some analogy with the behaviour of the
clause space measure.

On super-linear lower bounds. Is there any family of k-CNF formulas ϕn in n variables
and nO(1) clauses such that size(ϕn ` ⊥) = nO(1) and TSpace(ϕn ` ⊥) = Θ(n2)?

For the formulas from [21] we saw in Section 1.2 we just have a linear total space lower
bound. If we could find some formulas ψn with polynomial size Resolution proofs5 but such
that width(ψn ` ⊥) = ω(

√
n) then, by Theorem 1.1, we would have that TSpace(ψn ` ⊥) =

ω(n). This is anyway quite far from the question we are asking here and it seems that a
positive answer should need some new techniques.

On simpler proofs for total space lower bounds. Is there a simpler more direct proof
of a total space-width lower bound?

The clause space inequality CSpace(ϕ ` ⊥) > width(ϕ ` ⊥)− k + 1, where ϕ is a k-CNF,
can be proven using some families of assignments and a characterization of Resolution width
[2] or it can be proven (with some small loss in an additive constant) via some operation on
Resolution proofs [26]. The proof we have of Theorem 1.1 is in a sense similar to the proof of
the clause-width lower bound in [2] although not quite simple as that since we pass trough
the asymmetric width and more complicated families of assignments.

Beyond Resolution. Space measures are defined in [1] also for proof systems stronger
than Resolution. For example for Polynomial Calculus, a proof system where instead of
clauses we infer polynomials, or Res(k), a (stronger) version of Resolution where instead of
clauses k-DNF can be inferred, or Frege systems. In all such systems very little is known about
space especially when it comes to total space. Regarding other space measures something is
known for example for Res(k) [10, 24] and for Polynomial Calculus [1, 19, 27]. In [1] it is
proven that in Frege system the total space is always at most linear and regarding Polynomial
Calculus, the only lower bounds known for total space are from [1] and those are for the
PHPn+1

n formulas and the Complete Tree formulas. Is there any family of k-CNF formulas in
n variables ϕn with nO(1) clauses requiring ω(n) total space to be refuted say in Polynomial
Calculus?
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inspiring environment and the kind hospitality. We want to thank Jakob Nordström and
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