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Abstract

In this thesis we consider logical proof systems from the point of view of
their space complexity, in particular we focus on the following two:
• Resolution, a well studied proof system that is at the core of state-of-the-
art algorithms to solve SAT instances;

• Polynomial Calculus, a proof system that uses polynomials to refute
contradictions.

Informally speaking, the space of a proof measures the size of an auxiliary mem-
ory that a verifier needs to check the correctness of the proof. For Polynomial
Calculus the space measure counts the number of distinct monomials to be
kept in memory (monomial space). For Resolution the measure refers to the
number of clauses to be kept in memory (clause space) or to the total number
of symbols (total space).

We introduce an abstract framework to prove monomial space lower bounds
and we apply it to prove asymptotically optimal lower bounds for the monomial
space for random k-CNF formulas in n variables and a linear number of clauses.
This was an open problem mentioned for the first time in [4, 22] and since then
reported many times in the literature. The same framework also applies to the
graph pigeonhole principle; to all the previously known monomial space lower
bounds from [4, 70]; to Tseitin formulas, cf. [68].

While the clause space in Resolution is a well studied measure, cf. for
instance [4, 8, 24, 66, 109], regarding total space much less was known, cf. [4].
For instance it was an open problem to prove any super-linear (in n) lower
bound for formulas with n variables and poly(n) clauses, cf. [4]. We introduce
a general framework to prove total space lower bounds in Resolution, we show
such super-linear lower bound and asymptotically optimal lower bounds for the
total space needed to refute random k-CNF formulas.

In the last chapter we analyze the size of Resolution proofs in connection
with the Strong Exponential Time Hypothesis. The strong lower bounds for a
sub-proof system of Resolution, we called δ-regular Resolution, are based on
game-characterizations of proof size and width in Resolution, cf. [7, 118].

The introductory chapter is a presentation of general proof complexity and
a summary of the results and techniques used in this thesis.
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1
Introduction

1.1 What is proof complexity?

Proof complexity is a research area that studies the concept of complexity from
the point of view of logic. In particular, in proof complexity we are interested
in questions such as: how difficult is it to prove a theorem? Or, given a formal
system, we are interested in measuring the complexity of a theorem, that is
answering questions such as what is the shortest proof of the theorem? This
corresponds to questions in computational complexity about, for example, the
number of steps of Turing machines, or the size of circuits needed to compute
a function. On the other hand, we could also measure the complexity of a
theorem as the strength of a theory needed to prove the theorem. This also has
a counterpart in computational complexity, it is linked with questions about
the smallest complexity class to which a given function belongs.

Propositional proof complexity, that is the complexity of propositional proofs,
plays a role in the context of feasible proofs as important as the role of Boolean
circuits in the context of efficient computations. Although the original motiva-
tions to study the complexity of propositional proofs came from proof-theoretical
questions about first-order theories, it turns out that, essentially, the complexity
of propositional proofs deals with the following question: what can be proved by
a prover with bounded computational abilities? For example if its computational
abilities are limited to small circuits from some circuit class. Hence, proposi-
tional proof complexity mirrors to non-uniform computational complexity and
indeed there is a very productive cross-fertilization of techniques between the
two fields, cf. [14, 123]. Simple propositional proof systems are non-uniform
analogues of natural fragments of Peano Arithmetic, the various Bounded

1



2 1.2. Proof systems

Arithmetic systems, which capture in some sense ‘polynomial time reasoning’.
Hence, lower bounds in the former yield independence results in the latter and
then such lower bounds may clarify the limits of our (human or automated)
proof techniques. This is important also from the practical point of view since
Automated Theorem Provers are essential in various aspects of computer sci-
ence. Since Theorem Provers are implemented with simple propositional proof
systems, e.g. Resolution, then the study of such propositional systems helps in
clarifying the limits of actual Theorem Provers, cf. [108].

Our understanding of propositional proof systems is similar to the general
situation in complexity theory, in the sense that in both fields we can prove
lower bounds in very special cases and indeed there are many very basic and
important open problems, such as the very famous P ?= NP. In propositional
proof complexity the situation is similar in the sense that we can prove super-
polynomial lower bounds on the length of proofs only for restricted proof systems.
Indeed, by a result of Cook and Reckhow [56], proving super-polynomial lower
bounds on the length of proofs in every propositional proof system is equivalent
to showing that NP 6= coNP, which in turn is one of the open and very important
problems in computational complexity.

In this thesis we investigate space complexity in propositional proof systems,
so what is the space of a proof? We saw that proof systems have some analogies
with computational complexity and in that context space notions have been
investigated: for example the size of a working-tape needed by a Turing machine
to compute a given function. The analogue of this question was asked by Armin
Haken in 1998 in the context of proof complexity. Pictorially, we could state the
space question in proof complexity as what is the smallest blackboard a teacher
needs to present the proof of a theorem to a class of students?1 We postpone
additional high level considerations on space in proof complexity to Section 1.5.

It is time to make things more precise and we start recapping some basic
definitions and notations from propositional proof complexity.

1.2 Proof systems

We consider proofs and theorems as strings over some alphabet, say strings in
{0, 1}∗. According to Cook and Reckhow [56] a proof systemproof system for a language
L is a polynomial-time onto function P : {0, 1}∗ → L. Each string ϕ ∈ L is a
theorem and if P (π) = ϕ, π is a proof of ϕ in P , or a P -proof of ϕ. Given a

1We suppose here that the students can understand just proofs written on the blackboard
in some given formal system and they do not have any additional memory except the minimal
one to understand the content of the blackboard. Moreover the teacher has to write with
fonts of a fixed size.
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polynomial-time function P : {0, 1}∗ → {0, 1}∗ the fact that P ({0, 1}∗) ⊆ L is
the soundness soundnessproperty and the fact that P ({0, 1}∗) ⊇ L is the completeness completeness

property.
The computational complexity of a proof system for a language L varies

a lot depending on the language L itself. It can vary from very easy, say P,
for a language in NP; to PSPACE for the language of True Quantified Boolean
Formulas (TQBF); to be completely intractable for First Order Logic (FO), due
to the recursive undecidability of the existence of a proof in FO.

In this thesis we focus on proof systems for languages that are coNP com-
plete, such as TAUT and UNSAT. Proof systems for the language TAUT of
propositional tautologies are called propositional proof systems propositional proof systems. Equivalently,
propositional proof systems can be defined for the language UNSAT of unsatis-
fiable propositional formulas, in this second case we call them refutational.

Given two proof systems P and Q for the same language L, P p-simulates p-simulates

Q if there exists a polynomial-time function t such that for each π ∈ {0, 1}∗,
P (t(π)) = Q(π). Two systems are called p-equivalent if they p-simulate each
other. If Q p-simulates P and there exists some formulas requiring exponentially
long proof in P but polynomially long proofs in Q we say that P is exponentially
weaker than Q exponentially weaker.

1.2.1 Propositional proof systems

Propositional proof systems operate with Boolean formulas, the simplest of
which are clauses, that is ∨s (OR) of literals, where each literal is either a
variable xj or a negation of a variable ¬xi. A conjunction of clauses is a CNF
formula CNF formulaand it is in the language UNSAT if it is unsatisfiable that is if no truth
assignment of the variables satisfies it.

The main open problem in propositional proof complexity is about the length
of proofs and, in particular, it concerns proving (or more likely disproving) the
existence of a propositional proof system where all proofs are polynomially
bounded. More precisely, we say that a proof system P for L is polynomially
bounded p-bounded(p-bounded) if there exists a polynomial p such that every ϕ ∈ L has a
P -proof of size 6 p(|ϕ|), where |ϕ| is the length of ϕ.

Cook and Reckhow [56] showed that the existence of a p-bounded propo-
sitional proof system is equivalent to NP = coNP. Since this equality is
conjectured to be false, the main goal of propositional proof complexity is to
show that p-bounded propositional proof systems do not exist. One approach
to this problem is to show that particular proof systems are not p-bounded.
This approach is known as Cook’s program in proof complexity. Quoting [95]:
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“Proving that NP 6= coNP showing incrementally that examples of
proof systems are not polynomially bounded seems unlikely. Rarely
a universal statement is proved by proving all its instances. Never-
theless proving these lower bounds we may hope to uncover hidden
computational hardness assumptions and then try to reduce the con-
jecture to some more approachable problem. ”

To show that a particular propositional proof system P is not p-bounded it is
sufficient to exhibit a family of formulas (Fn)n∈N such that the minimal length
of a proof of Fn in P grows super-polynomially with respect to |Fn|. Examples
of such families of formulas arising from interesting combinatorial principles can
be found in Chapter 4: in particular we will consider the pigeonhole principle
(PHPmn , cf. Section 4.4.1), Tseitin formulas (Tseitin(G, σ), cf. Section 4.5), the
random k-CNF formulas (cf. Section 4.8) and the matching principles over
graphs (G-PHP, cf. Section 4.9).

Before going more into details on the particular propositional proof systems
we consider (Resolution and Polynomial Calculus) we want to give an idea of
the richness of the landscape of proof systems studied in propositional proof
complexity. Among all the propositional proof systems, by far the first ones
that everybody encounters are Frege systems hence we start we those.

Frege systems Those are the common ‘textbook’ proof systems for propo-
sitional logic based on axioms and rules, cf. [56]. A Frege proof consists of
lines that are propositional formulas built from propositional variables xi and
Boolean connectives ¬ (NOT), ∧ (AND), and ∨ (OR). A Frege system comprises
a finite set of axiom schemes and rules, for example, ϕ∨¬ϕ is a possible axiom
scheme. A Frege proofFrege is a sequence of formulas where each formula is either a
substitution instance of an axiom, or can be inferred from previous formulas by
a valid inference rule, for example the modus ponens

ϕ ϕ→ ψ .
ψ

Frege systems are required to be sound and complete, that is each tautology
has to have a Frege proof and no formula that is not a tautology should have a
Frege proof. The exact choice of the axiom schemes and rules does not matter
as any two Frege systems are p-equivalent, even when changing the basis of
Boolean connectives, cf. [56, 128] and [99, Theorem 4.4.13]. Therefore, we can
assume w.l.o.g. that modus ponens is the only rule of inference. Usually Frege
systems are defined such as proof systems where the last formula is the proven
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tautology. To include also weak systems as Resolution in this picture we use the
equivalent setting of refutation Frege systems where we start with the negation
of the tautology that we want to prove and derive the contradiction ⊥.

There are several common restrictions that can be imposed on Frege; for
example bounded-depth Frege bounded depth Fregesystems are Frege systems where lines are formulas
with negations only on variables and with a bounded number of alternations
between ∧’s and ∨’s. More in general, given a circuit class C , C -Frege C -Fregeis
a restriction of Frege where lines are circuits from the class C , for a formal
definition cf. [88]. Resolution, a proof system we see thorough this thesis and
on an high level on Section 1.3, is a particular kind of bounded-depth Frege
system that refutes CNF formulas, which are formulas of depth 2.

Other propositional proof systems are based on algebraic reasoning (for
instance Polynomial Calculus), geometric reasoning (Cutting Planes) or some
graph theoretic constructions (Hajoś Calculus, cf. [115]). The idea of using
propositional proof systems simulating the most basic algebraic facts and
constructions dates back to Beame et al. [16] who introduced a propositional
proof system motivated by Hilbert’s Nullstellensatz. Then Clegg et al. [55]
introduced an even more natural algebraic proof system that directly simulates
the process of generating an ideal from a set of generators. This proof system,
Polynomial Calculus, is the other proof system object of our study. An informal
introduction to it is contained in Section 1.4.

Cutting Planes The method of Cutting Planes for integer linear programming
was introduced by Gomory [77] and Chvátal [52]. The so-called Gomory-Chvátal
cuts transform a polytope defined by a system of linear inequalities into its
integral hull. If the system of linear inequalities has no integral solution then
the inequalities define a polytope with empty integral hull and the sequence of
cuts can be taken as a witness of the fact that there are no integral solutions. W.
Cook et al. [57] used this idea to define the Cutting Planes Cutting Planespropositional proof
system. Boolean formulas can be translated into a set of linear inequalities2

such that the original formula is satisfied if and only if the defined polytope has
a {0, 1} point. Then a cutting plane refutation of an unsatisfiable CNF formula
is a sequence of linear inequalities and there are inference rules to take linear
combinations of inequalities and to perform (a version of) Gomory-Chvátal
cuts. Cutting Planes is exponentially stronger than Resolution and we know

2E.g. the CNF formula ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) is translated into the following set of
linear inequalities:{

x+ (1− y) + z > 1, (1− x) + z > 1, 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1
}
.



6 1.3. Resolution

some exponential lower bounds on size, cf. [82, 117]. Recently Cutting Planes
has started to be investigated also from the point of view of space, cf. [75] and
Section 1.5 for more details on space.

The strongest proof system for which we know that there are contradictions
requiring exponentially long proofs is bounded-depth Frege, cf. [96, 98, 116].
Such lower bounds on bounded-depth Frege rely on a Switching Lemma, cf. [12].
We will not see directly such proofs but we will see an application of a version of
the Switching Lemma in Chapter 5 for a sub-system of Resolution, cf. Lemma 5.1
on page 108.

One of the major open problems in proof complexity is to prove exponential
lower bounds for a subsystem of Frege, AC0[p]-Frege, handling bounded depth
formulas with the usual logical connective plus MODp gates, cf. [119, Problem
10]. Indeed, algebraic proof systems were introduced by Clegg et al. [55] as a
possible way to attack this problem.

1.3 Resolution

ResolutionRes , Res, was introduced by Blake [35] and proposed by Robinson [130]
for automated theorem proving. Since [130] and the introduction of the DPLL
algorithm by Davis and Putnam [62], Davis et al. [63], Resolution is at the
core of most of automated theorem provers and it is by far the most studied
propositional proof system.

Resolution is a refutational proof system manipulating unsatisfiable CNF
formulas as sets of clauses, that is unordered disjunctions. The only inference
rule is the following:

C ∨ x D ∨ ¬x (Res rule),
C ∨D

where C,D denote clauses and x is a variable that we say is resolved. A
Res refutation of a CNF formula ϕ derives the empty clause ⊥ by repeatedly
applying the Res rule.

More formally, a k-CNF formulak-CNF formula is a formula ϕ = C1 ∧ · · · ∧ Cm where
Ci are clauses, that is disjunctions, of at most k literals and each literal is
either a Boolean variable x or its negation ¬x. A Resolution derivation of a
clause C from a CNF formula ϕ is a sequence of clauses π = (C1, . . . , C`) such
that C` = C and each Ci is either a clause from the ones in ϕ or Cj Cj′

Ci
for

some j, j′ < i is an instance of the Res inference rule. A CNF formula ϕ is
unsatisfiable if and only if the empty clause, ⊥, can be inferred from ϕ using
the Res rule.
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The number of clauses in a Resolution refutation π is its size size(π), size(π), and
the minimum over size(π) over all sequences of clauses π that are Resolution
refutations of ϕ is sizeRes(ϕ ` ⊥) sizeRes(ϕ ` ⊥).

Complexity of Resolution To understand the complexity of Resolution proofs
various hardness measures were defined and investigated. Historically, the
first and most studied is the size. The very first lower bounds on the size
of Resolution proofs were proved by Tseitin [138] and Haken [81] and since
then the complexity of Resolution proofs was investigated in depth, cf. the
surveys [14, 108, 114, 119, 125, 134]. In particular, two techniques that turned
out to be very useful in proving lower bounds are the feasible interpolation
by Krajíček [97] which apply to many further proof systems, for instance
Cutting Planes, and the size-width relationship by Ben-Sasson and Wigderson
[30]. Where the width of a proof is the length of the biggest clause appearing
in a proof. The machinery by Ben-Sasson and Wigderson [30] allows to prove
size lower bounds in an elegant and uniform way. Moreover, it shows that
Resolution is automatizable in sub-exponential time by an extremely simple
dynamic programming algorithm, cf. [22].

More formally, given a sequence of clauses π, width(π) is the size of the
largest clause appearing in the sequence π. Then given an unsatisfiable CNF
formula ϕ, width(ϕ ` ⊥) width(ϕ ` ⊥)is the minimum of width(π) over all sequence of clauses
π that are valid Resolution refutations of ϕ. It is immediate to see that if
width(ϕ ` ⊥) 6 w and ϕ is a formula in n variables then

sizeRes(ϕ ` ⊥) 6 nO(w).

This trivial upper bound turns out to be tight: Atserias et al. [10] showed that
there are k-CNF formulas ϕn in n variables refutable in width w but each
Resolution refutation of ϕn must have size at least nΩ(w). More interestingly,
width lower bounds imply size lower bounds: Ben-Sasson and Wigderson [30]
prove that for each unsatisfiable k-CNF formula ϕ in n variables

log2 (sizeRes(ϕ ` ⊥)) > (width(ϕ ` ⊥)− k)2

16n , (1.1)

so if width(ϕ ` ⊥) > ω(
√
n logn) then immediately ϕ must require Resolution

refutations of super-polynomial size. The relation in equation (1.1) was further
investigated by Bonet and Galesi [42] proving that such result is essentially
optimal. Recently Thapen [137] proved that there are CNF formulas in n

variables having polynomial size Resolution proofs and hence, by equation (1.1),
width O(

√
n logn) but where this decrease in width comes at the expense of an

increase in size.
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In Chapter 5 we will prove some results on Resolution size stronger than
the size lower bound we could get by the technique presented above. Those
results will rely on game characterizations of size and width from [118] and [8].
Section 2.6 contains more details on width and a related measure, the asymmetric
width.

Subsystems of Resolution We recall that Resolution refutations can be as-
sociated to branching programs, cf. [99], and to (labeled) Directed Acyclic
Graphs (DAG). An example of Resolution refutation, due to Huang and Yu
[84], presented directly as a DAG is in Figure 1.1 on the next page. In [84] the
author noticed that each minimal size Resolution proof of the formula

ϕ =(¬x ∨ a ∨ b) ∧ (x ∨ a ∨ b) ∧ (¬b ∨ z) ∧ (¬a ∨ c) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬w)∧
(¬c ∨ y ∨ z) ∧ (¬c ∨ ¬x ∨ w) ∧ (x ∨ y ∨ ¬z) ∧ (¬x ∨ w ∨ ¬z)

corresponds to a DAG where there is a path with a variable resolved twice. In
Figure 1.1 there is one of such minimal size Resolution refutations.

The structure of the DAGs associated to Resolution proofs are used to define
subsystems of Resolution. A Resolution derivation is tree-like if the associated
DAG is a tree. In tree-like Resolutiontree-Res , tree-Res, only tree-like derivations are
allowed. Similarly, a Resolution derivation is regular if there is an associated
DAG such that each directed path has no variable resolved more the once.
In regular Resolutionreg-Res , reg-Res, only regular derivations are allowed. We will
see more about tree-like and regular Resolution proofs in Chapter 5. For the
moment we just recall that tree-Res is exponentially weaker than reg-Res, that,
in turn is exponential weaker than Res, cf. [5, 41, 136, 142].

Connection with SAT solvers From the theoretical point of view, Resolution
was viewed as the very first step in proving Frege proofs lower bounds, and indeed
proof length lower bounds are known for sub-systems of Frege such as bounded-
depth Frege. Nowadays Resolution is mostly studied due to its importance in
applied contexts such as SAT solvers, in particular due to a connection to the
DPLL algorithm and the CDCL solvers. The Davis-Putnam-Logemann-LovelandDPLL

(DPLL) algorithm is a backtracking method introduced by Davis and Putnam
[62], Davis et al. [63] to search for assignments satisfying a CNF formula. It is a
well known result that the track of runs of the DPLL algorithm on unsatisfiable
CNF formulas is equivalent to tree-Res, the sub-system of Resolution where
only proofs having a tree structure are allowed.

A strengthening of the DPLL algorithm was defined a series of works
by Bayardo Jr. and Schrag [11], Moskewicz et al. [105], Silva and Sakallah
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⊥
x

x

y

¬x
w

x ∨ ¬y x ∨ y
z

x ∨ y ∨ z
c

x ∨ y ∨ ¬z

¬c ∨ y ∨ z

c ∨ z
a

¬x ∨ ¬w¬x ∨ w
z

¬x ∨ w ∨ ¬z¬x ∨ w ∨ z
c

¬c ∨ ¬x ∨ w

¬a ∨ ca ∨ z
b

¬b ∨ za ∨ b
x

x ∨ a ∨ b¬x ∨ a ∨ b

¬a ∨ c Clause from ϕ as in the equation above

x ∨ y Intermediate clause obtained resolving on z
z

Figure 1.1: An example of Resolution refutation by Huang and Yu [84].

[135] where the authors introduced the idea of Conflict Driven Clause Learning CDCL

(CDCL) as a way for DPLL based SAT solvers to cut the search space and avoid
duplicated work. This is done by performing a conflict analysis when the search
for an assignment leads to a contradiction and then learning a clause encoding a
reason for that failure. By definition Resolution p-simulates the CDCL solvers
viewed as proof systems. Pipatsrisawat and Darwiche [112] and Atserias et al. [9]
showed that the converse also holds under certain assumptions on the behaviour
of the CDCL solver. In particular in both works a crucial hypothesis is that
the CDCL solver never delete a learned clause. We stress out that this is not a
realistic hypothesis and, at the moment, no extension of [9, 112] is known for
CDCL solvers under more realistic models of the memory usage.

The running time and the memory consumption of SAT solvers relate to
Resolution size and Resolution space. The latter is the complexity measure we
will focus on in this thesis, cf. Section 1.5. However, size and space are not the
only measures that are interesting with respect to applications to SAT solvers.
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The question of what constitutes a good hardness measure for practical SAT
solving is essentially open and a very important one, cf. [6, 32, 87]. For more
details on the connection between Resolution, proof complexity and SAT solvers
we refer to [108].

Game theoretic methods In proof complexity game theoretic methods and
combinatorial characterizations of hardness measures have a long history. This
started from the very first exponential size lower bound for Resolution by Haken
[81]. Then, the Pudlák games characterized the size of Resolution proofs as a
game, cf. [118], and we will use such games in Chapter 5. Interestingly, such
games are meaningful for much stronger proof systems such as bounded-depth
Frege, cf. [25]. Games have been used also to characterize other hardness
measures, cf. [8] and [32], and the most notable example is the game and
combinatorial characterization of Resolution width by Atserias and Dalmau [8].
In [8] the authors connected the width hardness measure to a combinatorial
family of assignments and then to a game derived by the existential Ehrenfeucht-
Fraïssé k-pebble game as used by Kolaitis and Vardi [92, 93] in the context of
finite model theory and DATALOG. Games have proven to be useful also in
the context of tree-like Resolution as shown by the optimal bounds obtained
by Beyersdorff et al. [33, 34].

In this thesis we introduce some further combinatorial families and we relate
them with hardness measures in Resolution and Polynomial Calculus. To each
of the families we introduce we could have also associated a two player game
such that the given family of assignments corresponds to a winning strategy for
one of the two players. This could be done in a similar way as done explicitly
in [118] for the size of proofs or in [8] for the width. In this thesis we will use
explicitly such game characterisations in Chapter 5 to prove strong size lower
bounds and implicitly in Chapter 4 to prove space lower bounds for random
k-CNF formulas in Polynomial Calculus.

1.4 Polynomial Calculus

Our motivation to study algebraic proof systems is that they are not at all as
well understood as Resolution and this lack of knowledge from the theoretical
point of view is one of the reasons for not having efficient SAT solvers properly
exploiting the potential of algebraic manipulations. Moreover, the study of
algebraic proof systems could shed light on major open problems in propositional
proof complexity such as super-polynomial size lower bounds for AC0[p]-Frege.
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The algebraic proof system introduced by Clegg et al. [55] is nowadays
called Polynomial Calculus PC, PC, and it was improved by Alekhnovich et al.
[4] to a system they call Polynomial Calculus with Resolution PCR, PCR, that is a
minimal extension of both Resolution and PC. Both in PC and PCR clauses
are translated into polynomials as a sum of multilinear monomials having
coefficients in a fixed field F. Then, an unsatisfiable CNF formula ϕ is shown
to be unsatisfiable by translating it into a set of polynomials tr(ϕ) and then
showing that 1 is in the ideal generated by tr(ϕ), cf. Section 3.2 for a formal
definition. This is done through the following two inference rules

p q

αp+ βq
α, β ∈ F

p

xp
x variable.

That is we can perform arbitrary linear combinations of already inferred poly-
nomials and we can multiply an inferred polynomial by a variable. These rules
model the fact that ideals are closed under the previous operations.

Both in PC and PCR the polynomials are manipulated in their expanded
form as a sum of monomials, and the size of a proof is measured as the total
number of monomials appearing in it. There are algebraic proof systems that
allow manipulations on polynomials in an implicit form and this results in
stronger, not so well understood, proof systems, cf. [122].

The difference between PC and PCR is that the latter one has separate formal
variables to encode positive and negative literals over the same Boolean variable.
Then, clauses with many literals are encoded more efficiently regardless of the
polarity of the literals, which allows PCR to simulate Resolution efficiently. The
first example of formulas requiring exponentially long proofs in Polynomial
Calculus was given by [55], and since then many other size lower bounds were
proved, cf. for instance [74, 103, 124].

Each PC refutation is also a valid PCR refutation and PCR refutations can be
converted into PC refutations without increasing the degree of the polynomials
involved, so, such systems, from the point of view of degree lower bounds, are
exactly equivalent. Indeed, Impagliazzo et al. [86] showed that degree lower
bounds imply PC size lower bounds. More precisely, given a k-CNF formula ϕ,

log2 sizePCR(ϕ ` ⊥) > Ω
(

(degreePCR(ϕ ` ⊥)− k)2

n

)
, (1.2)

where sizePCR(ϕ ` ⊥) is the size needed in PC to refute ϕ and degreePCR(ϕ ` ⊥)
is the degree needed to refute ϕ. As observed by Mikša and Nordström [103],
we have actually that the lower bound in equation (1.2) carries on also for PCR.
It is interesting to notice the similarity between this lower bound and the, later,
lower bound between width and size in Resolution by Ben-Sasson and Wigderson
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[30], cf. equation (1.1). A lot of results on the complexity of Resolution proofs
are indeed qualitatively similar to results on the complexity of PCR proofs. For
instance a width upper bound of w implies a Resolution size upper bound of
nO(w), for CNF formulas in n variables. Similarly a degree upper bound of d
implies a size upper bound of nO(d) for formulas over n variables, cf. [55]. This
result is qualitatively similar to the one for Resolution but the proof is a bit
more involved. Both the upper bound in Resolution and the one in PCR are
tight as recently shown by Atserias et al. [10]. As for Resolution, the degree-size
lower bound is essentially optimal as shown by Galesi and Lauria [74], and the
automatizability of PCR in sub-exponential time follows, cf. [73]. The formulas
used in [74], the ordering principles, are the same used for Resolution. Similarly
as for Resolution, most of the size lower bounds in PCR are obtained through
degree lower bounds but the machinery to prove degree lower bounds in PCR is
more involved and depends on the characteristic of the field F chosen.

In particular, if charF 6= 2 then some Fourier-like transformation can be
used to reduce degree lower bounds to Gaussian calculus lower bounds and
ultimately to Resolution, as in [26]. Another interesting result that depends on
the characteristic of the ground field charF 6= 2 is the one by Razborov [127]
about the hardness of pseudorandom generators for the Polynomial Calculus
over the ground field F. A more general technique to prove degree lower bounds,
working also if charF = 2, was introduced in [3] and generalized in [73, 103].

Other algebraic proof systems have been considered, for example in [48, 49,
78–80, 113, 122]. In this thesis we focus on the proof system PCR and actually
on some stronger semantic super-system of it (cf. Section 3.2) but we will be a
bit sloppy when actually naming it since we will call it Polynomial Calculus,
instead of the more precise Polynomial Calculus with Resolution.

Connection with SAT solvers The original name for Polynomial Calculus
in [55] was Gröbner proof system due to its tight connection with the Gröbner
basis algorithm and the system was intended to be a potential candidate for
efficient new SAT solvers. Indeed, there are SAT solvers based on the Gröbner
basis algorithm such as PolyBoRi [43, 44] but they are not competitive from
the point of view of the pure practical performances with state of the art CDCL
solvers based on Resolution. Some, very limited, form of algebraic reasoning is
starting to be integrated into CDCL solvers but, at the moment of the writing
of this thesis, this consist mostly of some form of Gaussian elimination. For
more details on the interplay of algebraic proof systems and SAT solvers we
refer to [108].
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1.5 Space

The problem of the space taken by propositional proofs was posed for the first
time by Armin Haken during the workshop “Complexity Lower Bounds” held
at Fields Institute in Toronto 1998. Before that, apparently, the only paper
devoted to the space of proofs was [94] but the author dealt only with equational
theories involving no propositional connectives.

Intuitively, the space required by a refutation is the amount of information
we need to keep simultaneously in memory as we work through the proof and
convince ourselves that the original propositional formula is unsatisfiable. This
model is inspired by the definition of space complexity for Turing machines,
where a machine is given a read-only input tape from which it can download
parts of the input to the working memory as needed. This model is sometimes
called in the literature blackboard model blackboard model. The name comes from the image of a
teacher in front of a class of students. The goal of the teacher is to show that a
particular CNF formula is contradictory writing down clauses and performing
inferences on a blackboard. In this analogy students understand inferences
based on the rules of some particular proof system, for example Frege or Res or
PCR among others.

The formal definition of the space taken by Resolution proofs was given
by Esteban and Torán [66] building on [91] and such definition was generalized
by Alekhnovich et al. [4] to other proof systems. Esteban and Torán [66]
proposed to measure the space of a Resolution proof as the number of clauses to
be kept simultaneously in memory while refuting a contradiction3, the clause
space clause space. As Alekhnovich et al. [4] point out, the very first question, when starting
the investigation of space, is how to measure the memory content/blackboard
size at any given moment in time for a specified propositional proof system.
Recalling Krajíček [99], the most customary measures for the size complexity
of propositional proofs are the bit size and the number of lines. Among the
two the bit size is the most important and can be defined analogously also for
space complexity. Similarly as what is done for size, usually we do not measure
directly the bit size, but a logarithmically related measure that, in the case of
space, is the total number of literals in memory, the total space total space4. The formal
definitions of clause space and total space for Resolution are in Section 2.3. The
line complexity is not an adequate space measure as long as the language of

3As already noticed by [66], the clause space in Resolution is connected to the pebbling
game on the DAGs associated to Resolution derivations but we do not exploit this analogy.

4 Alekhnovich et al. [4] called this measure variable space but we prefer to call it total
space following [27–29, 106, 107, 141]. The reason to do this is to distinguish this measure
from another one, the variable space, where different occurrences of the same variable are not
counted, cf. [141].
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the proof system is strong enough to handle unbounded fan-in ∧ gates: in this
case just O(1) memory cells are sufficient as one of them can contain a big-∧ of
all the formulas derived in previous steps.

We already saw a proof system, Resolution, that is not closed under ∧. For
this system the lines are just clauses and the clause space makes prefect sense.
An analogue of clause space makes sense also for stronger proof systems, such
as Polynomial Calculus, where we consider the number of distinct monomials
appearing in memory configuration, or Cutting Planes where the number of
linear inequalities is considered, cf. [75].

Lower bounds for the monomial spacemonomial space are one of the main topics of this
thesis. The formal definition of monomial space is in Section 3.2.

Regarding the upper bounds, as shown by Esteban and Torán [66], all
contradictions can be refuted within polynomial space for any ‘reasonable’ space
measure. More precisely Esteban and Torán [66] showed that every contradictory
CNF formula in n variables can be refuted by a (tree-like) Resolution proof of
clause space (n+ 1). Hence, the total space in Resolution is at most n(n+ 1).
Since the Resolution inference rule can be simulated efficiently in PCR, from
the point of view of space, we have that the upper bounds in Resolution carry
on for PCR. Hence, given an unsatisfiable CNF formula ϕ in n variables, the
monomial space in PCR to refute it is at most linear in n and the total space
is at most quadratic in n. Total space in PCR is not yet well understood and
the only total space lower bound for PCR are the ones by Alekhnovich et al. [4]
where this measure was originally introduced. Those total space lower bounds
are for the complete tree formulas, CTn, and for the pigeonhole principle, PHPmn ,
cf. Chapter 4, and rely on corresponding monomial space lower bounds.

An interesting property of clause space is that, informally, ‘clause space is
lower bounded by width’, cf. Proposition 2.2. This result was shown by Atserias
and Dalmau [8] using a combinatorial characterisation of the width measure
by some families of assignments, w-AD families in this work, cf. Theorem 2.3.
Interestingly a more direct proof of this fact was recently shown in [69].

Regarding the monomial space the situation is quite different and recently
there were some work widely improving over the results contained in [4]. In
particular Filmus et al. [70] proved the first monomial space lower bounds
for formulas of bounded width that are different encodings on the pigeonhole
principle and we introduced a framework to prove monomial space lower bounds,
cf. [36, 37]. That framework generalizes both the techniques used in [4] and the
ones from [70] and self contained proofs of all the monomial space lower bounds
from such papers are in Chapter 4. More importantly, such framework allows
to prove the first monomial space lower bound for random k-CNF formulas, for



Chapter 1. Introduction 15

k > 3, and for the graph pigeonhole principle over a graph of (left) degree at least
3. Moreover, Filmus et al. [68] applied the framework to Tseitin formulas over
random 4-regular graphs, some more information on such result are collected in
cf. Section 4.5.

All the monomial space lower bounds we obtain are not dependent on the
characteristic of the field, charF, where F is used as ground field in PCR. So the
result from [68] is particularly interesting over F2 since over that field Tseitin
formulas have polynomial size PCR refutations and those refutations, for the
space lower bound shown, must require large monomial space.

Going back to space measures in general, interestingly two phenomenons
happen: the first one is that for some space measures the actual inference rules
of the proof systems do not matter, that is the space lower bound holds for
some semantic version of the proof systems. What matters in such cases are
the objects manipulated by the system, for example clauses or polynomials.
This phenomenon was first observed by Alekhnovich et al. [4] for the clause
space, for monomial space for some restricted class of formulas and for Frege in
general, cf. [4, Corollary 6.6].

In this thesis we show that asymptotically optimal monomial space lower
bounds hold for more general class of formulas than the ones in [4] and that for
total space in Resolution the actual inference rule does matter, cf. Section 1.6
for more information.

The second interesting property of space is that this measure is actually non-
trivial for not too strong proof systems, indeed Alekhnovich et al. [4, Theorem
6.3] showed that any tautology in n variables has a proof in Frege with “formula
space” O(1) and total space linear in the number of variables. This fact justifies
the study of space for proof systems where super-linear lower bounds on space
could be achieved, although total space in Frege is still a meaningful complexity
measure. In this thesis we show some of such optimal space lower bounds
for total space in Resolution and monomial space in Polynomial Calculus,
cf. Section 1.6 for more information.

From the practical point of view, we already saw that Resolution is tightly
connected to some class of SAT solvers, the CDCL solvers, cf. Section 1.3.
Indeed, lower bounds for the space complexity measures for Resolution translate
to lower bounds on the size of some auxiliary memory used by the CDCL
solvers. Again from the practical point of view, there is a big difference between
memory requirements that scale linearly or quadratically since that could be
the difference between a feasible or a totally unfeasible problem. Linear lower
bounds on space were implied by the lower bounds on clause space in Resolution.
Quadratic lower bounds on space are implied by the new total space lower
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bounds in Resolution we show in this thesis. On the other hand, it is not known
if a generic CDCL solver p-simulates Resolution5 on unsatisfiable CNF formulas
and, from the space complexity point of view, it is perfectly possible that if
the space usage of CDCL solvers is bounded, then they run, for example, in
exponential time on instances easy for Resolution or worse. For more details
on the connection between SAT solvers and proof complexity we refer to the
survey [108].

We end this very introductory part on space in proof complexity citing some
works that studied space related issues in Resolution and in some stronger proof
systems:

• Resolution: [4, 8, 24, 66] and in particular concerning trade-offs [19, 20,
27, 29, 107, 109];

• Resolution over k-DNFs, a variation of Resolution handling k-DNF for-
mulas instead of clauses: [28, 67];

• Polynomial Calculus: [4, 31, 37, 68, 70] and for tradeoffs for example [20,
20, 107];

• Cutting Planes: [75].

1.6 Main results + credits

From a very high level point of view, the backbone of the whole thesis is the use
of combinatorial families of assignments (and games) to prove lower bounds6.
This informal idea was applied many times in proof complexity and in general
in complexity theory and here we apply it to prove:

• Lower bounds for monomial space in Polynomial Calculus, cf. Chapters 3
and 4.

• Lower bounds for total space in Resolution, cf. Chapters 2 and 4.

• Strong size lower bounds in (a sub-system of) Resolution, cf. Chapter 5.

5Interestingly the CDCL solvers that at the moment are known to be p-equivalent to
Resolution behave very poorly from the point of view of the size of an auxiliary memory:
they never cancel from the memory clauses learned, cf. [9, 112].

6We follow the convention to name families of assignments according to the initials of the
authors that first introduced them, for instance the families from [8, Definition 2] are called
w-AD families; the families from [40, Definition 2.3] are called r-BGT families; the families
from [37, Definition 3.4] r-BG families and so on.
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Space in Polynomial Calculus Regarding space in Polynomial Calculus the
main results, in short, are the following:

• a combinatorial framework to prove space lower bounds in Polynomial
Calculus, cf. Theorem 3.6;

• asymptotically optimal lower bounds on the space needed to refute random
k-CNF formulas (and the graph pigeonhole principle) in Polynomial
Calculus, cf. Theorem 4.36 and Theorem 4.38. This result was conjectured
to be true and posed as an open problem in many works, for instance [4,
22, 70].

The space lower bound in Polynomial Calculus (Theorem 3.6) is one of the
main contributions of this thesis and builds on the definition of r-BG family
(Definition 3.4). This definition is one of the main innovations of this work, since
it reduces space lower bounds in algebraic proof systems to a combinatorial
property on families of Boolean assignments. Our definition resembles the
definition of k-dynamical satisfiability in [67] which was used to prove space
lower bounds for Resolution. Likewise, the definition of r-BG family is analogous
to the definition of winning strategies for the Duplicator in the k-existential
Spoiler-Duplicator game which led to the proof that in Resolution ‘clause space
is lower bounded by width’, cf. [8]. Informally, Theorem 3.6 states the following:

Given an unsatisfiable CNF formula ϕ, if there exists an r-BG family
of partial assignments for ϕ then the monomial space in Polynomial
Calculus to refute ϕ is at least r

4 .

We recall that Polynomial Calculus manipulates polynomials with coefficients
in a field F but this result is independent from the characteristic of F and is
valid over any field. The actual statement of Theorem 3.6 is more general and
holds for a semantic version of Polynomial Calculus, cf. Section 3.1.

The space lower bound in Polynomial Calculus to refute random k-CNF
formulas, Theorem 4.36, relies on an explicit construction of an r-BG family for
such formulas. This is done in Section 4.8 and such construction relies on some
general games, the Cover Games, defined in Section 4.6. Such games are an
extension of the Matching Game devised in [24]. Unlike previous works that
deal with classical matchings in bipartite graphs, here the game is generalized
to C -matchings: while a classical matching is a collection of vertex disjoint
edges, a C -matching is a collection of vertex disjoint graphs from the one in
some sample space C . For example a V-matching in a graph G is a collection of
vertex disjoint subgraphs of G that looks like a V and similarly in VW-matchings
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subgraphs that look like V or W are allowed. The formal definition needs some
more technical details and it is in Section 4.6.

Then informally, given a bipartite graph G, the Matching Game guarantees
that there is a family of matchings F such that each matching in F can be
enlarged to cover new vertexes in G or shrunk while remaining in F and the
family F has large matchings in it. The same kind of game is addressed for
C -matchings: the Cover Game guarantees that there is a family of C -matchings
L such that each to C -matching in L can be added new connected components
to cover new vertexes in G or removed connected components while remaining in
L and the family L contains C -matchings with many connected components.

Part of our contribution deals with extending classical results for matchings
to V-matchings and VW-matchings. In particular we prove an analogue of Hall’s
Theorem, cf. Theorem 3.12, for VW-matchings; we prove an analogue of the
Matching Game for V-matchings, cf. Theorem 4.15; we prove an analogue of
the Matching Game for VW-matchings, cf. Theorem 4.22.

The construction we gave equally applies to random k-CNF formulas7 and
to the matching principle over graphs, G-PHP, cf. respectively Section 4.8 and
Section 4.9.

The results on monomial space in Polynomial Calculus in this thesis rely on
the following works:

(Bonacina and Galesi [36]) Ilario Bonacina and Nicola Galesi. Pseudo-
partitions, transversality and locality: a combinatorial characterization
for the space measure in algebraic proof systems. In Robert D. Kleinberg,
editor, Innovations in Theoretical Computer Science, ITCS ’13, Berkeley,
CA, USA, January 9-12, 2013, pages 455–472. ACM, 2013. doi: 10.
1145/2422436.2422486. URL http://doi.acm.org/10.1145/2422436.
2422486

(Bonacina and Galesi [37]) Ilario Bonacina and Nicola Galesi. A frame-
work for space complexity in algebraic proof systems. J. ACM, 62(3):
23, 2015. doi: 10.1145/2699438. URL http://doi.acm.org/10.1145/
2699438

(Bennett et al. [31]) Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony
Huynh, Mike Molloy, and Paul Wollan. Space proof complexity for random
3-CNFs. CoRR, abs/1503.01613, 2015. URL http://arxiv.org/abs/
1503.01613

7The case k > 4 was proved in [36, 37], while the case k = 3 was proved in [31] and
required the introduction of the VW-matchings.

http://doi.acm.org/10.1145/2422436.2422486
http://doi.acm.org/10.1145/2422436.2422486
http://doi.acm.org/10.1145/2699438
http://doi.acm.org/10.1145/2699438
http://arxiv.org/abs/1503.01613
http://arxiv.org/abs/1503.01613
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Total space in Resolution Regarding total space in Resolution the main
result is a general technique to prove total space lower bounds in Resolution,
cf. Theorem 2.5. In particular in Resolution we prove that ‘total space is lower
bounded by the square of width’, cf. Corollary 2.11. Then, as corollaries, we have
the following:

1. An asymptotically optimal total space lower bound in Resolution for
Tseitin formulas over d-regular expander graphs, cf. Theorem 4.7. This
result completely answers an open problem from [4, Open question 2].

2. An asymptotically optimal total space lower bound in Resolution for
random k-CNF formulas, cf. Theorem 4.36. This result completely answers
an open problem from [4, 22, 68] among others.

3. An optimal separation of Resolution and semantic Resolution from the
point of view of the total space measure, cf. the discussion at the end of
Section 2.5 on page 33. This result completely answers [4, Open question
4] for Resolution.

Informally, our main theorem for total space in Resolution, Theorem 2.5, states
the following

Given an unsatisfiable CNF formula ϕ, if there exists a r-BK family
of assignments for ϕ then the total space in Resolution to refute ϕ
is at least r2

4 . More precisely any refutation of ϕ must pass through
a memory configuration of at least r/2 clauses each of width at least
r/2.

In [40] we proved an analogue of Theorem 2.5 using r-BGT families of assign-
ments instead of the r-BK families from [32, Definition 21]. Although the
extreme similarity among r-BGT and r-BK families, cf. Section 2.1 for more
details, in this thesis we prefer to use r-BK families since those families al-
low us to prove that ‘total space is lower bounded by the square of the width’,
cf. Corollary 2.11. This corollary is an original contribution of this thesis.

Regarding the corollaries listed above we have that all of them could be
obtained from known width lower bounds and Corollary 2.11. On the other
hand some particular r-BG families imply the existence of (r − 1)-BK families8,
cf. Proposition 3.5, and this is the case for the families we will construct to
prove monomial space lower bounds in PCR. Hence, typically, in this thesis we
will prove at the same time monomial space lower bounds in PCR and total

8This implication is analogous to the implication between some r-BG families and
(r − 1)-BGT families showed in [31].
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space lower bounds in resolution. Indeed the result on total space was inspired
by the r-BG families from [36].

In Section 2.5 we show that Theorem 2.5 carries on for a bounded version
of semantic Resolution, cf. Theorem 2.6. For total space in semantic Resolution
we show some total space lower bounds but those are lower bunds for restricted
class of formulas, the so called n-semiwide formulas, cf. Definition 2.7 and
Theorem 2.8.

The results on total space in Resolution rely on the following works:

(Bonacina et al. [40]) Ilario Bonacina, Nicola Galesi, and Neil Thapen.
Total space in resolution. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 641–650. IEEE Computer Society, 2014. doi: 10.1109/FOCS.
2014.74. URL http://dx.doi.org/10.1109/FOCS.2014.74

(Bennett et al. [31]) Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony
Huynh, Mike Molloy, and Paul Wollan. Space proof complexity for random
3-CNFs. CoRR, abs/1503.01613, 2015. URL http://arxiv.org/abs/
1503.01613

Strong size lower bounds in Resolution The last chapter of this thesis, Chap-
ter 5, contains the following results:

• A strong width lower bound for Resolution, cf. Thorem 5.6.

• A strong size lower bound for a generalisation of regular Resolution,
cf. Corollary 5.8.

A strong size lower bound is a lower bound on the length of refutations of
unsatisfiable k-CNF formulas ϕ in n variables of the form

2(1−εk)n, (1.3)

where εk → 0 as k → ∞. We show a strong size lower bound for δ-regular
Resolution, a sub-system of Resolution where at most δn variables can be re-
solved multiple times while refuting an unsatisfiable CNF formula in n variables,
cf. Corollary 5.8. In order to prove the result in equation (1.3) we further
develop the game characterization of Resolution size by Pudlák [118], we show
a general hardness amplification result lifting width lower bounds to size lower
bound in δ-regular Resolution and we improve and simplify the strong width
lower bound by Beck and Impagliazzo [21], cf. Theorem 5.6. The results on
strong width and strong size lower bounds are based on:

http://dx.doi.org/10.1109/FOCS.2014.74
http://arxiv.org/abs/1503.01613
http://arxiv.org/abs/1503.01613
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(Bonacina and Talebanfard [39]) Ilario Bonacina and Navid Talebanfard.
Strong ETH and Resolution via Games and the Multiplicity of Strate-
gies. In Thore Husfeldt and Iyad Kanj, editors, 10th International Sym-
posium on Parameterized and Exact Computation (IPEC 2015), vol-
ume 43 of Leibniz International Proceedings in Informatics (LIPIcs), pages
248–257, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-92-7. doi: http://dx.doi.org/10.
4230/LIPIcs.IPEC.2015.248. URL http://drops.dagstuhl.de/opus/
volltexte/2015/5587

(Bonacina and Talebanfard [38]) Ilario Bonacina and Navid Talebanfard.
Improving resolution width lower bounds for k-CNFs with applications
to the Strong Exponential Time Hypothesis. Information Processing
Letters, 116(2):120 – 124, 2015. ISSN 0020-0190. doi: http://dx.doi.
org/10.1016/j.ipl.2015.09.013. URL http://www.sciencedirect.com/
science/article/pii/S0020019015001684

1.7 Organization of this thesis

The results on space in Polynomial Calculus are technically more involved than
the constructions for the total space lower bounds in Resolution, hence we
chose to follow a gradual approach starting with Resolution and then moving
to Polynomial Calculus. Then we end this thesis with some results not related
with space but with size in Resolution, cf. Chapter 5.

Each chapter starts with some more detailed overview of the results/techniques
introduced and ends with a list of related open problems.

Chapter 2 In this chapter we focus on the theoretical results we have on total
space in Resolution, on semantic total space and on the connection with width
and a similar measure called asymmetric width. Section 2.7 contains a recap of
some interesting applications, more details will be given in Chapter 4.

Chapter 3 In this chapter we construct the framework to prove monomial
space lower bounds in Polynomial Calculus. Then the applications of this
framework are collected in Chapter 4.

This chapter is largely independent from Chapter 2. Only Section 2.2,
containing some notations on partial assignments, is needed to understand
Chapter 3. The rest of Chapter 2 is intended to be also helpful allowing the
reader to familiarise with some notations and proof techniques.

http://drops.dagstuhl.de/opus/volltexte/2015/5587
http://drops.dagstuhl.de/opus/volltexte/2015/5587
http://www.sciencedirect.com/science/article/pii/S0020019015001684
http://www.sciencedirect.com/science/article/pii/S0020019015001684
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Chapter 4 This chapter consists of several sections, each focusing on some
particular class of formulas of interest in proof complexity. For each of them
we will prove some space-related results and we will give some context and
history. In particular each section contains the monomial and total space (in
Resolution) lower bounds we can get as application of the main results of the
previous chapters, cf. respectively Theorem 3.6 and Theorem 2.5.

The rationale behind the organization of this chapter is to start with less
complicated applications, for instance CTn formulas or PHPmn formulas, and
then move to more involved applications, for instance random k-CNF formulas
(cf. Section 4.8) and matching principles for graphs, cf. Section 4.9.

Chapter 5 This last chapter switch the focus from space to size: we show a
strong size lower bound for δ-regular Resolution, a sub-system of Resolution
intermediate between regular Resolution and Resolution; we further develop
the game characterization of Resolution size; we show a general hardness
amplification result lifting width lower bounds to size lower bounds in δ-regular
Resolution; and we improve and simplify the strong width lower bound from [21].

Appendix For the convenience of the reader we collect in an appendix the
definition of the r-BGT families from [40] and some additional proofs about the
asymmetric width.



2
Total space in Resolution

In this chapter show a technique to prove total space lower bounds in Resolution
and we connect it to other well studied complexity measures. Then in Chapter 4
we apply this construction to some families of contradictions well-studied in
proof complexity. In Section 2.7 we recap some of the applications we can get
from the abstract results we have in this chapter, in particular concerning total
space for Tseitin formulas, cf. [4, Open question 2], and asymptotically optimal
total space lower bounds for random k-CNF formulas.

2.1 Main results + credits

Informally our main theorem for total space in Resolution, Theorem 2.5, states
the following

Given an unsatisfiable CNF formula ϕ, if there exists a r-BK family
of assignments for ϕ then the total space in Resolution to refute ϕ
is at least r2

4 . More precisely every resolution refutation of ϕ must
pass through a memory configuration containing at least r/2 clauses
of width at least r/2.

The techniques we use in this chapter to prove the total space lower bounds in
Resolution are deeply based on [40] but are different in the type of combinatorial
objects used. In [40] we used r-BGT families of piecewise assignments here we
use instead the r-BK families of assignments from [32, Definition 21], cf. Def-
inition 2.4. Although the similarity among the r-BK families and the r-BGT
families, the reason we prefer the k-BK families against the r-BGT families
is that the k-BK families characterize the asymmetric width, cf. Beyersdorff

23
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and Kullmann [32, Theorem 22] and Theorem 2.9. This characterization is
analogous to the characterization of the Resolution width using the w-AD
families, cf. [8] and Theorem 2.3. We refer to Appendix A.1 for the definition
of r-BGT families and the main theoretical result of [40]. The use of r-BK
families allows us to prove that ‘total space is lower bounded by the square of
the width’, cf. Corollary 2.11, which is an original contribution of this thesis.
From this result, and the fact that in the literature we have a lot of width
lower bounds in Resolution, we will have immediately a lot of total space lower
bounds. Hence, we narrowed the gap between the understanding we have of
clause space and the understanding we had of total space, that is very limited
before [4, 40] and this work. In Section 2.5 we show indeed that our total space
lower bound argument carry on for a bounded version of semantic Resolution,
cf. Theorem 2.6. For total space in semantic Resolution we show that there are
some total space lower bounds but those are lower bunds for a restricted class of
formulas, the so called n-semiwide formulas, cf. Definition 2.7 and Theorem 2.8.
An optimal separation of Resolution and semantic Resolution from the point of
view of the total space measure appears at the end of Section 2.5 on page 33.
This result completely answers the question [4, Open question 4] for Resolution,
that is asking whether total space in Resolution and semantic total space are
asymptotically equivalent.

2.2 Partial assignments

We recall now some very basic definitions and notations about partial as-
signments. Given a set of variables X, a partial assignment over X (or just
assignment) is a map α : X → {0, 1, ?}, where X is a set of variables.

In the context of Resolution ‘1’ has the meaning of true and ‘0’ the meaning
of false. The domaindom of α is dom(α) = α−1({0, 1}) and we say that α is
assigning a value to x if and only if x ∈ dom(α). With λλ we denote the partial
assignment with empty domain. With |α||α| we denote |dom(α)|. Given a family
of partial assignments F , let dom(F ) =

⋃
α∈F dom(α). Two families of partial

assignments F and F ′ are domain-disjointdomain-disjoint if the sets dom(F ) and dom(F ′) are
disjoint.

Given two partial assignments α and β, their unionα ∪ β α ∪ β is the partial
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assignment

α ∪ β(x) =


α(x) if x ∈ dom(α) \ dom(β),
β(x) if x ∈ dom(β) \ dom(α),
α(x) if x ∈ dom(α) ∩ dom(β) and α(x) = β(x),
? otherwise.

Given a partial assignment α over X and Y ⊆ X, the restriction α�Y, α�Y , is the
partial assignment

α�Y (x) =

α(x) if x ∈ Y ,
? otherwise.

We say that β extends α α ⊆ β, α ⊆ β, if β �dom(α)= α. Given a family F of partial
assignments over X and given Y ⊆ X we define F �Y = {α �Y : α ∈ F}.

Given a CNF formula ϕ over the variables X and a partial assignment α
over X, we can apply α to ϕ obtaining a new formula α(ϕ) α(ϕ) ϕ|α, or denoted as ϕ|α,
in this way: substitute each variable x in ϕ with the value α(x) if x ∈ dom(α),
or otherwise leave x untouched. Then simplify the result with the usual rules:
0 ∨A ≡ A, 1 ∨A ≡ 1, 0 ∧A ≡ 0, 1 ∧A ≡ A. We say that α satisfies ϕ α � ϕ, α � ϕ,
if α(ϕ) = 1. Similarly, for a family F of partial assignments we write F � ϕ if
for each α ∈ F , α � ϕ.

2.3 Space - preliminaries

The definition of the space measures was made formal for Resolution by Esteban
and Torán [66] and Alekhnovich et al. [4] as follows. A memory configuration memory configuration,
or just configuration, is a set of clauses. We assume that a Resolution refutation
of ϕ is given in the form of a sequence M0, . . . ,M` of memory configurations,
where M0 is empty, M` contains the empty clause, and each Mi+1 is derived
from Mi in one of the following three ways:

(Axiom download) Mi+1 = Mi ∪ {C}, where C is a clause from ϕ;

(Erasure) Mi+1 ⊆Mi;

(Inference) Mi+1 = Mi ∪ {D} where D follows from two clauses in Mi by
the Resolution rule.

Following Esteban and Torán [66] and Alekhnovich et al. [4], given a sequence
of memory configurations π = (M0, . . . ,M`), the clause space used by π,
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CSpace(π)CSpace(π) , is the maximum number of clauses in any configuration Mi in
the sequence π. If we take the minimum of CSpace(π) over all the possible
sequences of memory configurations π that are Resolution refutations of ϕ we
have CSpace(ϕ ` ⊥)CSpace(ϕ ` ⊥) .

Given a sequence of memory configurations π = (M0, . . . ,M`), the total
space used by π, TSpace(π)TSpace(π) , is the maximum over i of the total number of
instances of variables occurring in Mi (we ignore punctuation and logical
connectives). If we take the minimum of TSpace(π) over all the possible
sequences of memory configurations π that are Resolution refutations of ϕ we
have TSpaceRes(ϕ ` ⊥)TSpaceRes(ϕ ` ⊥) .

In some of the space related results in Resolution, for instance Propostion 2.2,
the actual inference rule is not important, as long as we substitute that rule
with a sound rule. This leads to the definition of semantic Resolution.

A semantic Res derivationsemantic Res of a clause D from a CNF formula ϕ is sequence of
memory configurations π = (M0, . . . ,M`) where M0 = ∅, D is in M` and from
a memory configuration Mi we can move to a configuration Mi+1 ⊆Mi ∪ C,
where either

(Semantic inference) C is implied byMi, that is for each partial assignment
α, if α �Mi then α � C; or

(Axiom Download) C ∈ ϕ.

The semanticCSpacesem(ϕ ` ⊥) clause space, CSpacesem(ϕ ` ⊥), is defined in [4] analogously to
CSpace(ϕ ` ⊥): it is the minimum of CSpace(π) over all the possible sequence
of memory configurations π = (M0, . . . ,M`) that are semantic Resolution
refutations of ϕ.

The semanticTSpacesemRes (ϕ ` ⊥) total space, TSpacesemRes (ϕ ` ⊥), is defined in [4] analogously to
TSpaceRes(ϕ ` ⊥): it is the minimum of TSpace(π) over all the possible sequence
of memory configurations π = (M0, . . . ,M`) that are semantic Resolution
refutations of ϕ.

Some results on space Esteban and Torán [66] showed that for any unsatisfi-
able CNF formula ϕ in n variables then

CSpace(ϕ ` ⊥) 6 n+ 1. (2.1)

The upper bound they show is indeed stronger since it holds for tree-like
Resolution. An immediate consequence of this clause space upper bound is the
following upper bound on total space in Resolution:

TSpaceRes(ϕ ` ⊥) 6 n(n+ 1). (2.2)
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A first interesting property of the clause space in Resolution is that it is
asymptotically equivalent to the clause space in semantic Resolution.

Proposition 2.1 (Alekhnovich et al. [4]). For any unsatisfiable CNF formula
ϕ, CSpacesem(ϕ ` ⊥) 6 CSpace(ϕ ` ⊥) 6 2 · CSpacesem(ϕ ` ⊥).

Alekhnovich et al. [4] asked if the analogue of this result could hold for total
space in Resolution. A negative answer is shown in Section 2.5.

Regarding lower bounds on semantic clause space we have the following
general result.

Proposition 2.2 (Atserias and Dalmau [8]). Let ϕ be an unsatisfiable k-CNF
formula, then CSpacesem(ϕ ` ⊥) > width(ϕ ` ⊥)− k + 2.

We are quoting this result, and the proof by Atserias and Dalmau [8], since,
in Section 2.4, we will prove an analogous relation between total space in
Resolution and asymmetric width, cf. Corollary 2.11. Moreover the proof is
instructive since it has some structural analogies with the (more involved) proofs
for total space in Resolution, cf. Section 2.4, and monomial space in algebraic
proof systems, cf. Section 3.4.

In order to prove Proposition 2.2, Atserias and Dalmau [8] used the following
characterization of width, which in turn is really helpful in proving width lower
bounds and hence also size lower bounds, due to the Pudlák games [118] and
the size-width relation by Ben-Sasson and Wigderson [30], cf. equation (1.1).

Theorem 2.3 (Atserias and Dalmau [8]). Let ϕ be an unsatisfiable CNF
formula, then width(ϕ ` ⊥) > w if and only if there exists a non-empty family
of partial assignments F with the following properties:

(Consistency) for every α ∈ F and every clause C in ϕ, α(C) 6= 0;

(Extension) If α ∈ F and β ⊆ α such that |β| < w, then for every variable
x /∈ dom(α), there exist β′ ∈ F with β ⊆ β′ such that x ∈ dom(β′).

We call families of partial assignments with the properties above w-AD families w-AD1.

We will use this result also in Chapter 5 but for the moment we use it to
prove Proposition 2.2, as in Atserias and Dalmau [8]2.

1In [8] it is required that a w-AD family is closed under restrictions. This is not needed
in order to obtain this characterization.

2An alternative proof of Proposition 2.2 for CSpace(ϕ ` ⊥), not relying on w-AD families,
was given by Filmus et al. [69].
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Proof of Proposition 2.2. Let F be a non-empty w-AD family of assignments
for ϕ. Suppose, by contradiction, that there exists sequence of memory con-
figurations π = (M0, . . . ,M`) that is a Resolution refutation of ϕ such that
CSpace(π) 6 w − k + 1. We show, by induction on i = 0, . . . , `, that there
exists βi ∈ F such that βi � Mi. This leads to an immediate contradiction
since M` = {⊥} is unsatisfiable. The base case i = 0 follows trivially: since F

is non-empty then there is some α in F . We take β0 = α and clearly β0 �M0

since M0 = ∅. Suppose now that we are in the case where 1 6 i 6 ` and
Mi ⊆Mi−1 ∪ {C}, then we have to distinguish two cases:

(Sem. Inference case) Mi−1 � C. Hence βi = βi−1 is such that βi �Mi.

(Axiom Download case) C ∈ ϕ. It is immediate to see that if βi−1 �Mi−1

then we can restrict it to some β′i−1 such that β′i−1 �Mi−1 and |β′i−1| 6 |Mi−1|
3. By hypothesis, |Mi| 6 w − k + 1, hence |Mi−1| 6 w − k and |β′i−1| 6 w − k.
By the extension property of F , it is possible to extend β′i−1 k times to a βi
with domain including all the variables appearing in C, since |C| 6 k. Now
βi ∈ F hence, by the consistency property of F , βi cannot falsify C. Since
each variable of C is assigned by βi, it must be that βi � C. Hence βi �Mi.

2.4 Total space lower bounds

We are now going to show the main results we have on total space4 and hence
we start from the definition of r-BK families. Notice that this definition is very
similar to the one of w-AD families, the difference is in the extension property:
in the w-AD families we just require that we can extend to either setting the
new variable to 0 or to 1, in the r-BK families we require to be able to extend
to both values. More precisely we have the following definition.

Definition 2.4 (r-BK, Beyersdorff and Kullmann [32]).r-BK A family F of as-
signments is r-BK for a CNF formula ϕ if it has the following properties:

(Consistency) for every α ∈ F and every clause C in ϕ, α(C) 6= 0;

3For completeness we show how β′i−1 is constructed. For each clause C there is at least a
literal `C in C such that βi−1(C) = 1. Take one of such literals `C for each clause, clearly
|{`C : C ∈Mi−1}| 6 |Mi−1| and hence to satisfy Mi−1 it is sufficient to restrict βi−1 to the
set of variables appearing in the set of literals {`C : C ∈Mi−1}. This restriction of βi−1 is
our β′i−1.

4This exposition follows closely [40], the only difference is that we use r-BK families of
assignments instead of the r-BGT families from [40]. We recall the definition of r-BGT families
in Appendix A.1.
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(Extension) If α ∈ F and β ⊆ α is such that |β| < r, then for every variable
x /∈ dom(α) there exist β0, β1 ∈ F with β ⊆ β0, β1 such that β0(x) = 0
and β1(x) = 1.

We show now that the existence of a non-empty r-BK family for a formula
ϕ imply a r2

4 total space lower bound for Resolution refutations of ϕ5.

Theorem 2.5. Let ϕ be an unsatisfiable CNF formula. If there is a family of
assignments which is r-BK for ϕ, then

TSpaceRes(ϕ ` ⊥) > r2

4 .

More precisely, we show that any refutation of ϕ in Res must pass through a
memory configuration containing at least r/2 clauses each of width at least r/2.

Proof. Let F be a non-empty family of assignments which is a r-BK family for
ϕ and let π = (M0, . . . ,M`) be a Res refutation of ϕ, given as a sequence of
memory configurations. Consider the set

S = {C clause : ∃α ∈ F α(C) = 0}.

Observe that, since F is non-empty, then ⊥ ∈ S and, by the consistency
property of F , no clause from ϕ is in S. Hence, let

A = {i ∈ [`] : ∃C ∈Mi ∩ S |C| < r/2}.

Clearly A is non-empty, hence let t = minA and let C ∈Mt ∩ S be a clause of
width less than r/2. Let α ∈ F be a partial assignment that falsifies C and
let αC be the minimal partial assignment contained in α falsifying C. We have
that |αC | = |C| and notice that αC may not be in F . Our goal now is to show
that there is some i < t such that |Mi ∩ S| > r/2. Since for every i < t every
clause in Mi ∩ S has width at least r/2, this will give the desired result.

Suppose, for sake of contradiction, that for each i < t, |Mi ∩ S| < r/2. We
inductively construct a sequence of assignments β0, . . . , βt in F such that for
each i 6 t we have that αC ⊆ βi and that βi �Mi ∩ S. This immediately give
a contradiction when we reach βt, since αC falsifies the clause C ∈Mt ∩ S and
βt ⊇ αC .

The first configuration M0 is empty, so we can put β0 = αC . Supposing
that 0 6 i < t and that we already have a suitable βi, we construct βi+1

distinguishing between two cases.
5The proof of this result is analogous to the proof of [40, Theorem 2.4].
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(Axiom download case) Mi+1 ⊆Mi ∪ {D}, where D is a clause from ϕ. By
the consistency property of F , D is not in S and we can simply put βi+1 = βi.

(Inference case) Mi+1 ⊆Mi ∪ {D ∨ E} where D ∨ E follows by Resolution
on some variable x from two clauses D ∨ x and E ∨ ¬x in Mi. Then, by the
inductive hypothesis, there exists βi ∈ F such that βi �Mi ∩ S and let β be
a minimal size assignment contained in βi such that αC ⊆ β and β �Mi ∩ S.
We have that6

|β| 6 |αC |+ |Mi ∩ S| < r/2 + r/2 = r.

Hence we can use the extension property of F on βi. If D ∨ E contains a
variable outside dom(βi), then by the extension property we can extend β to
some βi+1 ∈ F which satisfies D ∨E, as required. Suppose that all variables in
D ∨ E are set by β. If x ∈ dom(βi) let βi+1 = βi, and otherwise let βi+1 ∈ F

be any extension of β which assigns a value to x. Then βi+1 sets all variables in
both D ∨ x and E ∨ ¬x. It cannot falsify either clause, since that would imply
that that clause is in S and thus is already satisfied by βi. Therefore it must
satisfy both clauses and thus also satisfy D ∨ E.

This proof deserves a bit of explanation. Informally, we can think of each
element C of S as identified with a minimal assignment βC in F which falsifies it.
Then, since F is non-empty, S contains some assignment and, by the extension
property of F , has a rich structure. In particular, if a clause C in π ∩ S has
width less than r and was derived by Resolution on a variable outside dom(βC),
then both parents of C in π are in S. The proof of Theorem 2.5 then uses an
idea from [4], taking the first clause C in S with small width and applying the
usual clause space lower-bound argument (cf. proof of Proposition 2.2) to the
substructure of S which derives C.

We want to stress the fact that this proof is intrinsically different from
the proof of Proposition 2.2. In particular in both proofs we have an axiom
download case and an inference case. In this proof the easy case is the axiom
download, while in the proof of Proposition 2.2 the easy case is the inference. If
we, intuitively, believe that total space and semantic total space in Resolution
are separated then the fact that inference case in the above proof is the ‘hard’
case is to be expected. Otherwise (informally) the proof would have been valid
for semantic total space too, while we (informally) believe this is not the case.

6The easy observation to prove |β| 6 |αC |+ |Mi ∩S| is virtually identical to the argument
we gave in the footnote 3 on page 28.
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2.5 Semantic total space

In the previous section we argued that the proof of Theorem 2.5 cannot be
generalized to semantic total space but, indeed, it could be generalized to a
bounded version of semantic Resolution. This is essentially due to the fact that
the proof of Theorem 2.5 does not depend ‘very much’ on the syntax of the
inference rule but only on the number of premises.

In this section, first we see how to generalize Theorem 2.5 to a system that
we called d-semantic Resolution, cf. Theorem 2.6; then we see a class of formulas
for which we have semantic total space lower bounds; eventually we show that
total space and semantic total space could be separated in the strongest way
possible.

A d-semantic d-semantic ResResolution derivation of a clause D from a CNF formula ϕ is
a sequence of memory configurations π = (M0, . . . ,M`) where M0 = ∅, D is
in M` and from a memory configuration Mi we can move to a configuration
Mi+1 ⊆Mi ∪ {C}, where either

(d-semantic inference) the clause C is implied by some set of at most d
clauses in Mi, for a fixed integer d; or

(axiom download) C ∈ ϕ.

Similarly as what we have seen before, we can easily adapt the space
measures definitions to d-semantic Resolution: that is TSpaced-sem

Res (ϕ ` ⊥) TSpaced-sem
Res (ϕ ` ⊥)is

the minimum of TSpace(π) over all sequences of memory configurations π that
are a d-semantic Resolution refutation of ϕ. Then easily we have the following
generalisation of Theorem 2.5 to total space in d-semantic Resolution7.

Theorem 2.6. Let ϕ be an unsatisfiable CNF formula and suppose d 6 r. If
there is a non-empty family of assignments which is r-BK for ϕ, then

TSpaced-sem
Res (ϕ ` ⊥) > (r − d)2/4.

More precisely any d-semantic Resolution refutation of ϕ must pass through a
configuration containing at least (r−d)/2 clauses each of width at least (r−d)/2.

Proof. The proof is the same as for Theorem 2.5, except that we replace
the bound r/2 with (r − d)/2 and use a different argument for the inference
case, as follows. Suppose Mi+1 ⊆ Mi ∪ {E} where E is implied by clauses
D1, . . . , Dd ∈ Mi. We may assume that we have some βi ∈ F such that

7The following result and proof is virtually identical to [40, Theorem 7.1].
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βi � Mi ∩ S and let β ⊆ βi of minimal size such that β � Mi ∩ S. Since
|αC | < (r − d)/2 and |Mi ∩ S| < (r − d)/2, then |β| 6 |αC |+ |Mi ∩ S| < r − d.

Either D1 is satisfied by βi or it is not. If it is, let γ1 = βi. If not, then D1

cannot be in S, since βi satisfies all members of Mi ∩ S. It follows that D1 is
not falsified by βi either, otherwise D1 would be in S. Then, by the inductive
hypothesis, D1 will be satisfied by βi. So D1 thus must contain some literal
not set by βi. In this case let γ1 ∈ F be an extension of β which satisfies this
literal.

We have found γ1 ∈ F which satisfies D1 with β ⊆ γ1. We then take a
minimal partial assignment γ′1 contained in γ1 such that γ′1 � D1 and γ ⊇ β.
We have that |γ′1| 6 |β|+ 1 < r− d+ 1, so we can repeat the previous reasoning
to γ′1 and D2 instead of β and D1 and again up to Dd. In this way we build
a sequence of extensions γ1 ⊆ γ2 ⊆ · · · ⊆ γd in F , finishing with γd which
satisfies each of D1, . . . , Dd and thus also satisfies the inferred clause E. We
put βi+1 = γd.

We show now that some particular CNF formulas have total space lower
bounds in semantic Resolution. Those formulas are the r-semiwide formulas.

Definition 2.7 (semiwide formula, Alekhnovich et al. [4]). For a CNF formula
σ and a partial assignment α, we say that α is σ-consistentσ-consistent if α can be extended
to satisfy σ. A CNF formula ϕ is r-semiwider-semiwide if ϕ = σ ∧ ω, where σ is a
satisfiable CNF formula, and for each σ-consistent partial assignment α and
each clause C from ω, if |α| < r then α can be extended to an ω-consistent
assignment which satisfies C.

Alekhnovich et al. [4] showed that if ϕ is r-semiwide then

CSpacesem(ϕ ` ⊥) > r.

We now strengthen this resultand show that TSpacesemRes (ϕ ` ⊥) > r2

4 .
The argument we present8 is a straightforward generalisation of the total

space lower bounds by Alekhnovich et al. [4] for two particular n-semiwide
formulas: PHPn+1

n and CTn, the only total space lower bound known before
[40]. We refer to Section 4.4 for the definition of PHPmn and to Section 4.3 for
the definition of CTn.

Theorem 2.8. Let ϕ be an unsatisfiable r-semiwide CNF formula. Then,

TSpacesemRes (ϕ ` ⊥) > r2

4 .

8The same from [40, Theorem 7.3].
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More precisely, every semantic Resolution refutation of ϕ must pass through a
memory configuration containing r/2 clauses each of width at least r/2.

Proof. Let ϕ = σ ∧ ω as in Definition 2.7 and let (M1, . . . ,Ms) be a refutation
of ϕ. Let M∗i = {C ∈ Mi : σ 6� C}. Take the first t such that there exists
a clause C ∈M∗t of width strictly less than r/2. Fix such a clause C and let
α be the minimal partial assignment falsifying C. Then α is σ-consistent and
|dom(α)| = |C| < r/2.

It is now enough to show that |M∗i | > r/2 for some i < t, since for i < t

every clause in |M∗i | has width at least r/2. So suppose for a contradiction that
|M∗i | < r/2 for all i < t. We prove by induction that for each i = 1, . . . , t there
exists some σ-consistent βi ⊇ α such that βi �M∗i . This leads immediately to
a contradiction when i = t.

For the erasure case we put βi+1 = βi. For the semantic inference case,
that is Mi � Mi+1, we let βi+1 be any extension of βi which satisfies σ.
Then from the fact that βi+1 � M∗i ∧ σ it follows that βi+1 � Mi and hence
βi+1 �Mi+1. For the axiom download case, suppose that Mi+1 = Mi ∪ {D}
with D a clause from ω. We may assume without loss of generality that
|dom(βi)| 6 |dom(α)|+ |M∗i | < r. Hence by the r-semiwideness of ϕ there is a
σ-consistent βi+1 ⊇ βi such that βi+1 � D.

Alekhnovich et al. [4] ask whether the total space in Resolution and the
total space in semantic Resolution are linearly related, that is if the same of
Proposition 2.1 is true for total space.

This is not the case. Indeed for almost every k-CNF formula in n variables
and Θ(n) many clauses

TSpacesemRes (ϕ ` ⊥) = Θ(n),

while
TSpaceRes(ϕ ` ⊥) = Θ(n2).

In particular, in Section 4.8, we will see that given ϕ an unsatisfiable random
k-CNF formula with n variables and ∆n clause. We can refute ϕ in semantic
Resolution by simply writing down all the clauses of ϕ and then deriving the
empty clause in one step. This uses total space ∆kn, the size of ϕ. So, if ∆
and k are constants then TSpacesemRes (ϕ ` ⊥) = Θ(n). On the other hand, when
n is large, TSpaceRes(ϕ ` ⊥) = Θ(n2), by Theorem 4.36.
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2.6 From width to total space

In this section we exploit the connection between r-BK families and asymmetric
width to obtain an analogue of the ‘clause space is lower bounded by width’,
cf. Proposition 2.2 by Atserias and Dalmau [8]. That is we will prove that in
Resolution ‘total space is lower bounded by the square of the width’, cf. Corol-
lary 2.12. In order to prove this relation we define precisely the asymmetric
width9 and to do that we need to be more precise on the DAG structure we
associate to Resolution proofs.

Let ϕ be an unsatisfiable CNF formula and π = (C1, . . . , C`) be a sequence
of clauses such that C` = ⊥. We say that a function σ : [`] →

([`]
2
)
∪ {?} is

witnessingwitness function the fact that π is a refutation of ϕ if and only if

1. σ(i) = {j, k} imply that j, k < i and Cj Ck
Ci

is a valid instance of the Res
rule and

2. σ(i) = ? imply that Ci is a clause in ϕ.

Then given a sequence of clauses π = (C1, . . . , C`) such that C` = ⊥, a
witness function σ for the sequence π and a clause Ci in π, the asymmetric
width of Ci with respect to π and σawπ,σ(Ci) , awπ,σ(Ci), is defined as follows

awπ,σ(Ci) =

0 if σ(i) = ?, that is Ci ∈ ϕ,
minj∈σ(i) |Cj | otherwise.

Then awidth(π)awidth(π) is the minimum over all the possible functions σ witnessing the
validity of π of the maximum over i of awπ,σ(Ci), that is

awidth(π) = min
σ

max
Ci∈π

awπ,σ(Ci).

Finally, the asymmetric widthawidth(ϕ ` ⊥) needed to refute ϕ, awidth(ϕ ` ⊥), is the mini-
mum of awidth(π) over all possible sequence of clauses π = (C1, . . . , C`) that
are Resolution refutations of ϕ.

The notion of asymmetric width was introduced by Kullmann [101, 102]
and, although its definition is quite different from the definition of width, many
properties of the width carry over. For instance an analogue of the size-width
relation by Ben-Sasson and Wigderson [30]: given an unsatisfiable CNF formula
ϕ in n variables

ln (sizeRes(ϕ ` ⊥)) > awidth(ϕ ` ⊥)2

8n ,

9The original definition, as given by Beyersdorff and Kullmann [32], uses a different
notation but we preferred to present the notion avoiding the introduction of too many
notations.
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cf. [102, Theorem 6.12]. For more information and history on the asymmetric
width we refer to [32]. The main property we will use of the asymmetric width
is the following characterisation using r-BK families of assignments.

Theorem 2.9 (Beyersdorff and Kullmann [32, Theorem 22]). Let ϕ be an
unsatisfiable CNF formula, then awidth(ϕ `Res ⊥) > r if and only if there exists
a non-empty r-BK family of assignments for ϕ.

The proof of this result, for completeness in Appendix A.2, is essentially
the one in [32] and can be seen as a modification of the characterisation of
Resolution width by Atserias and Dalmau [8]. Indeed, width and asymmetric
width are complexity measures tightly connected, as the next result shows.

Theorem 2.10 (Kullmann [100, Lemma 8.5]). Let ϕ be an unsatisfiable k-CNF
formula, then

awidth(ϕ ` ⊥) 6 width(ϕ ` ⊥) 6 awidth(ϕ ` ⊥) + max{awidth(ϕ ` ⊥), k}.

For completeness, a proof of this result is in Appendix A.2. Such proof is
essentially a self-contained exposition of the one in the underlying report of [32].

Putting all the pieces together then we have a relation between total space
in Resolution and width.

Corollary 2.11. Let ϕ be an unsatisfiable k-CNF formula, then

TSpaceRes(ϕ ` ⊥) > 1
4 (awidth(ϕ `Res ⊥)− 1)2

>
1
16 (width(ϕ `Res ⊥)− k − 2)2

.

Proof. Let awidth(ϕ `Res ⊥) = r. By Theorem 2.9, there exists a non-empty
(r − 1)-BK family F for ϕ. By Theorem 2.5,

TSpaceRes(ϕ ` ⊥) > 1
4 (r − 1)2

.

Moreover, from Theorem 2.10 we immediately have that

width(ϕ ` ⊥) 6 2 · awidth(ϕ ` ⊥) + k,

hence the last inequality to prove follows.

Notice that, with the exact same proof of Corollary 2.11, we have indeed
the following stronger result, if instead of Theorem 2.5 we use Theorem 2.6.



36 2.7. Recap of applications

Corollary 2.12. Let ϕ be an unsatisfiable k-CNF formula, then

TSpaced-sem
Res (ϕ ` ⊥) > 1

4 (awidth(ϕ ` ⊥)− d− 1)2

>
1
16 (width(ϕ ` ⊥)− k − 2d− 2)2

.

We stress that an analogue of the previous corollaries cannot hold for total
space in semantic Resolution. In fact we know that there are 3-CNF formulas10

ϕ in n variables with a linear number of clauses such that

width(ϕ ` ⊥) = Ω(n).

On the other hand, by the trivial semantic Resolution proof of ϕ, we have that

TSpacesemRes (ϕ ` ⊥) 6 3|ϕ| = O(n),

in memory, so general versions of Corollary 2.12 and Corollary 2.12 for semantic
Resolution cannot hold.

2.7 Recap of applications

In Chapter 4 we collect some of the total space lower bounds we could obtain,
for instance quadratic asymptotically optimal lower bounds for random k-CNF
formulas among others. Although some total space lower bounds could be
obtained through width lower bounds proved elsewhere, Chapter 4 contains
also self contained proofs of some of the total space lower bounds we could get.
This is due to the fact that the (more complicated) combinatorial objects we
will use for space in Polynomial Calculus imply also total space lower bounds
in Resolution, cf. Chapter 3.

One notable exception are Tseitin formulas: we are able, using Corollary 2.11
to prove quadratic total space lower bounds for such formulas built over random
3-regular graphs, hence completely answering to [4, Open question 2]. On the
other hand, we do not know space lower bounds in Polynomial Calculus for
such formulas, cf. Section 4.5 for more details.

The applications we chose to cover in Chapter 4 include: the pigeonhole
principles, cf. Section 4.4, the Tseitin formulas, cf. Section 4.5, the random
k-CNF formulas, cf. Section 4.8, and the matching principles over graphs,
cf. Section 4.9.

10For instance random 3-CNF formulas with ∆n clauses with ∆ a constant, cf. Section 4.8.
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2.8 Open problems

1. Can we prove non-trivial total space lower bounds for stronger proof
systems such as bounded-depth Frege, Polynomial Calculus or Cutting
Planes?

We recall that for unrestricted Frege systems Alekhnovich et al. [4] showed
a linear upper bound (in the size of the CNF formula being refuted) on
total space. Regarding Cutting Planes some preliminary results on space
are showed in [75].

2. Is there a family of k-CNF formulas in n variables and poly(n) clauses
which have polynomial size Resolution refutations but which still require
quadratic, or at least super-linear, total space in Resolution?

Ben-Sasson and Wigderson [30] showed that if a k-CNF formula in n

variables has a Resolution refutation of size S then it also has a refutation
in which every clause has width at most O(

√
n logS). Hence we cannot

hope to use our arguments, which show large total space by finding many
clauses of large width.

3. Is there any formula for which we can prove some trade-offs between total
space and, for instance, size analogous to the ones we have for clause
space in Resolution?

Some of the size-related trade-offs in the literature are the following:
[19, 20, 27, 29, 107, 109].





3
Space in Polynomial Calculus

3.1 Introduction

In this chapter we focus on the construction of the framework to prove monomial
space lower bounds in Polynomial Calculus1. Then, the applications of this
framework are collected in Chapter 4. The monomial space lower bound
(Theorem 3.6) is one of our main contributions and builds on the definition of
r-BG family (Definition 3.4). This definition is one of the main innovations of
this work, since it reduces space lower bounds in algebraic proof systems to
a combinatorial property on families of Boolean assignments. Our definition
resembles the definition of k-dynamical satisfiability in [67] which was used to
prove clause space lower bounds for Resolution. Likewise, the definition of r-BG
families is analogous to the definition of winning strategies for the Duplicator in
the k-existential Spoiler-Duplicator game which led to prove that in Resolution
‘clause space is lower bounded by width ’, cf. [8] and Proposition 2.2.

The main contribution of this chapter is Theorem 3.6. It states the existence
of a precise relation between r-BG families and refutation space in Polynomial
Calculus, informally:

If there exists a non-empty r-BG family for an unsatisfiable CNF
formula ϕ, then the monomial space needed to refute ϕ in Polynomial
Calculus is at least r/4.

We recall that Polynomial Calculus is defined over a field F but this result is
independent from the characteristic of F and is valid over any field.

1The content of this chapter is based on [36, 37].

39
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Before introducing all the machinery we will need to show the monomial
space lower bounds we spend few words on why some simpler naïve approach
has no hope to work. A naïve approach could consist, for example, in trying to
mimic the approach followed for the ‘clause space is lower bounded by width’
(cf. proof of Proposition 2.2). That, in our context, will lead us to use the
following property: if an assignment α satisfies some polynomial p, that is
such that α(p) = 0, then |dom(α)| is at most the number of monomials in p.
Unfortunately this property is false: for instance p = 1−

∏r
i=1 xi has just two

monomials but any α such that α(p) = 0 must have |dom(α)| > r.
This phenomenon is not happening if we consider families of assignments,

consisting of many assignments with a combinatorial structure we called flippable
products, cf. Section 3.3. For such families we can define a notion of size that
is roughly lower bounding the number of monomials. This notion of size
turns out to be roughly the logarithm of the number of assignments in the
family. Then the monomial space lower bound we show, Theorem 3.6, has a
similar structure of the proof of the ‘clause space is lower bounded by width’,
cf. Proposition 2.2, but instead of using partial assignments and the r-AD
families we use flippable products and families of such flippable products we
called r-BG families, cf. Definition 3.4.

The main technical difficulty of this chapter is Lemma 3.9, the Locality
Lemma, that is a generalisation of [4, Lemma 4.14].

3.2 Polynomial Calculus and space - definitions

Following [4], given a set of variables X we define X = {x̄ : x ∈ X}, which we
regard as a set of new formal variables with the intended meaning of x̄ as ¬x.
Given a field F, the ring F[X ∪X] is the ring of polynomials in the variables
X ∪X with coefficients in F. In order to fix the semantical meaning of the X
and X variables, when given a set of polynomials P in F[X ∪X] we will always
suppose that x2− x and x+ x− 1 for x ∈ X are in P . Thorough this section, I
denotes a proper ideal in F[X ∪X] and, given a set of polynomials P , ideal(P )ideal(P )

is the ideal generated by P in F[X ∪X].
We use the following standard translationtr 2 (tr) of CNF formulas over a set

of Boolean variables X into a set of polynomials in F[X ∪X]:

tr(ϕ) = {tr(C) : C ∈ ϕ} ∪ {x2 − x, x+ x− 1 : x ∈ X},

2There are many possible ways to encode k-CNF formulas into polynomials. The one we
choose here is the standard one used in proof complexity since it produces a set of polynomials
with degree exactly k, that is low degree polynomials if k is a constant.
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where

tr(x) = x, tr(¬x) = x, tr(
n∨
i=1

`i) =
n∏
i=1

tr(`i).

Notice that we use the convention that a variable is true (resp. false) if it is
assigned the value 1 (resp. 0) and a polynomial is true if it vanishes3.

A set of polynomials P in F[X] is contradictory if and only if 1 is in the ideal
generated by P , 1 ∈ ideal(P ). Notice that a CNF formula ϕ is unsatisfiable if
and only if tr(ϕ) is a contradictory set of polynomials, that is they do not have
a common root.

Polynomial Calculus PCR(PCR) is an algebraic proof system defined in [4] for
polynomials in F[X,X], using the compact representation of CNF formulas into
polynomials provided by the translation tr above. Starting from a set of initial
contradictory polynomials P in F[X,X], PCR allows to derive the polynomial 1
using one of the following inference rules

p p′

αp+ βp′
α, β ∈ F,

p

vp
v ∈ X ∪X, (3.1)

and the further Boolean axioms {x2 − x, x+ x− 1}x∈X to respect the intended
meaning of the X variables.

A derivation of q from P is a sequence of polynomials p0, . . . , p` such that
p` = q and each pi is either an initial polynomial (either in P or a Boolean
axiom) or it is inferred by previous polynomials in the sequence by the inference
rules in equation 3.1. We call refutation a derivation of the polynomial 1.

PCR is a propositional proof system: its soundness come from the fact that
if P derives q in PCR then q ∈ ideal(P ) and obviously q vanish on the variety
V (P ), that is the set of zeroes of P . The completeness of PCR follows since
PCR simulates Res4, cf. Figure 3.1.

Similarly as what done in Resolution, in order to study space of proofs we
rephrase the definition of derivations in PCR following the model proposed in
[4, 66]. Given a set of initial polynomials P , a PCR derivation of a polynomial
q from P P ` q, P ` q, is a sequence of sets of polynomials (M0, . . . ,M`), called
memory configurations memory configuration M, such that: M0 = ∅, q ∈M` and for all i 6 `,

Mi ⊆Mi−1 ∪ {p},

where p is one of the following:
3Other authors sometimes use a different encoding of CNF formulas into polynomials and

consider a variable true if its value is 0.
4Completeness of PCR comes also as a corollary of Hilbert’s Nullstellensatz [58] or by the

Gröbner basis algorithm [55]. We do not require F to be algebraically closed due to the fact
that we always consider sets of polynomials that include the Boolean axioms.
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tr(C) · x̄
...

tr(C)tr(D) · x̄

tr(D) · x
...

tr(C)tr(D) · x
tr(C)tr(D) · x̄+ tr(C)tr(D) · x

x+ x̄− 1
...

tr(C)tr(D) · (x+ x̄− 1)
tr(C)tr(D)

Figure 3.1: Simulation of the rule C∨x, D∨¬x
C∨D in Polynomial Calculus

(Axiom Download) p ∈ P or p is a Boolean axiom;

(Inference) p is some polynomial inferred from polynomials occurring in
Mi−1 using the inference rules of PCR, cf. equation (3.1).

The results we show hold for semantical PCR derivations with respect to an ideal
I. Those are are a generalisation of semantical PCR derivations as defined in [4].
A semantical PCR derivation correspond to setting I = {0} in our definition.

Let I be an ideal, a semanticalP `I q PCR derivation of q from P with respect
to I, P `I q, is a sequence of memory configurations (M0, . . . ,M`) such that:
M0 = ∅, q ∈ M` and for all i 6 `, Mi is obtained by Mi−1 by the following
inference rule:

(Semantical Inference w.r.t. I) Mi ⊆ ideal(Mi−1 ∪ {p}) + I, for some
p ∈ P . Where ideal(Mi−1 ∪ {p}) + I is just the sum among ideals5.

Definition 3.1 (Monomial Space). The monomial spaceMSpace(S) , MSpace(S), of a set
of polynomials S is the number of distinct monomials occurring in S6. The
monomial space MSpace(π) of a semantical PCR refutation π is the maximal
monomial space of a memory configuration in π. We denote byMSpacesem(P `I 1)

MSpacesem(P `I 1)

the minimal MSpace(π) over all semantical PCR refutations π of P . When
considering the 0 ideal we will simply write MSpacesem(P ` 1) instead of
MSpacesem(P `0 1).

The clause space upper bound in Resolution, cf. equation (2.1), and the
fact that the simulation of Resolution in PCR in Figure 3.1 is efficient from the
point of view of the monomials involved, imply that given an unsatisfiable CNF
formula ϕ in n variables

MSpacesem(tr(ϕ) ` 1) 6 O(n). (3.2)
5Given two ideals I, J in F[X ∪X], I + J = {a+ b : a ∈ I ∧ b ∈ J}.
6With monomial we mean a product of variables in X ∪X.
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Analogously to the total space in Resolution, the total space in PCR is defined
as follows.

Definition 3.2 (Total Space). The total space TSpacePCR(S), TSpacePCR(S), of a set of
polynomials S is the total number of occurrences of variables in S. The total
space TSpacePCR(π) of a semantical PCR refutation π is the maximal total space
of a memory configuration in π. We denote by TSpacePCR(P ` ⊥)

TSpacePCR(P ` 1)

the minimal TSpacePCR(π) over all PCR refutations π of set of polynomials P .

Given a contradictory CNF formula ϕ in n variables we have that

TSpacePCR(tr(ϕ) ` 1) 6 O(n2),

due to the monomial space upper bound in equation (3.2) and the fact that
each monomial has at most n variables in it.

In this thesis we do not deal in detail on total space in Polynomial Calculus,
for more details on it we refer to [4] and Section 3.5 for some open problems.

Given two ideals I, J , if I ⊆ J then

MSpacesem(P `I 1) > MSpacesem(P `J 1).

Hence the lower bounds for MSpacesem(P `I 1) hold also for MSpacesem(P ` 1).
The lower bounds we will give rely on the combinatorial objects we call

r-BG families whose definition is given in the following section.

3.3 r-BG families

Let X be a set of variables, X = {x̄ : x ∈ X} a set of fresh new variables and
the intended meaning of x̄ is ¬x, F is a fixed arbitrary field and I a proper ideal
in the ring F[X ∪X].

Given a polynomial p in F[X ∪ X] and an assignment α7 we define the
application of α to p α(p) p|α, α(p), or equivalently p|α, as follows: substitute each
variable x in p with the value α(x) if x ∈ dom(α) and each variable x̄ with
α(x̄), or otherwise leave the variable untouched. Then simplify the result with
the usual simplification rules including: 0 ·m ≡ 0, 1 ·m ≡ m and m−m ≡ 0
where m is a term8 in p. The notation α �I p α �I pmeans that α(p) ∈ I. If F is a

7To avoid confusion we recall that in this thesis α is a (partial) assignment if α : X ∪X →
{0, 1, ?}.

8A term is a monomial with a coefficient from F in front of it.
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family of partial assignments and P a set of polynomials, we write F �I P if
α �I p for each α ∈ F and p ∈ P . We say that F is I-consistentI-consistent if F �I I, that
is for every p ∈ I and α ∈ F , α(p) ∈ I.

We consider partial assignments over X ∪X that are consistent with the
ideal generated by {x+ x̄− 1 : x ∈ X}, that is that are respecting the intended
meaning of the variables X: α(x+ x̄− 1) = 0 or α(x+ x̄− 1) = x+ x̄− 1. In
particular, given an assignment β over X, it is always possible to extend it to
X ∪X respecting the previous property.

Notice that if ϕ is a CNF formula and α is a partial assignment satisfying ϕ,
then α(tr(ϕ)) = 0 and vice-versa. Moreover, given a set of partial assignments
F , a set of polynomials P and an ideal I, if F �I P then F �I ideal(P ).

Definition 3.3 (product-families). Given non-empty sets of assignments9

H1, . . . ,Ht pairwise domain-disjoint, the product-familyH1 ⊗ · · · ⊗Ht H = H1 ⊗ · · · ⊗Ht is
the following set of assignments

H = H1 ⊗ · · · ⊗Ht = {α1 ∪ · · · ∪ αt : αi ∈ Hi},

or, if t = 0, H = {λ}, a set containing just the empty partial assignment λ. We
call the His the factors of H and the rank‖H‖ of H, ‖H‖, is the number of factors
of H different from {λ}. The domain of H is dom(H) =

⋃
i dom(Hi).

The same set of assignments could correspond to many product-families: in
particular each family of assignments can be seen as a product of just one single
factor. When we write H = H1 ⊗ · · · ⊗Ht it means that we fixed a particular
representation of the set of assignment as a product: the representation has
H1, . . . ,Ht as factors. We do not count the {λ} factors in the rank since they
do not carry any additional information: the set of assignments corresponding
to H⊗ {λ} always coincide with H. Given two product-families H and H′ we
write H′ v HH′ v H if and only if each factor of H′ different from {λ} is also a factor
of H. In particular {λ} v H for any H.

In what follow we are interested in particular product-families such that
each factor is flippable. A set of partial assignments F is flippableflippable if and only if
for all v ∈ dom(F ) there exists α and β in F such that α(v) = 1 and β(v) = 0.
We call a product-family whose factors are flippable a flippable product-family
or simply a flippable product.

The following definition is the central definition of this chapter10.
9We always suppose that the partial assignments are respecting the intended meaning of

the variables in X, that is α(x+ x̄− 1) = 0 or α(x+ x̄− 1) = x+ x̄− 1, hence a variable x is
in dom(Hi) if and only if x̄ is in dom(Hi).

10It is the analogue of winning strategies in [37, Definition 3.4].
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Definition 3.4 (r-BG). r-BGLet P be a set of polynomials in F[X ∪X] and I a
proper ideal in F[X ∪X]. A family of flippable products F is a r-BG family
for P with respect to I if and only if for every H ∈ F the following three
conditions hold:

(consistency) H is I-consistent;

(restriction) for each H′ v H, H′ ∈ F ;

(extension) if ‖H‖ < k, then for each p ∈ P there exists a I-consistent
flippable product Hp, domain-disjoint from H, such that

1. H⊗Hp ∈ F and

2. H⊗Hp �I p.

Before proving the main results on r-BG families and monomial space we
show how those families are related with the r-BK families from the previous
chapter11, cf. Definition 2.4.

Proposition 3.5. Let ϕ be an unsatisfiable CNF formula. If there exists a
non-empty r-BG family for tr(ϕ) with respect to the 0 ideal then there exists a
non-empty (r − 1)-BK family for ϕ.

Proof. Let F be a non-empty r-BG family for tr(ϕ) with respect to the 0 ideal
and let L be the set of all the assignments α over X that appear in some
flippable product H of F of rank at most r − 1, that is

L = {α : ∃H ∈ F α ∈ H ∧ ‖H‖ 6 r − 1}.

We claim that L is a (r−1)-BK family for ϕ. To prove the consistency property
of L assume, by contradiction, that there exists an α ∈ L such that α falsifies
some clause C in ϕ. By definition of L , there exists H ∈ F such that α ∈ H
and ‖H‖ 6 r− 1. By the extension property of F , there exists an H′ w H such
that H′ �0 tr(C). In particular there exists some partial assignment β ⊇ α such
that β �0 tr(C). Thus tr(ϕ)|β = 0 and hence β(C) = 1, which is impossible
since α falsifies C.

For the extension property of L , let α ∈ L and β ⊆ α with |β| < r − 1
and let x be a variable of ϕ not in dom(α). Since β ⊆ α and α ∈ L there
must exists some H ∈ L such that β ∈ H and ‖H‖ 6 |β| < r − 1. By the
extension property of F , there exists some flippable product H′ ∈ F such that

11In [31] we showed that r-BG families and the r-BGT families from [40] are related. Here
we do the same for r-BK families.
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H′ w H and H′ �0 x+ x̄− 1. By taking restrictions in L ,we can suppose that
‖H′‖ = ‖H‖+ 1 6 r − 1. Hence there exist β0, β1 ∈ H′ extending β, setting x
respectively to 0 and 1. By construction those assignments belongs to L .

Notice that the previous proof is sound also if we substitute the 0 ideal with
ideal({x2 − x : x ∈ X}) or with ideal({x + x̄ − 1 : x ∈ X}) and querying for
x2−x in the extension step. On the other hand, in general, we cannot substitute
the 0 ideal with any ideal I containing ideal({x+ x̄− 1, x2 − x : x ∈ X}). The
reason is that we want to use some polynomials from tr(ϕ) to enforce, in the
extension property, the assignment of some precise variable. If we have some
ideal I containing ideal({x + x̄ − 1, x2 − x : x ∈ X}) then, for example the
empty assignment λ, is such that {λ} �I x2 − x or {λ} �I x+ x̄− 1. So, in the
proof of the previous proposition, an ideal I of this form cannot really enforce
the assignment of some precise variable from X.

3.4 Monomial space lower bounds

The main property of r-BG families is that they can be used to prove monomial
space lower bounds in PCR and in the stronger system semantic PCR with
respect to a proper ideal I. Indeed, we have the following result12.

Theorem 3.6. Let P be a contradictory set of polynomials in the ring of
polynomials F[X ∪X]13, I a proper ideal in F[X ∪X] and r > 1 an integer.
Suppose that there exists a non-empty r-BG family F for P with respect to the
ideal I. Then

MSpacesem(P `I 1) > r/4.

In the previous Theorem we do not make any assumption on the structure
of the set of initial polynomials P . If we have some assumptions on P it is
possible to have an analogous result requiring the existence of a non-empty
r-BG family just for a subset of P . This in particular can be useful when in P
we have some monomials of high initial degree14.

Theorem 3.7. Let P = P1 ∪ P2 a contradictory set of polynomials in the ring
F[X ∪X]. Suppose that the following conditions hold:

1. there exists a non-empty r-BG family F for P1 with respect to the 0 ideal;

12This result is analogous to [36, Theorem 1] and [37, Theorem 3.5].
13Recall that given a set of polynomials in F[X ∪X] we always have that {x+ x̄− 1}x∈X

in P to fix the semantic meaning of the variables in X.
14This result is analogous to [36, Theorem 2] and [37, Theorem 3.6].
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2. every polynomial in P2 is a monomial such that for each m ∈ P2 and for
each H ∈ F with ‖H‖ < r then either there exists a variable in m not in
dom(H) or H �0 m.

Then
MSpacesem(P ` 1) > r/4.

In order to prove Theorem 3.6 and Theorem 3.7 we introduce the definition
of 2-merge. On a very high level a 2-merge on a product family H is a new
product family Z whose factors are obtained combining, ‘merging’, disjoint
pairs of factors from H.

Definition 3.8 (2-merge). Let H = H1⊗· · ·⊗Ht be a product-family. A 2-merge 2-merge

on H is a product-family Z = ZJ1 ⊗ · · · ⊗ ZJr , where J1, . . . , Jr are pairwise
disjoint subsets of [t] of size at most 2, ZJi ⊆

⊗
j∈Ji Hj and Z �dom(Hj)= Hj

for all j ∈ [t]. Notice that if H is flippable product family then Z is also a
flippable product family.

As in [4] a key property in our monomial space lower bound proofs is a
Locality Lemma15, cf. Lemma 3.9. Informally, such lemma asserts that if a set
S of polynomials is satisfiable by a 2-merge on a product family H, then it
is possible to build a new 2-merge Z ′ on a new product-family H′ such that
Z ′ still satisfies S and H′ v H has rank bounded by the number of distinct
monomials in S.

Lemma 3.9 (Locality Lemma). Let I be an ideal in F[X ∪ X], S a set of
polynomials in F[X ∪X], H a non-empty flippable product and Z a 2-merge
on H such that Z �I S. Then there exist a flippable product H′ v H and a
non-empty 2-merge Z ′ on H′ such that: Z ′ �I S and ‖H′‖ 6 4 ·MSpace(S).

We postpone the technical proof of this lemma to Section 3.4.2 and we prove
now Theorem 3.6.

Proof of Theorem 3.6. Let Π = (M0, . . . ,Ms) be a refutation of P in semantical
PCR with respect to the ideal I and assume, for sake of contradiction, that
MSpace(Π) < r/4. Suppose we have the following property.

Claim 3.10. For i = 0, . . . , s, there exist a non-empty flippable
product Hi ∈ F and a non-empty 2-merge Zi on Hi such that
Zi �I ideal(Mi) + I.

15This Lemma is a generalization of analogue results in [4, 36, 70]. The way we present it
is based on [37].
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The previous claim immediately implies a contradiction: when i = s it
implies that there exists some assignment α ∈ Zs such that for every polynomial
p ∈ ideal(Ms) + I, α(p) ∈ I. However 1 ∈ Ms, hence 1 = α(1) ∈ I which
instead, by assumption, is a proper ideal in F[X ∪X].

By induction on i = 0, . . . , s, we prove that Claim 3.10 follows from the
existence of the r-BG family F and from the hypothesis that MSpace(Π) < r/4.
For the base case i = 0, set H0 = {λ} ∈ F and Z0 = H0. Then, trivially,
Z0 �I ideal(M0) + I = I.

For the inductive step, let Mi+1 ⊆ ideal(Mi ∪ {p}) + I with p ∈ P . By the
Locality Lemma (cf. Lemma 3.9), used with parameters H = Hi, Z = Zi and
S = Mi, we obtain a H′ v Hi and a non-empty 2-merge Z ′ on H′ such that
Z ′ �I Mi and ‖H′‖ 6 4MSpace(Mi). Observe that, as F is an r-BG family,
then by the restriction property of F , H′ ∈ F , since H′ v Hi and Hi ∈ F .
Moreover, by the I-consistency property of F , H′ is I-consistent and then Z ′

is I-consistent, hence Z ′ �I ideal(Mi) + I.
Since, by hypothesis, MSpace(Mi) < r/4, then ‖H′‖ < r and, by the

extension property applied to H′ and p, there exists an I-consistent flippable
product Hp, domain-disjoint from H′, such that Hi+1 = H′ ⊗ Hp �I p and
Hi+1 ∈ F . Set Zi+1 = Z ′ ⊗ Hp. Since Z ′ is a 2-merge on H′ and by the
definitions of Zi+1 and Hi+1, then Zi+1 is a 2-merge. Finally, the property
that Zi+1 �I ideal(Mi+1) + I, follows because:

• Zi+1 �I ideal(Mi) + I, since Z ′ �I ideal(Mi) + I and Hp is I-consistent,
and

• Zi+1 �I p, since Hi+1 = Hi ⊗ Hp �I p and Zi+1 ⊆ Hi+1 as Zi+1 is a
2-merge on Hi+1.

We adapt the previous proof to prove Theorem 3.7 but, before doing that,
we show an example of a 2-merge that will be useful both in the proof of
Theorem 3.7 and in the proof of the Locality Lemma, cf. Lemma 3.9.

Example 3.11. Let m be a monomial and H = H1⊗H2 be a flippable product
such that var(m) ∩ dom(Hi) 6= ∅ for i = 1, 2. Let Om,i = {α ∈ Hi : α �0 m}.
We have that

Z = Z{1,2} = (Om,1 ⊗H2) ∪ (H1 ⊗Om,2) = {α ∈ H1 ⊗H2 : α �0 m}

is a 2-merge on H. Z is a product-family since it has only one factor: Z{1,2}.

Proof of Theorem 3.7. The proof is essentially the same as in Theorem 3.6
hence we use the same notations and, for sake of contradiction, we assume that
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MSpace(Π) < r/4. To prove again Claim 3.10, we have to prove the inductive
step Mi+1 ⊆ ideal(Mi ∪ {m}) only when m ∈ P2, since in the other cases the
proof is the same as in Theorem 3.6. By the Locality Lemma, cf. Lemma 3.9,
used with parameters H = Hi, Z = Zi and S = Mi, we find a H′ ∈ F and a
non-empty 2-merge Z ′ of H′ such that Z ′ �0 Mi and

‖H′‖ 6 4MSpace(Mi) 6 4(r/4− 1) 6 r − 4.

Let M′ = Mi ∪ {m}, with m ∈ P2. Then, by hypothesis (2) of the theorem,
either H′ �0 m or there exists a variable x ∈ var(m) \ dom(H′). In the first
case just set Hi+1 = H′ and Zi+1 = Z ′. Otherwise, by the extension property
of F applied on H′ and x+ x̄− 1, there exists a flippable product Hx domain-
disjoint from H′ such that H′ ⊗ Hx ∈ F and H′ ⊗ Hx �0 x + x̄ − 1. Since
x 6∈ dom(H′), then x, x ∈ dom(Hx) and using the closure of F under v, we
can assume that Hx is just one factor containing x in its domain. Hence
‖H′ ⊗Hx‖ < r and then either H′ ⊗Hx �0 m or there exists another variable
y ∈ var(m) but not in dom(H′⊗Hx). In the first case set Hi+1 = H′⊗Hx and
Zi+1 = Z ′ ⊗Hx. In the second case, by the extension property of F applied
to H′ ⊗Hx and y + ȳ − 1, we get a flippable product Hy domain-disjoint from
H′⊗Hx such that H′⊗Hx⊗Hy ∈ F and H′⊗Hx⊗Hy �0 y+ ȳ− 1. Exactly
as above for x, x̄, we have that y, ȳ ∈ dom(Hy). Set Hi+1 = H′ ⊗Hx ⊗Hy and
Zi+1 = Z ′⊗{α ∈ Hx⊗Hy : α �0 m}. By what we observed in the Example 3.11,
Zi+1 is a 2-merge on Hi+1 and, since Zi+1 �0 Mi ∪ {m}, Zi+1 �0 Mi+1.

3.4.1 A Hall’s theorem for V-matchings

In this section we give a first generalization of matchings in bipartite graphs. A
further generalization will be defined in Section 4.6.

Let G be a bipartite graph with bipartition (L,U). From G we create an
auxiliary bipartite graph G′ with bipartition (L′, U), where L′ = {v0, v1}v∈L
and there is an edge {vb, w} in E(G′) if and only if {v, w} ∈ E(G).

A collection of vertex-disjoint edges in E(G) is a matching matchingin G. A collection
of edges M in G is a V-matching V −matchingin G if and only if there exists a collection of
edges M ′ that is a matching in G′ such that

M = {{v, w} : ∃b ∈ {0, 1} {vb, w} ∈M ′}.

This definition is essentially the same definition of V-matching we will see in
Section 4.616.

16The difference is that a V-matching in Section 4.6 could include singleton vertices from
U . Hence, from the point of view of the vertices covered in L, those notions are perfectly
equivalent.
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It is well known that, given a graph G with bipartition (L,U), the existence
of a matching in G covering L is related with the expansion properties of G. In
particular we have the following result.

Theorem 3.12 (Hall’s Theorem). Let G be a bipartite graph with bipartition
(L,U). The following are equivalent:

1. for each subset A of L, |NG(A)| > |A|,

2. there exists a matching in G covering L.

An easy corollary of the previous result is the following result on V-matchings
proved by Alekhnovich et al. [4]. In Section 4.6 we prove analogue result for
what we call VW-matchings, cf. Theorem 4.11.

Theorem 3.13 (Alekhnovich et al. [4]). Let G be a bipartite graph with bipar-
tition (L,U). The following are equivalent:

1. for each subset A of L, |NG(A)| > 2|A|,

2. there exists a V-matching in G covering L.

Proof. Clearly (2) imply (1). For the other implication, let G′ be the auxiliary
graph with bipartition (L′, U) used to define the V-matchings. Now, G′ is such
that for each subset A of L′, |NG′(A)| > |A|. Hence, by Hall’s Theorem, there
exists a matching M ′ covering L′. Let

M = {{v, w} : ∃b ∈ {0, 1} {vb, w} ∈M ′},

clearly M is a V-matching and it covers L.

3.4.2 A Locality Lemma

This section entirely contains the proof of Lemma 3.9, restated below for
convenience of the reader.

Restated Lemma 3.9 (Locality Lemma). Let I be an ideal in F[X ∪X], S a
set of polynomials in F[X ∪X], H a non-empty flippable product and Z a 2-
merge on H such that Z �I S. Then there exist a flippable product H′ v H and
a non-empty 2-merge Z ′ on H′ such that: Z ′ �I S and ‖H′‖ 6 4 ·MSpace(S).

A visual hint for the notations used in this proof can be found in Figure 3.2
on the next page.
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U

L

all the Jis in Z (|Ji| 6 2)

distinct monomials in S

M (maximal)

m

NG(M) (|NG(M)| 6 2|M |)

Lm
= {

`m
, ..
.}

Km
= {

km
, ..
.}

· · · · · ·

Figure 3.2: A locality lemma

Proof. Let H = H1⊗ . . .⊗Ht and Z = ZJ1 ⊗ . . .⊗ZJr . Let G be the following
bipartite graph with bipartition (L,U): the lower part of G, L, is indexed by the
set of all distinct monomials in S, the upper part of G, U , is indexed by the set
{J1, . . . , Jr} and there is an edge (m,Ji) ∈ E(G) if and only if a variable of m
appears in dom(ZJi). For a set M ⊆ L let N(M) be the set of the neighbours
of M in G and let HM and ZM be the following two flippable products:

ZM =
⊗

Ji∈N(M)

ZJi , HM =
⊗

Ji∈N(M)

⊗
j∈Ji

Hj .

LetM be a set of maximal size in L such that |N(M)| 6 2|M |. LetM c = L\M .
By maximality of M , for each A ⊆ M c, |N(A) \ N(M)| > 2|A|. Hence, by
Theorem 3.13, there is a V-matching F covering M c and F is in the subgraph
of G induced by M c ∪ (U \N(M)).

For each monomial m in M c, consider the upper part of the connected
component Fm of F covering m and let U(Fm) = {Lm,Km} be such upper
part, where Lm,Km ∈ {J1, . . . , Jr}. By definition of G, there is a variable x
both in var(m) and in dom(ZLm). Let `m ∈ Lm such that x in dom(H`m) (if
there are more than one possible `m, we choose one). Analogously for km ∈ Km.
Define the product-family H′ as

H′ = HM ⊗
⊗
m∈Mc

H`m ⊗Hkm .

Clearly H′ v H and hence it is a flippable product. The rank of H′ is
‖H′‖ = ‖HM‖+ 2|M c|. Since |N(M)| 6 2|M |, and since the Ji’s are of size at
most 2, we have that ‖HM‖ 6 4|M |. Hence, putting all together,

‖H′‖ 6 4|L| = 4 ·MSpace(S).

The construction of Z ′ goes as follows. Let Om,i = {α ∈ Hi : α(m) = 0}.
Observe that if a variable x of m is in dom(Hi) then Om,i is non-empty since
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Hi is flippable and hence there is always an assignment in Hi setting x to satisfy
m, that is setting m to 0. As in Example 3.11, let

Z{`m,km} = (Om,`m ⊗Hkm) ∪ (H`m ⊗Om,km).

Let Z ′ be
Z ′ = ZM ⊗

⊗
m∈Mc

Z{`m,km}.

It is straightforward to see that Z ′ is a 2-merge on H′ hence it is remaining to
prove only that Z ′ �I S. First we claim that Z ′ ⊆ Z �dom(H′).

Claim 3.14. Z ′ ⊆ Z �dom(H′).

Proof. By construction, ZM = Z �dom(HM ) hence we have to prove
that for each m ∈M c,

Z ′ �dom(H`m )∪dom(Hkm )⊆ Z �dom(H`m )∪dom(Hkm ) .

This follows immediately from the following chain of inequalities

Z ′ �dom(H`m )∪dom(Hkm ) = Z{`m,km} (3.3)
⊆ H`m ⊗Hkm (3.4)
= Z �dom(H`m )∪dom(Hkm ) . (3.5)

The equality (3.3) is by definition and the containment in (3.4)
follows by construction. The equality (3.5) follow since, by definition
of Z, Z �dom(Hj)= Hj and Lm and Km are disjoint sets.

To prove that Z ′ �I S, let α ∈ Z ′. As Z ′ ⊆ Z �dom(H′), there exists
β ∈ Z extending α by setting variables not appearing in dom(α) and hence
not appearing in any m ∈ M . Hence, by construction, if m ∈ M c, then
0 = α(m) = β(m) and if m ∈M then α(m) = β(m). Then, α and β give the
same value to the monomials in S and, by hypothesis, β �I S, hence α �I S.

3.5 Open problems

1. Given a set of contradictory polynomials P of bounded degree is it true
that

MSpacePCR(P ` 1) = Ω(degreePCR(P ` 1))?
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2. Given an unsatisfiable set of polynomials P , is it true that

MSpacesem(P ` 1) = Θ(MSpacePCR(P ` 1))?

This very same question was asked for PCR (and more general proof
systems) already in [4, Open question n. 4].

3. All the questions about total space in [4] are still open. In particular: is
there any CNF formula ϕ in n variables and with poly(n) clauses such
that

TSpacePCR(tr(ϕ) ` 1) = ω(n)?

For more concrete open problems on explicit unsatisfiable CNF formulas
see Section 4.10.





4
Space lower bounds:

applications

This chapter consists of several sections, each one collecting some space-related
results for a particular class of formulas, in particular the monomial and the
total space lower bounds. We get such results as applications of the main results
of the previous chapters, cf. respectively Theorem 3.6 and Theorem 2.5.

The rationale behind the organisation of this chapter is to start with the
less complicated applications, CTn formulas and PHPmn formulas, and then
move to more involved applications, for instance random k-CNF formulas. The
results after Section 4.6 and Section 4.7 depend on these sections. Otherwise
the content of any two sections is largely independent. For instance the reader
only interested in reading the full proof of the monomial space lower bound for
random k-CNF formulas, that is in Section 4.8, has just to refer to Section 4.6,
Section 4.7 and Section 4.8. The Table 4.1 recaps all the monomial and total
space results we show in this chapter and in which section they are discussed in
detail.

4.1 Some history + credits

All the monomial space lower bounds known before [36] were proven in two
works: [4] and [70]. The first paper showed monomial space lower bounds for
CTn and PHPmn ; the second paper improved it to different encodings of PHPmn
of bounded initial width: the formulas bitPHPn and xorPHPmn , cf. Section 4.4.2
and Section 4.4.3. In [36] we gave a general framework that allowed to prove

55
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Table 4.1: Recap of formulas and space lower bounds

Formula ϕ N = | var(ϕ)| width(ϕ) TSpaceRes(ϕ ` ⊥) MSpacesem(tr(ϕ) ` 1) §

CTn N = n n Θ(N2) = Θ(n2) Θ(N) = Θ(n) 4.3

PHPn+1
n N = n(n+ 1) n Ω(N) = Ω(n2) Ω(

√
N) = Ω(n) 4.4.1

bitPHPn N = n · logn 2 logn Ω̃(N2) = Ω(n2) Ω̃(N) = Ω(n) 4.4.2

xorPHPn+1
n N = n(n+ 1) 4 Ω(N) = Ω(n2) Ω(

√
N) = Ω(n) 4.4.3

Tseitin(G, σ) where G is a graph

4-regular random N 4 Ω(N2) Ω(
√
N) 4.5

3-regular expander N 3 Ω(N2) ? 4.5

(n, k,∆)-random CNF (∆ const., k > 3) N = n k Θ(N2) = Θ(n2) Θ(N) = Θ(n) 4.8

G-PHP (G bipartite of degree d > 3) N = n d Θ(N2) = Θ(n2) Θ(N) = Θ(n) 4.9

more monomial space lower bounds, in particular for the (n, k,∆)-random CNF
formulas and for the graph pigeonhole principle, G, over an expander bipartite
graph G, cf. Section 4.2 for more details. We proved the monomial space lower
bound for (n, k,∆)-random CNF formulas in two papers: for k > 4 in [36] and
for k = 3 in [31].

The result for Tseitin formulas over 4-regular random graphs was obtained
by Filmus et al. [68] as an application of [36, Theorem 1], which is a preliminary
version of Theorem 3.6. More details are given in Section 4.5.

Regarding the total space lower bounds, before [40] the only total space lower
bounds in Resolution known were the ones for CTn and PHPmn from [4]. In [40]
we introduced a framework to prove total space lower bounds in Resolution and,
as an application, we proved the first superlinear total space lower bound for a
formula with polynomially many clauses. That is for bitPHP cf. Section 4.4.2.

The quadratic total space lower bound in Resolution for (n, k,∆)-random
CNF fomulas was proven in two papers: for k > 4 in [40] and for k = 3
in [31]. Both results rely on constructions developed in [36], cf. Section 4.6. The
quadratic total space lower bound for Tseitin formulas over 3-regular expander
graphs is an original contribution of this thesis and rely on Theorem 2.5 that is
a strengthening of [40, Theorem 2.4]. For more details on the relation between
Theorem 2.5 and [40, Theorem 2.4] we refer to Section 2.1.

4.2 Main results and techniques

The main result of this chapter is the following monomial space and total space
(in Resolution) lower bound for random CNF formulas.
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Let k a positive integer and ∆ a positive real number, an (n, k,∆)-random
CNF formula (n, k,∆)-random CNFϕ is a k-CNF formula with n variables and ∆n clauses picked uni-
formly at random from the set of all CNF formulas in the variables {x1, . . . , xn}
which consist of exactly ∆n clauses, each clause containing exactly k literals
and no variable appears twice in a clause. For large enough ∆ (depending on
k), an (n, k,∆)-random CNF formula is unsatisfiable with high probability, cf.
Section 4.8 for more details. We then have with high probability for large n
that

MSpacesem(tr(ϕ) ` 1) > Ω(n) (4.1)

and
TSpaceRes(tr(ϕ) ` ⊥) > Ω(n2), (4.2)

cf. Theorem 4.36. An analogue result holds for the matching principle over
a graph G, G-PHP, where G is an expander bipartite graph with left degree
at least 3, cf. Section 4.9. Both the lower bounds in equation (4.1) and (4.2),
asymptotically match the trivial upper bounds for monomial space, cf. Sec-
tion 3.2, and total space (in Resolution), cf. Section 2.3. For the results we
have on Tseitin formulas we refer to Section 4.5.

In what follow we want to give an informal intuition on the constructions
and techniques that we use to prove the lower bounds for (n, k,∆)-random
CNF formulas and G-PHP. The proof of the monomial space lower bound for
(n, k,∆)-random CNF formulas, cf. Theorem 4.36, consists on building suitable
Ω(n)-BG families and then apply the main tools to prove space lower bounds
from the previous chapters, that is Theorem 3.6 and Theorem 2.5.

The path we choose to build the Ω(n)-BG families for the (n, k,∆)-random
CNF formulas is not entirely direct and it is not tailored specifically to such
formulas. The reason is that, to large extent, the same construction apply to
the graph pigeonhole principle , cf. Section 4.9. Moreover, the way we choose
to present the construction of the Ω(n)-BG families is intended to highlight the
structural properties of the (n, k,∆)-random CNF we use to obtain a Ω(n)-BG
family.

C -matchings We start generalizing the concept of matchings in bipartite
graphs to what we called C -matchings, cf. Section 4.6. Intuitively a C -matching C −matching

in a bipartite graph G is a collection of vertex-disjoint subgraphs of G isomorphic
to some graph from the collection of graphs C . We will construct such C -
matchings in the case of random k-CNF formula ϕ in the clauses-variables
adjacency graph associated to ϕ, cf. Definition 4.34. Informally, it is a bipartite
graph with on one side the clauses of ϕ and on the other side the variables of ϕ
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and edges if a variable appear in a clause. That is we have that the semantics
of the vertices in the two elements of the bipartition of our bipartite graphs
is different and our C -matchings have to respect such semantical difference.
In order to do so, from Section 4.6, we assume that the bipartite graphsbipartite graphs are
subgraphs of the infinite bipartite graph B with vertex set N× {0, 1} and such
that {(n, b), (m, b′)} ∈ E(B) if and only if b 6= b′. Given a bipartite graph
G we call V (G) ∩ {(n, 0) : n ∈ N} the lower partL(G) of G, L(G), and similarly
V (G) ∩ {(n, 1) : n ∈ N} is the upper partU(G) of G, U(G).

Then our main interest is for two particular cases of C -matchings: the V-
matchings and the VW-matchings. We already saw a version of the V-matchings
in Section 3.4.1 and the VW-matchings are just particular C -matchings in
which each connected component looks like a ‘V’, a ‘W’ or a singleton from
U(G). In Section 3.4.1 we observed that a version of Hall’s theorem holds
for V-matchings. Here we prove a version of Hall’s Theorem that holds for
VW-matchings, cf. Theorem 4.111.

Cover Games In Section 4.6.2, we define a game over bipartite graphs us-
ing C -matchings that is associated with r-BG families. The Cover GameCoverGameC (G,µ) ,
CoverGameC (G,µ), is a game between two players, Choose (he) and Cover (she),
on a bipartite graph G. At each step i of the game the players maintain a
C -matching Fi in G. They start with the empty C -matching and at step i+ 1
Choose can

1. remove a connected component from Fi, or

2. if the number of connected components of Fi is strictly less than µ, pick a
vertex (either in L(G) or U(G)) and challenge Cover to find a C -matching
Fi+1 in G such that

a) each connected component of Fi is also a connected component of
Fi+1;

b) Fi+1 covers the vertex picked by Choose.

Cover loses the game CoverGameC (G,µ) if at some point she cannot answer a
challenge by Choose. Otherwise, Cover wins.

Our main interest in such games are the winning strategies for Cover and the
fact that, for some graphs G, similar to the clauses-variables adjacency graphs
we just saw, the winning strategies for Cover in the game CoverGameC (G,µ)
provide µ-BG families. This is, informally, the content of Lemma 4.13 and

1This theorem was originally proved in [31], the paper where VW-matchings were intro-
duced.
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Lemma 4.142. This allow the application of such lemmas not only to the
clauses-variables adjacency graph of a (n, k,∆)-random CNF formula but also,
for example, to some adjacency graphs of the graph pigeonhole principle.

We then show that, under some assumptions on the graph G, Cover has
winning strategies for CoverGameV(G,µ) and for CoverGameVW(G,µ) for large µ,
where µ is related to the expansion properties of the graph G. This, informally,
is the content of Theorem 4.15 and Theorem 4.223. These guarantee a winning
strategy for Cover in the game CoverGameV(G,µ) and CoverGameVW(G,µ).
They rely on two main ingredients:

1. G is a (γn, δ)-bipartite expander graph, that is

∀A ⊆ L(G), |A| 6 γn→ |NG(A)| > δ|A|,

where δ > 1.95.

2. some (technical) upper bound on the number of high degree vertices in
U(G).

Random bipartite graphs In Section 4.7 we prove that random bipartite
graphs satisfy the conditions (1.) and (2.) above in Theorem 4.15 and Theo-
rem 4.22. Hence putting together all we had so far, we prove that Cover has a
winning strategy for both the games CoverGameV(G,µ) and CoverGameVW(G,µ)
when G is a random graph of constant left degree and µ = Ω(L(G))4.

Since all we did so far is in common between the random k-CNF formulas
(Section 4.8) and the graph pigeonhole principle (Section 4.9) then we easily
prove the space lower bounds also for G-PHP for suitable bipartite graphs G.

We start now looking at some families of formulas and, in particular, we
start with the complete tree formulas, CTn.

4.3 Complete Trees

Let n be a natural number, the complete tree formula CTn, CTn, is the unsatisfiable
CNF formula whose clauses are all the 2n possible clauses with n distinct literals
in the variables X = {x1, . . . , xn}. For instance

CT2 = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)
2The proof of such lemmas is based on the proof of [31, Lemma 5.1]. Here we generalize

that proof to C -matchings where C is a family of trees with no leaves in L(G).
3Theorem 4.15 is essentially [40, Lemma 4.12] and Theorem 4.22 is from [31]. Both of

them are also extensions of constructions that can be found in the literature for matchings
for example in [7, 24].

4This result rely on probabilistic calculations from [31].
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and its encoding as a family of polynomials in F[X ∪X] is

tr(CT2) = {x1x2, x̄1x2, x1x̄2, x̄1x̄2} ∪ {x2
i − xi, xi + x̄i − 1}i∈{1,2},

where, {x2
i − xi, xi − x̄i + 1}i∈{1,2} are the Boolean axioms. Alekhnovich et al.

[4, Theorem 3.13] showed that

CSpacesem(CTn ` ⊥) = n+ 1. (4.3)

Using Theorem 2.8, since CTn is n-semiwide, we immediately have that

TSpacesemRes (CTn ` ⊥) = Θ(n2).

Alekhnovich et al. [4, Corollary 5.6] showed also the following stronger result:

TSpacesemPCR(tr(CTn) ` 1) > Θ(n2), (4.4)

and also an upper bound on monomial space in Polynomial Calculus:

MSpacesem(tr(CTn) ` 1) 6 2n/3 + 6,

cf. [4, Theorem 4.2]. Interestingly this upper bound is lower than the clause
lower bound we have in resolution, cf. equation (4.3). Regarding the monomial
space lower bounds in PCR they proved that

MSpacesem(tr(CTn) ` 1) > n/4.

This monomial space lower bound can be easily reproved as a consequence of
Theorem 3.7. And this is what we are going to do now.

Theorem 4.1 (Alekhnovich et al. [4]).

MSpacesem(tr(CTn) ` 1) > n/4.

Proof. We use Theorem 3.7. Choose as P1 the Boolean axioms and choose as
P2 the other axioms of tr(CTn), those that have degree n. The set P1 is the set
for which we will have to build a n-BG family F .

Given i ∈ {1, . . . , n}, let αi and α′i be the following partial assignments of
domain {xi, x̄i}:

αi(xi) = 1− αi(x̄i) = α′i(x̄i) = 1− α′i(xi) = 0.

Let then Hi = {αi, α′i}. By construction Hi is clearly flippable and 0-consistent.
Let F be the family of flippable products defined as follows: H ∈ F if and
only if there exists a set A ⊆ {1, . . . , n} such that

H =
⊗
i∈A

Hi.
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First observe that each H ∈ F , with rank strictly less than n, leaves a vari-
able unassigned in every monomial in P2, hence P2 satisfy the hypothesis of
Theorem 3.7.

We prove now that F is a n-BG family for P1, the Boolean axioms, with
respect to the 0 ideal. For A = ∅ the construction implies that {λ} ∈ F ,
hence F is non-empty. Moreover, by construction, H ∈ F implies that H is
0-consistent. The restriction and extension properties of F are also clear.

4.4 Pigeonhole principles

The pigeonhole principle asserts that there is no multi-valued total injective
mapping from [m] to [n], if m > n. The elements of the set [m] are traditionally
called pigeons pigeonsand the elements of the set [n] are called holes holesand so the
pigeonhole principle can be stated more pictorially saying that

if m > n pigeons fly to n holes then (at least) two of them must end
to be in the same hole.

Interestingly, the proof complexity of the pigeonhole principle essentially depends
on the number of pigeonsm (as a function of the number of holes n) and on some
details of its encodings as an unsatisfiable CNF formula or as an unsatisfiable
set of polynomials. We refer to the survey [125] for more details on the proof
complexity of the pigeonhole principle.

The encodings of the pigeonhole principle as an unsatisfiable CNF formula
that we consider are the following: PHPmn , fPHPmn , oPHPmn , cf. Section 4.4.1;
bitPHPmn , cf. Section 4.4.2; xorPHPmn , cf. Section 4.4.3. The graph pigeonhole
principle (or matching principle over graphs), G-PHP, is instead considered
much later in this chapter, cf. Section 4.9.

4.4.1 The (standard) pigeonhole principles

Let m,n ∈ N be two integers such that m > n and consider the set of mn
variables X = {xij : i ∈ [m], j ∈ [n]}. The intended meaning of xij is the truth
value of ‘the i-th pigeon goes into the j-th hole’. The standard encoding of
the pigeonhole principle, PHPmn PHPmn, assert that there is an injective multi-valued
mapping from [m] to [n]. It is the conjunction of the following clauses

1. ¬xij ∨ ¬xi′j for all i 6= i′ ∈ [m] and for all j ∈ [n] (injectivity axioms);

2. xi1 ∨ xi2 ∨ . . . ∨ xin for all i ∈ [m].
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Clearly PHPmn is unsatisfiable whenever m > n and its proof complexity has
been investigated in depth since Haken [81] used PHPn+1

n to prove the first
(sub-)exponential lower bounds on size for Resolution:

sizeRes(PHPn+1
n ` ⊥) > 2Ω(n).

Regarding PHPmn , the larger m is with respect to n the ‘more contradictory’
PHPmn is and interestingly its proof complexity depends on the number of
pigeons m with some qualitative changes occurring when

m = n+ 1, 2n, n2,∞.

For example:
sizeRes(PHPn

2

n ` ⊥) > 2Ω(n/ logn),

cf. [121, 126], and, for every m > n,

sizeRes(PHPmn ` ⊥) > 2Ω( 3√n),

cf. [126]. Regarding the upper bounds, in Resolution, Buss and Pitassi [47,
Lemma 1] showed that PHPn+1

n has Resolution refutations of size O(n2n). More
in general, PHPmn has polynomial size refutations in proof systems such as
Cutting Planes, cf. [57, 75], and Frege systems5, cf. [46]. On the other hand
constant-depth Frege proofs of the pigeonhole principle require exponential size,
cf. [1, 15, 98, 116]. We refer to [125] for a survey on the proof complexity of the
pigeonhole principle although we recall other results on it later in this section.

Regarding the space complexity of the pigeonhole principle, we have that
it does not depend on the number of pigeons. Esteban and Torán [66] and
Alekhnovich et al. [4] showed that

CSpace(PHPmn ` ⊥) > n,

and since PHPmn is an n-semiwide formula, cf. Definition 2.7, by Theorem 2.8,
we have the following total space lower bound:

TSpacesemRes (PHPmn ` ⊥) > n2

4 .

This result was proved previously by Alekhnovich et al. [4, Corollary 5.7] and
indeed their proof can be seen as a special case of the proof of Theorem 2.8.
Indeed Alekhnovich et al. [4, Corollary 5.7] showed also that

TSpacesemPCR(tr(PHPmn ) ` 1) > Θ(n2).
5We refer to Section 1.2.1 for the informal definitions of Cutting Planes and Frege systems.
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The bound above together with the CTn total space lower bound, cf. equa-
tion (4.4), at the moment of writing this thesis, are the only non-trivial total
space lower bounds known for Polynomial Calculus and proof systems stronger
than Resolution.

For convenience of the reader we recall that the encoding of PHPmn as a set
of polynomials tr(PHPmn ) in the ring F[X ∪X] is the following:

tr(PHPmn ) =
{
xij ·xi′j

}
i6=i′∈[m]
j∈[n]

∪
{ ∏
j∈[n]

x̄ij

}
i∈[m]

∪
{
x2
ij−xij , xij+x̄ij−1

}
i∈[m]
j∈[n]

.

Notice that tr(PHPmn ) contains polynomials of degree n. This make degree lower
bounds trivial, hence sometimes in PCR an alternative encoding of PHPmn is used.
It is an encoding of PHPmn as a set of small degree polynomials where the polyno-
mials

{∏
j∈[n] x̄ij

}
i∈[m]

from tr(PHPmn ) are substituted by
{∑

j xij − 1
}
i∈[n]

.

To avoid confusion we call linPHPmn the version of PHPmn described above, that
is the version of PHPmn where large degree initial polynomials are substituted
by linear polynomials. Considering linPHPmn instead of PHPmn makes sense
when proving degree lower bounds but it trivially implies monomial space lower
bounds, as already some of the polynomials in linPHPmn require a large number
of monomials. Indeed the proof complexity of the pigeonhole principle in PCR
was deeply studied, cf. e.g. [3, 55, 86, 124, 129]. In particular we have that for
every m > n, linPHPmn require PCR refutations of degree Ω(n), cf. [124], and
hence refutations of size 2Ω(n), due to equation (1.2), cf. [86].

On the other hand we trivially have that MSpacesem(linPHPmn ` 1) >
n, hence PHPmn is more interesting than linPHPmn from the point of view of
monomial space lower bounds.

The monomial space lower bound we prove holds for the so called onto
version of the pigeonhole principle, oPHPmn oPHPmn, that is the conjunction of PHPmn
with the following clauses:

x1j ∨ x2j ∨ . . . ∨ xmj ,

for all j ∈ [n] (onto axioms). We recall that the encoding of oPHPmn as a set of
polynomials tr(oPHPmn ) in the ring F[X ∪X] is the following

tr(PHPmn ) = tr(PHPmn ) ∪
{ ∏
i∈[m]

x̄ij

}
j∈[n]

.

Clearly for any ideal I,

MSpacesem(tr(PHPmn ) `I 1) > MSpacesem(tr(oPHPmn ) `I 1),

so we are going to prove a monomial space lower bound for oPHPmn immediately
obtaining a monomial space lower bound for PHPmn .



64 4.4. Pigeonhole principles

Theorem 4.2 (Alekhnovich et al. [4]).

MSpacesem(tr(oPHPmn ) ` 1) > n/4

Proof. We apply Theorem 3.7. Let P1 be the set of all low degree polynomials
in tr(oPHPmn ), that is

P1 =
{
xijxi′j

}
i6=i′∈[m]
j∈[n]

∪
{
x2
ij − xij , xij + x̄ij − 1

}
i∈[m]
j∈[n]

,

and let P2 be the remaining polynomials in tr(oPHPmn ), that is those with
degree at least n:

P2 =
{ ∏
j∈[n]

x̄ij

}
i∈[m]

∪
{ ∏
i∈[m]

x̄ij

}
j∈[n]

.

Given i ∈ [m] and j ∈ [n], let αij be the partial assignment with domain
{xi′j : i′ ∈ [m]} defined as follows

αij(xi′j) =

1 if i′ = i,
0 if i′ 6= i.

Let Hj = {αij}i∈[m] and let F be the following family of flippable products:
H ∈ F if and only if there exists a set of holes A ⊆ {1, . . . , n} such that

H =
⊗
i∈A

Hi.

By construction, each partial assignment inHj has as domain the set {xij , x̄ij}i∈[m],
Hj is flippable and 0-consistent, hence F is well defined and each H ∈ F is
0-consistent.

We prove that F is a n-BG family for P1 with respect to the 0 ideal. The
family F is non-empty as for A = ∅ the definition implies that {λ} ∈ F .
The restriction property is immediate from the definition. For the extension
property, let p ∈ P1 and H ∈ F , with ‖H‖ < n such that H =

⊗
j′∈AHj′ for

some A ⊆ [n]. There is exactly one j ∈ [n] such that var(p) ⊆ dom(Hj). If
j ∈ A then, by construction, H �I p hence we take Hp = {λ}. If j 6∈ A then
Hj is domain-disjoint from H, H⊗Hj ∈ F and by construction is such that
H⊗Hj �0 p. Take Hp = Hj in this case.

The set P2 satisfies the hypothesis of Theorem 3.7 since every H ∈ F of
rank strictly less than n leaves unset at least one variable in each each axiom
of the form

∏
j∈[n] x̄ij and each axiom of the form

∏
i∈[m] x̄ij is either set to 0

or is left unset by elements in F .
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Notice that the very same construction above can be used to prove monomial
space lower bounds for tr(oPHPmn ) with respect to the ideal generated by the
injectivity axioms: let I be such ideal, then

MSpacesem(oPHPmn `I 1) > n2

4 .

We recall that there is one more ‘standard’ pigeonhole principle considered in
proof complexity, that is the graph pigeonhole principle, G-PHP, cf. Section 4.9.

We end this section observing that the technique above cannot work for the
functional pigeonhole principle, fPHPmn , that is the conjunction of the PHPmn
formula with the following clauses

¬xij ∨ ¬xij′ ,

where i ∈ [m] and j, j′ ∈ [n] distinct (functionality axioms). This observation is
due to Filmus et al. [68], so to prove monomial space lower bounds in Polynomial
Calculus for fPHPmn the constructions that we are using in this thesis will be
probably not enough. In [68] it is moreover observed that monomial space lower
bounds for fPHPmn are equivalent to monomial space lower bounds for a 3-CNF
version of fPHPmn .

In the following two subsections we consider two less standard encoding of
the pigeonhole principle: bitPHPn and xorPHPmn .

4.4.2 The bit pigeonhole principle

Let n = 2k for k ∈ N. The bit pigeonhole principle on n holes bitPHPn, bitPHPn, is an
unsatisfiable CNF formula over the variables X = {xij : i ∈ [n+ 1], j ∈ [k]}. It
asserts that for all distinct i, i′ ∈ [n+ 1], the length-k binary strings xi1 . . . xik
and xi′1 . . . xi′k are distinct. We think of each element of [n + 1] as a pigeon
and of the string xi1 . . . xik as the address, in binary, of the hole in [n] that
pigeon i is flying to. Understood in this way, bitPHPn asserts that there is an
injective mapping of n+ 1 pigeons into n holes. Formally the principle consists
of the clauses Bi,i

′

h

Bi,i
′

h =
k∨
j=1

(xij 6≡ hj) ∨ (xi′j 6≡ hj),

for each i, i′ ∈ [n+1] with i < i′ and each h ∈ [n] such that its binary expansion
is h1 . . . hk ∈ {0, 1}k. The expression xij 6≡ hj is a shortcut for ¬xij if hj = 1
and for xij if hj = 0.

Then the bitPHPn is a formula over (n + 1) logn variables consisting of
n2(n+1) clauses each of width 2 logn. Two motivations to study, and sometimes
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prefer, bitPHPn against PHPn+1
n are that its encoding is more efficient from

the point of view of the number of variables used and the its width is O(logn)
instead of n.

Theorem 4.3. There exists a non-empty n
2 -BG family F for tr(bitPHPn) with

respect to the 0 ideal.

Proof. Given a hole h with binary representation h1, . . . , hk, let h̄ be the hole
with complementary binary representation 1− h1, . . . , 1− hk. Similarly, given
a set of holes A, let A = {h̄ : h ∈ A}. The notation

[
i 7→ h, i′ 7→ h̄

]
where

i, i′ ∈ [n+ 1] and h ∈ [n] is a shortcut for the partial assignment with domain
{xij , x̄ij , xi′j , x̄i′j : j ∈ [k]}

[
i 7→ h, i′ 7→ h̄

]
(xi′′j) = 1−

[
i 7→ h, i′ 7→ h̄

]
(x̄i′′j) =

hj if i′′ = i,
1− hj if i′′ = i′.

Given h ∈ [n/2] and σ : {h, h̄} → [n+ 1] an injective mapping6, let Hσ
h be the

set of partial assignments of domain {xσ(h)j , xσ(h̄)j , x̄σ(h)j , x̄σ(h̄)j}j∈[k]:

Hσ
h =

{[
σ(h) 7→ h, σ(h̄) 7→ h̄

]
,
[
σ(h) 7→ h̄, σ(h̄) 7→ h

]}
.

By construction all the assignments inHσ
h have the same domain, Hσ

h is flippable
and I-consistent. Consider then the following family F of flippable products:
H ∈ F if and only if there exists a set of holes A ⊆ [n/2] and there exists an
injective mapping σ : A ∪A→ [n+ 1] such that

H =
⊗
h∈A

Hσ
h .

We prove that F is a n
2 -BG family for tr(bitPHPn) with respect to the 0

ideal. For A = ∅ the definition implies that {λ} ∈ F so F is non-empty. By
construction, H ∈ F implies that H is 0-consistent and the restriction property
of F is obvious, hence we focus on the extension property.

Let H =
⊗

h∈AH
σ
h ∈ F such that ‖H‖ < n/2 and consider p = tr(Bhi,i′).

If both i, i′ ∈ σ(A ∪ Ā) then, by construction, H �0 p, hence we can take
Hp = {λ}.

Otherwise, without loss of generality, assume i′ 6∈ σ(A ∪ Ā). Since we have
that ‖H‖ = |A| < n/2, there is some hole h′ ∈ [n/2] \ A and an injective σ′

such that σ′ = σ ∪ {h′ 7→ i′} ∪ {h̄′ 7→ i′′} with i′′ outside σ(A ∪ Ā) ∪ {i′}. If
i 6∈ σ(A ∪ Ā) take i′′ = i. Let Hp = Hσ′

h′ : it is clearly 0-consistent and domain-
disjoint from H. Define H′ = H⊗Hp =

⊗
h∈A′ H

σ′

h ∈ F , where A′ = A∪ {h′}.
6Notice that as h ∈ [n/2] then h and h̄ are distinct.
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Notice that H′ �0 p, as each assignment in H′ set i and i′ to go into two distinct
holes. More precisely, if i ∈ σ(A ∪A) then i goes somewhere inside A ∪A and
i′ goes either in h′ or h̄′. If i 6∈ σ(A∪A) then, by construction, i goes in h̄′ and
i′ goes to h′ or viceversa.

The case when p is a Boolean axiom, say x2
ij − xij is completely analogous,

either i ∈ σ(A ∪A) and in this case we set Hp = {λ}; or i 6∈ σ(A ∪A) and in
this case we can extend as done before.

From Theorem 4.3 and Theorem 3.6 we immediately obtain the following
corollary, proved by Filmus et al. [70].

Corollary 4.4. MSpacesem(tr(bitPHPn) ` 1) > n/8.

Moreover, by Proposition 3.5, the existence of a non-empty n
2 -BG family

immediately implies the existence of a non-empty (n2 − 1)-BK family and hence,
by the characterization of the asymmetric width of Theorem 2.9, then

awidth(bitPHPn ` ⊥) = Ω(n).

From this result and Corollary 2.11, a total space lower bound in Resolution
follows immediately :

TSpaceRes(bitPHPn ` ⊥) > Ω(n2). (4.5)

Since bitPHPn has only (n+ 1) logn variables, then the previous one is a total
space lower bound in resolution that is super-linear in the number of variables.
This result was proven in [40] and constitutes the very first super-linear total
space lower bound for a formula with just polynomially many clauses.

A more direct proof of the monomial space lower showed in this section can
be found in [37, 70] and a more direct proof of the total space lower bound can
be found in [40]7.

4.4.3 The XOR pigeonhole principle

Searching for monomial space lower bounds for formulas of constant width,
Filmus et al. [70] introduced the XOR-pigeonhole principle.

Let m,n ∈ N be two integers such that m > n and let consider a set of
Boolean variables X = {xi,j : i ∈ [m], j ∈ [n] ∪ {0}}. A pigeon i ∈ [m] is
considered assigned to a hole j ∈ [n] when xi,j−1 6≡ xi,j is true. The XOR-
Pigeonhole Principle xorPHPmn, xorPHPmn , expresses the following weaker form of the

7Due to Corollary 2.11 we could have obtained a total space lower bound in Resolution
also proving a width lower bound for bitPHPn.
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pigeonhole principle: if each pigeon is assigned to an odd number of holes,
then there exists a hole with at least 2 pigeons. The formula xorPHPmn is a
contradictory 4-CNF formula encoding the negation of the principle as follows:

1. for each i ∈ [m], xi,0 6≡ xi,n, that is

(xi,0 ∨ xi,n) ∧ (¬xi,0 ∨ ¬xi,n);

2. for all distinct i, i′ ∈ [m] and all j ∈ [n] ∪ {0},

(xi,j−1 ≡ xi,j) ∨ (xi′,j−1 ≡ xi′,j),

that is

(xi,j−1 ∨ ¬xi,j ∨ xi′,j−1 ∨ ¬xi′,j) ∧ (¬xi,j−1 ∨ xi,j ∨ ¬xi′,j−1 ∨ xi′,j)∧
(xi,j−1 ∨ ¬xi,j ∨ ¬xi′,j−1 ∨ xi′,j) ∧ (¬xi,j−1 ∨ xi,j ∨ xi′,j−1 ∨ ¬xi′,j).

Theorem 4.5. There exists a non-empty (n− 1)-BG family for tr(xorPHPmn )
with respect to the ideal I generated by the Boolean axioms.

Proof. Given i ∈ [m] and j ∈ [n], let Hi7→j be the following set of partial
assignments of domain {xij′ , x̄ij′ : j′ ∈ [n] ∪ {0}}:

Hi 7→j = {αij , α∗ij},

where

αij(xij′) = 1− αij(x̄ij′) = 1− α∗ij(xi′j) = α∗ij(x̄i′j) =

1 if j′ < j

0 if j′ > j.

By construction Hi7→j is flippable and I-consistent.
Let F be defined as follows: H ∈ F if and only if there exists a set A ⊆ [m]

of size at most n− 1 and there exists an injective mapping µ : A −→ [n] such
that

H =
⊗
i∈A

Hi 7→µ(i).

We prove that F is a (n− 1)-BG family for tr(xorPHPmn ) with respect to the
ideal I. F is non-empty as for A = ∅ the definition implies that {λ} ∈ F .
By construction, H ∈ F implies that H is I-consistent. The restriction
property is immediate from the definition. To prove the extension property, let
H =

⊗
i∈AHi 7→µ(i) ∈ F with ‖H‖ < n− 1 and p the polynomial encoding of a

initial clause C from xorPHPmn . Let us suppose first that C is a clause from some



Chapter 4. Space lower bounds: applications 69

(xi,j−1 ≡ xi,j)∨ (xi′,j−1 ≡ xi′,j). If both i and i′ are in A, then, by construction,
H �I p and we can take Hp = {λ}. If i 6∈ A, then, as µ is an injective assignment
of at most n− 2 pigeons, we can find a hole h different from j which is not in
µ(A). Then let µ′ = µ ∪ {i 7→ h} and H′ =

⊗
`∈A∪{i}H 7̀→µ′(`) = H ⊗Hi 7→h.

By construction Hi 7→h �I p, hence H′ �I p. In this case take Hp = Hi 7→h.
Similarly if C = (xi,0 6≡ xi,n) we proceed as before extending µ to assign the
pigeon i somewhere (if needed).

From Theorem 4.5 and Theorem 3.6 we immediately obtain a monomial
space lower bound for xorPHPmn .

Corollary 4.6. MSpacesem(tr(xorPHPmn ) `I 1) > (n − 1)/4, where I is the
ideal generated by the Boolean axioms.

In [70] the authors proved that MSpacesem(tr(xorPHPmn ) ` 1) > n/4. The
result in Corollary 4.6 asymptotically matches the result from [70].

Notice that the proof of Theorem 4.5 could be adapted immediately for the
0 ideal and from that, by Proposition 3.5 and Theorem 2.5, it follows a total
space lower bound in Resolution:

TSpaceRes(xorPHPmn ` ⊥) > n2/4.

Differently from the bitPHPn, this total space lower bound is just (at most) linear
in the number of variables and not super-linear as for bitPHPn, cf. equation
(4.5).

4.5 Tseitin Formulas

Tseitin formulas are essentially based on a Boolean encodings of the fact that
the total degree of any graph is an even number. Those formulas were originally
used by Tseitin [138] to present the first super-polynomial lower bounds on
refutation size for regular Resolution, a restricted form of the Resolution proof
system. Then they were used to prove exponential lower bounds on the size
of Resolution refutations, for example in [132, 139]. Since then the Tseitin
formulas became one of the standard tools used in proof complexity to prove
lower bounds and trade-offs, for example they have been investigated regarding
the width, cf. [30], clause space, cf. [66] and recently Beck et al. [20] used Tseitin
formulas over long skinny grids to prove size-space trade-offs in Polynomial
Calculus.
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Let G = (V,E) be a connected graph of degree at most d over n vertices.
An odd-weight function σ : V → {0, 1} is a function σ such that∑

v∈V
σ(v) ≡ 1 (mod 2).

Consider now the set of Boolean variables X = {xe : e ∈ E} and for each v ∈ V
let PARITYv,σPARITYv,σ be the CNF formula expressing the following:∑

e3v
xe ≡ σ(v) (mod 2).

The Tseitin formulaTseitin(G, σ) , Tseitin(G, σ), is then the conjunction

Tseitin(G, σ) =
∧
v∈V

PARITYv,σ.

The formula Tseitin(G, σ) is then a d-CNF formula over at most dn/2 variables
and n2d−1 clauses. Moreover, as observed by Urquhart [140], if σ is odd-weight
then Tseitin(G, σ) is unsatisfiable (and the other implication is also true).

It turns out that many properties of the proof complexity of Tseitin formulas
Tseitin(G, σ) can be captured by the connectivity expansion of G.

Let G = (V,E) be a finite connected graph, the connectivity expansione(G) of G
(or just expansion), e(G), is

e(G) = min
{
|E ∩ (V ′ × (V \ V ′))| : V ′ ⊆ V ∧ |V ′| ∈

[
|V |
3 ,

2|V |
3

]}
Then G is an expander graph if e(G) = Ω(|V |), for instance random d-regular
graphs with high probability are expanders.

As proven by Ben-Sasson and Wigderson [30, Theorem 4.4], given a con-
nected graph G = (V,E) and an odd-weight function on V , then

width(Tseitin(G, σ) ` ⊥) > e(G). (4.6)

Hence, for example, by the size-width relations by Ben-Sasson and Wigderson
[30] a size lower bound for Tseitin formulas follows

sizeRes(Tseitin(G, σ) ` ⊥) > 2Ω(e(G)).

Concerning total space lower bounds in Resolution, we have the following result
that completely answer the open problem from [4, Open question 2].

Theorem 4.7. Let G = (V,E) be a connected d-regular graph and σ an odd-
weight function over V , then

TSpaceRes(Tseitin(G, σ) ` ⊥) > 1
16 (e(G)− d− 2)2

.
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In particular if G is a 3-regular expander graph over n vertices then

TSpaceRes(Tseitin(G, σ) ` ⊥) > Ω(n2).

Proof. It follows immediately from equation (4.6) and Corollary 2.11.

Regarding the monomial space in Polynomial Calculus the picture is more
complex. We do not know non-trivial monomial space lower bounds for Tseitin
formulas over 3-regular expander graphs. Yet we have some monomial space
lower bounds for some Tseitin formulas. In particular we have the following
results. If G = (V,E) is a d-regular graph with double edges8 and σ any
odd-weight function over V , then

MSpacesem(tr(Tseitin(G, σ)) ` 1) > Ω(e(G)− d). (4.7)

Filmus et al. [68] showed this result relying on a preliminary version of Theo-
rem 3.6 as appeared in [36]. More in general they showed that given a k-CNF
formula ϕ and its xorification ϕ[⊕], then

MSpacesem(tr(ϕ[⊕]) ` 1) > 1
4(width(ϕ ` ⊥)− k + 1), (4.8)

The xorification of a CNF formula ϕ is a new CNF formula ϕ[⊕] obtained
by replacing each occurrence of a variable xi in ϕ with the XOR of two new
variables x′i ⊕ x′′i and then expanding everything as a CNF formula using the
definition of the XOR and the De Morgan rules9. Regarding the proof of
equation (4.8) it is done essentially showing that from a r-AD family for ϕ
we can construct a suitable r′-BG family for tr(ϕ[⊕]). From this observation
equation (4.7) follows since Tseitin(G, σ)[⊕] is equivalent to Tseitin(G′, σ) where
G′ is a multigraph over the same vertex set of G obtained by doubling the
multiplicity of each edge of G.

Filmus et al. [68] showed also that if G = (V,E) is a random d-regular graph
on n vertices, where d > 4, then, with high probability, for every odd-weight
function σ on V

MSpacesem(tr(Tseitin(G, σ)) ` 1) > Ω(
√
n). (4.9)

The proof of this result again relies the preliminary version of Thorem 3.6 as
appeared in [36]. Interestingly the proof of equation (4.9) in [68] do not rely
just on e(G) but on the fact that actually G is a random graph.

8That is each edge has multiplicity 2.
9We will see more in detail properties of xorifications in Chapter 5.
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Over F2 it is known that Tseitin formulas have polynomial size refutations
in Polynomial Calculus, essentially mimicking Gaussian elimination. On the
other hand, the monomial space lower bounds we showed do not depend on the
characteristic of the ground field, that is despite such formulas over F2 have
short proofs, such refutations still require large monomial space.

4.6 From C -matchings to r-BG families

In what follow it is useful to consider a non-standard definition of bipartite
graphs. We will consider as bipartite graphsbipartite graphs subgraphs of the (infinite) bipartite
graph B with vertex set N×{0, 1} and such that {(n, b), (m, b′)} ∈ E(B) if and
only if b 6= b′. Given a bipartite graph G we call V (G) ∩ {(n, 0) : n ∈ N} the
lower partL(G) of G, L(G), and similarly V (G) ∩ {(n, 1) : n ∈ N} is the upper partU(G)

of G, U(G). We identify bipartite graphs in this way since we will be looking
at isomorphisms preserving the lower and upper parts of bipartite graphs.

In this section we give a generalisation of matchings and the V-matchings
we saw in the previous chapter, cf. Section 3.4.1. Let G be a bipartite graph, a
matchingmatching in G is a collection of vertex-disjoint edges in E(G), alternatively, we
can see a matching in G as a subgraph F where each connected component of
F is isomorphic to the graph GI with vertices (0, 0) and (0, 1) and a single edge
{(0, 0), (0, 1)}, cf. Figure 4.1.

(0, 0)

(0, 1)

Figure 4.1: GI

Definition 4.8 (C −matchings).C -matchings Let C be a collection of bipartite graphs
and G be a bipartite graph. A C -matching in G is a subgraph F of G such that
each connected component Fi of F is isomorphic to some graph Gj in C by an
isomorphism that maps L(Gj) into L(Fi) (and the same for U(Gj) and U(Fi)).

With this notation the usual matchings are {GI}-matchings. In what follow
we are interested in C -matchings for particular collections of graphs {G•, GV}
and {G•, GV, GW}, where

1. G• = ({(0, 1)}, ∅).
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(0, 1)

Figure 4.2: G•

2. GV has vertex-set {(0, 0), (0, 1), (1, 1)} and two edges {(0, 0), (0, 1)} and
{(0, 0), (1, 1)}: it has the shape of a V .

(0, 0)

(0, 1) (1, 1)

Figure 4.3: GV

3. GW has vertex-set {(0, 0), (1, 0), (0, 1), (1, 1), (2, 1)} and the four edges
{(0, 0), (0, 1)}, {(0, 0), (1, 1)}, {(1, 0), (1, 1)} and {(1, 0), (2, 1)}}: it has
the shape of a W .

(0, 0)

(0, 1) (1, 1)

(1, 0)

(1, 1) (2, 1)

Figure 4.4: GW

For simplicity we call the {GV, G•}-matchings simply V-matchings V-matchingsand the
{GV, GW, G•}-matchings simply VW-matchings VW-matchings.

Our main interest in V-matchings and VW-matchings is that those are among
the simplest trees with no leaves in N × {0} and, in some graphs associated
to CNF formulas we use such trees to build r-BG families of assignments,
cf. Section 4.6.2.

4.6.1 A Hall’s Theorem for VW-matchings

Given a graph G, the existence of a matching in G covering L(G) is related with
the expansion properties of G. We recall now the definition of (s, δ)-bipartite
expander graph.
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Definition 4.9 ((s, δ)-bipartite expander). Let s be a positive integer and δ be
a positive real number. A bipartite graph G is a (s, δ)-bipartite expander(s, δ)-bipartite expander if and
only if

∀A ⊆ L(G), |A| 6 s→ |NG(A)| > δ|A|.

If |NG(A)| > δ|A| we say that A expands in G at least δ.

We are going to prove an analogue of the Hall’s theorem, cf. Theorem 3.12
and its generalisation to V-matchings, cf. Theorem 3.13.

Before doing that, we argue why we can’t get an exact analogue of such
results for VW-matchings. Clearly we have the following implication.

Proposition 4.10. Let G be a bipartite graph and let |L(G)| = n, if there exists
a VW-matching in G covering L(G) then G is a (n, 3/2)-bipartite expander.

Proof. If G has as subgraph a VW-matching covering L(G) then clearly G is a
(n, 3/2)-bipartite expander since each subset of a VW-matching expands in G
at least 3/2.

Unfortunately, the converse of Proposition 4.10 does not hold. An easy
counterexample is the bipartite graph Dn with vertex-set

([2n]× {1}) ∪ ({0, 2, 4, . . . , 2n} × {0}),

and edge-set consisting of all

{(0, 0), (2i, 1)}, {(2i, 0), (2i, 1)}, {(2i, 0), (2i− 1, 1)},

for 1 6 i 6 n, cf. Figure 4.5 for D4. We have that Dn is (n+ 1, δn)-bipartite
expander where δn → 2 as n → ∞. But on the other hand there is no VW-
matching in Dn covering L(Dn).

(0, 0) (2, 0)

(1, 1) (2, 1)

(4, 0)

(3, 1) (4, 1)

(6, 0)

(5, 1) (6, 1)

(8, 0)

(7, 1) (8, 1)

Figure 4.5: D4

The next result behaves like a sort of converse of Proposition 4.10 and it
is based on an analogous result in [31, Lemma 1.2]. The way we present it
is somehow tailored to the applications we are interested in, that is bipartite
graphs G such that each v ∈ L(G) has degree at most 3.
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Theorem 4.11. Let G be a bipartite graph. Suppose that the the following
three properties hold:

1. for each v ∈ L(G), deg(v) 6 3 and no pair of degree 3 vertices in L(G)
have the same set of neighbors,

2. |N(L(G))| > (2− ε)|L(G)|, for some ε < 1
5 and

3. each proper subset of L(G) can be covered by a VW-matching,

then L(G) can be covered by a VW-matching.

The following proof is based on a simplification of the original proof from [31]
due to Susanna Figueiredo de Rezenede (pers. comm.). Since it is shorter and
gives a better bound (ε < 1

5 instead of ε < 1
23 ) we prefer to put that proof here

instead of the original one.

Proof. By contradiction, let G be a bipartite graph witnessing the fact that the
theorem is not true and for shortness let L = L(G) and U = U(G). Without
loss of generality we can suppose that U = NG(L). By hypothesis, every proper
subset of L can be covered by a VW-matching but the whole L cannot. This
means that the configurations of edges in Figure 4.6 cannot appear in G.

L

U

(a) (b) (c) (d) (e)

node of arbitrary degree

node of degree fixed by the figure

Figure 4.6: List of forbidden subgraphs

We say that two vertices v, v′ in U are close if there exists a vertex w ∈ L
such that v, v′ ∈ N(w). We now weight each vertex in U by its degree and we
redistribute the weight in the following way: each vertex in U of degree 1 gets
weight 1

3 from its close vertices. Let v be a vertex in U and let w(v) be its
weight at the end of the previous process. Then, since we are just redistributing
the weight: ∑

v∈U
deg(v) =

∑
v∈U

w(v).
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If v ∈ U is such that deg(v) = 1 then

w(v) =

1 + 1/3 if v has only one close vertex,
1 + 2/3 otherwise.

In fact, since the edge configurations in Figures 4.6.(a) and (b) are not appearing
in G, we have that two vertices of degree 1 in U cannot be close.

If v ∈ U is such that deg(v) = 2 then

w(v) > 2− 1/3.

In fact, since the edge configurations in Figures 4.6. (c), (d) and (e) are not
appearing in G, a vertex of degree 2 in U can be close to at most one vertex of
degree 1 in U .

If v ∈ U is such that deg(v) = d > 3 then w(v) > 2, since it could
be close to at most d vertices of degree 1 as (b) is forbidden, and hence
w(v) > d− d

3 = 2
3d > 2.

Let L = L2 ∪ L3, where Li are the vertices of degree i in L and U ′ be the
set of degree 1 vertices of U that have only one close vertex. This means that
each u ∈ U ′ is a neighbor of some vertex in L2 and since no pair of vertices of
degree 1 can be in the same neighborhood, then |U ′| 6 |L2|

Therefore we have

3|N(L)|
(2− ε) > 3|L| = 3|L3|+ 2|L2|+ |L2| =

∑
v∈U

deg(v) + |L2| =

=
∑
v∈U

w(v) + |L2| >
5
3 |U | −

1
3 |U

′|+ |L2| >
5
3 |U | =

5
3 |N(L)|,

from which it follows the contradiction that ε > 1/5.

Notice that we are not really interested in optimising the constant ε in the
previous result since, in the applications we show, it will be absorbed in some
asymptotic notation.

Before proceeding to the applications we observe that the best possible value
for ε in Theorem 4.11 would be ε = 1/3. In fact in [31] we have the following
proposition.

Proposition 4.12 (Bennett et al. [31]). For all ε > 1
3 there exists a bipartite

graph Gε such that

• each vertex in L(Gε) has degree at most 3 and no pair of degree 3 vertices
in L have the same set of neighbors;
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• |N(L(Gε))| > (2− ε)|L(Gε)|

• each proper subset of L(Gε) can be covered by a VW-matching;

• L(Gε) cannot be covered by a VW-matching.

4.6.2 Cover Games

Let G be a bipartite graph and C a collection of bipartite graphs. Given a
subgraph F in G and a subset A of vertices of G, we recall that F covers A if
V (F ) ⊇ A.

The Cover Game CoverGameC (G,µ) CoverGameC (G,µ)is a game on the bipartite graph G

between two players, Choose (he) and Cover (she). At each step i of the game the
players maintain a C -matching Fi in G. They start with the empty C -matching
and at step i+ 1 Choose can

1. remove a connected component from Fi, or

2. if the number of connected components of Fi is strictly less than µ, pick a
vertex (either in L(G) or U(G)) and challenge Cover to find a C -matching
Fi+1 in G such that

a) each connected component of Fi is also a connected component of
Fi+1;

b) Fi+1 covers the vertex picked by Choose.

Cover loses the game CoverGameC (G,µ) if at some point she cannot answer a
challenge by Choose. Otherwise, Cover wins.

We are interested in winning conditions for the player Cover for the cover
games where V-matchings and VW-matchings are used, that is CoverGameV(G,µ)
and CoverGameVW(G,µ). The reason for our interest is the fact that for suitable
graphs G associated to sets of monomials then a winning strategy for the
player Cover for the cover games where CoverGameC (G,µ) imply the existence
of a µ-BG family (under some assumption on C ) and hence ultimately some
monomial space lower bound.

From winning strategies to r-BG families

LetM = {mj}j∈J be an unsatisfiable set of monomials in the ring of polynomials
F[X∪X], whereX = {x1, . . . , xn} andX = {x̄1, . . . , x̄n}. LetGM the adjacency
graph GMofM , that is the bipartite graph with lower part L(GM ) = {(j, 0) : j ∈ J},
upper part U(GM ) = {(`, 1) : x` ∈ X} and there is an edge {(j, 0), (`, 1)} ∈
E(GA

M ) if and only if var(mj) ∩ {x`, x̄`} 6= ∅. This definition generalizes
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x x y

xym

x y

xym

z

yzm′

x y

xym

z

ȳzm′

x 7→ 0
x 7→ 1

(x, y) 7→ (0, 1)
(x, y) 7→ (1, 0)

(x, y, z) 7→ (0, 1, 0)
(x, y, z) 7→ (1, 0, 1)

(x, y, z) 7→ (0, 1, 1)
(x, y, z) 7→ (1, 0, 0)

Table 4.2: Flippable assignments from VW-matchings

immediately considering families of assignments instead of variables and this
will be helpful in Section 4.9.

Given a collection of families of assignments A = {A1, . . . , As}, let GA
M be

the A -adjacency graphGA
M of M = {mj}j∈J , that is the bipartite graph with lower

part L(GA
M ) = {(j, 0) : j ∈ J}, upper part U(GA

M ) = {(`, 1) : A` ∈ A } and
there is an edge {(j, 0), (`, 1)} ∈ E(GA

M ) if and only if var(mj) ∩ dom(A`) 6= ∅.
The next lemma shows how from a C -matching in GA

M we can associate
a flippable-product family, hence we are going to use the terminology and
notations introduced in Section 3.3, that is flippable families of assignments
and r-BG families. Since Lemma 4.13 is a bit general we provide an example
showing how a VW-matching F in the adjacency graph GM leads to flippable
families of assignments with domain the variables corresponding to U(F ) and
zeroing the monomials corresponding to L(F ), cf. Table 4.2. To simplify the
picture in Table 4.2 we directly identify U(GM ) with the Boolean variables and
L(GM ) with the monomials in M .

Lemma 4.13. LetM be an unsatisfiable set of monomials in F[X∪X]. Suppose
we have a collection A = {A1, . . . , As} of flippable families of assignments in the
Boolean variables X ∪X that are domain-disjoint. Let GA

M be the A -adjacency
graph of M and F be a C -matching in GA

M where C is a collection of trees
with all the leaves in U(GA

M )10. Then there exists a flippable product-family of
assignments HF such that

1. HF �0 {mj : (j, 0) ∈ L(F )},

2. dom(HF ) =
⋃

(`,1)∈U(F ) dom(A`), and

3. ‖HF ‖ is the number of connected components of F .

Proof. We prove the result by induction on the number of connected components
of F . If F is the union of two disjoint C -matchings F ′, F ′′ then by the inductive

10In this context of unrooted trees a leaf is a vertex of degree 1.
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hypothesis HF ′ �0 {mj : (j, 0) ∈ L(F ′)}, ‖HF ′‖ is the number of connected
components of F ′ and dom(HF ′) =

⋃
(`,1)∈U(F ′) dom(A`). As above we get the

same for F ′′, then, since U(F ′) and U(F ′′) are disjoint, HF = HF ′⊗HF ′′ is well-
defined. We immediately see that ‖HF ‖ is the number of connected components
of F , HF �0 {mj : (j, 0) ∈ L(F )} and dom(HF ) =

⋃
(`,1)∈U(F ) dom(A`).

It remains to consider the case when the C -matching F is just one connected
component: a tree with all the leaves in U(GA

M ). In particular we have to show
that HF �0 {mj : (j, 0) ∈ L(F )} and HF is flippable. To prove the flippability
we prove that for each (`, 1) ∈ U(F ), each partial assignment in A` can be
extended to an assignment β ∈ HF .

We prove these properties by induction on the size of the tree F : if F is
isomorphic to G• (cf. Figure 4.2) then clearly the statement holds. So consider
the minimal possible non trivial tree with all the leaves in U(GA

M ) is a tree
isomorphic to GV (cf. Figure 4.3). Without loss of generality we can assume
that a minimal F is as in Figure 4.7, then, analogously as what we did in
Example 3.11, let

HF = {α ∈ Ai ⊗A` : α �0 mj}.

Since both Ai and A` are flippable then HF is non-empty, flippable and
dom(HF ) = dom(Ai) ∪ dom(A`). Moreover, by construction, HF �0 mj and
‖HF ‖ = 1 and clearly each α ∈ Ai or A` can be extended to an assignment in
HF .

U(GM )

L(GM )
mj

(j, 0)

Ai

(i, 1)

A`

(`, 1)

Figure 4.7: From C -matchings to flippable products: a minimal example

Consider now a non-minimal tree F . If the tree F is a star, that is all
vertices in U(F ) are leaves then we just take two of such leaves and reason
as before. Otherwise there exists a vertex (`, 1) in U(GM ) that is not a leaf
of F and such that F is the union of two trees F ′ and F ′′ whose vertex-sets
intersects only on (`, 1), cf. Figure 4.8.

By inductive hypothesis, there exists a flippable HF ′ such that ‖HF ′‖ = 1,
dom(HF ′) =

⋃
(`,1)∈U(F ′) dom(A`), HF ′ �0 {mj : (j, 0) ∈ L(F ′)}. Similarly we

have the same results for HF ′′ . Let HF be the set of assignments obtained
‘gluing’ together compatible assignments from HF ′ and HF ′′ , more precisely
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U(GM )

L(GM )

A`

(`, 1)
F ′

(`, 1)
F ′′

Figure 4.8: From C -matchings to flippable products: inductive step

HF is the following set of assignments:

HF = {γ : ∃α ∈ A` ∃β′ ∈ HF ′ ∃β′′ ∈ HF ′′ , β
′ ⊇ α ∧ β′′ ⊇ α ∧ γ = β′ ∪ β′′}.

Clearly ‖HF ‖ = 1, dom(HF ) = dom(HF ′) ∪ dom(HF ′′) which in turn is⋃
(`,1)∈U(F ) dom(A`), and

HF �0 {mj : (j, 0) ∈ L(F ′) ∪ L(F ′′)} = {mj : (j, 0) ∈ L(F )}.

Let now be i ∈ U(F ) = U(F ′) ∪ U(F ′′), we prove that each assignment in
Ai can be extended to an assignment in HF , hence the inductive hypothesis
will be proved and in particular HF is flippable. Without loss of generality
let i ∈ U(F ′) and let δ ∈ Ai. By the inductive property on HF ′ there exists
some β′ ∈ HF ′ such that β′ ⊇ δ. Since dom(HF ′) ⊇ dom(A`), there exists
α ∈ A` such that α = β′|dom(A`). By the inductive property on HF ′′ there
exists β′′ ∈ HF ′′ such that β′′ ⊇ α. Then, by construction, γ = β′ ∪ β′′ ∈ HF

and clearly γ ⊇ δ.

The next proposition shows that winning strategies for the cover game,
played on the A -adjacency graph of a set of monomials using C -matchings,
give raise to r-BG families.

Lemma 4.14. Let J be a set of indices andM = {mj}j∈J be a set of monomials
and I a proper ideal in the ring F[X ∪ X] with X = {x1, . . . , xn}. Suppose
we have a collection A of flippable families of assignments A1, . . . , As in the
variables X ∪X that are I-consistent and domain-disjoint and let GA

M the A -
adjacency graph of M . If Cover wins CoverGameC (GA

M , µ) with C a collection
of trees with no leaves in L(GA

M ), then there is a non-empty µ-BG family F for
M ∪ I with respect to the ideal I.

Moreover if for each polynomial p ∈ I there exists an Ai ∈ A such that
var(p) ⊆ dom(Ai) then F is a µ-BG family for M ∪ I with respect to the 0
ideal.
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Proof. It is straightforward to check that a winning strategy for Cover in
CoverGameC (GA

M , µ) defines, by Lemma 4.13, a family F of flippable products
such that for all flippable products H ∈ F

1. for each H′ v H, H′ ∈ F ;

2. if ‖H‖ < µ, then:

(a) for each mj ∈M , there exists a flippable product H′ ∈ F such that
H′ �0 mj and H′ w H; and

(b) for each Ai in A , there exists a flippable family H′ ∈ F such that
H′ w H and dom(Ai) ⊆ dom(H′).

We claim that F is a µ-BG family for M ∪ I with respect to the ideal I.
The I-consistency property follows immediately from the I-consistency of the
families Ais. The restriction property is immediate. For the extension property
we use the properties in (2) above: for all the monomials in M we just use
property 2.(a).

If we have to extend to some polynomial p in I, we do nothing since H
is I-consistent and hence by definition H �I p. Moreover, if for each p ∈ I
there exists an Ai ∈ A such that var(p) ⊆ dom(Ai) then F is a µ-BG family
for M ∪ I with respect to the 0 ideal. We have just to check the extension
property when p ∈ I. In this case, by hypothesis, there exists some Ai ∈ A

such that var(p) ⊆ dom(Ai). By property 2.(b) there exists some H′ in F such
that dom(Ai) ⊆ dom(H′), hence, for each partial assignment α ∈ H′, α(p) ∈ F.
But since H′ is I-consistent and p ∈ I then α(p) ∈ I. Since I is a proper ideal
α(p) ∈ I ∩ F = 0 and hence α �0 p.

We now present two winning strategies, one for the game CoverGameV(G,µ),
cf. Section 4.6.3, and the other for the game CoverGameVW(G,µ), cf. Sec-
tion 4.6.4.

The proofs of those results are modeled on the analogous results in [31, 40]
but they are also similar to constructions that can be found in the literature
for matchings for example in [7, 24]. The overall structures of the proofs of the
winning strategies both for CoverGameV(G,µ) and for CoverGameVW(G,µ) are
analogous, but the former one is simpler and hence is somehow preliminary to
the latter one.

4.6.3 A winning strategy for CoverGameV(G,µ)

The next theorem shows that Cover has a winning strategy for the game
CoverGameV(G,µ) for expander graphs G with appropriately chosen parameters.
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Theorem 4.15. Let G be a bipartite graph, s a positive integer and ε > 0 a
real number. Moreover let d be the max degree of a vertex in L(G) and µ = εs

2d2 .
Suppose that the following two properties hold

1. G is a (s, 2 + ε)-bipartite expander;

2. the max degree of a vertex in U(G) is at most µ.

Then Cover wins CoverGameV(G,µ).

Before giving the proof of Theorem 4.15 we need some preliminary lemmas.
To simplify the exposition in this subsection we consider fixed a bipartite graph
G, an integer s and a real number ε > 0 such that G is an (s, 2 + ε)-bipartite
expander. For shortness let L = L(G), U = U(G) and d be the maximum
degree of a vertex in L. Given A ⊆ L and B ⊆ U , we let GA,BGA,B be the subgraph
of G induced by (L \A) ∪ (U \B).

Definition 4.16 (V-matching property). Given two sets A ⊆ L and B ⊆ U ,
we say that the pair (A,B) has the V-matching propertyV-matching property , if for every C ⊆ L \A
with |C| 6 s, there exists a V-matching F in GA,B covering C.

Lemma 4.17. Let A ⊆ L and B ⊆ U be such that the pair (A,B) does not
have the V-matching property. Then there exists a set C ⊆ L\A with ε|C| < |B|,
such that no V-matching in GA,B covers C.

Proof. Take C ⊆ L \A of minimal size such that no V-matching in GA,B covers
C. We have that |C| 6 s and, by minimality of C and Theorem 3.13, it follows
that

|NGA,B (C)| < 2|C|.

But, by hypothesis, G is an (s, 2 + ε)-bipartite expander; hence (2 + ε)|C| 6
|NG(C)|. Therefore,

(2 + ε)|C| 6 |NG(C)| 6 |NGA,B (C)|+ |B| < 2|C|+ |B|.

Hence ε|C| < |B|, as required.

Lemma 4.17 is the only place where we directly use the Hall’s theorem for
V-matchings, cf. Theorem 3.13 from the previous chapter. However, Lemma 4.17
itself plays a crucial role in proving the following lemmas.

Lemma 4.18. The pair (∅, ∅) has the V-matching property.

Proof. By contradiction suppose that (∅, ∅) has not the V-matching property,
then, by Lemma 4.17, there exist a set C ⊆ L \A that has no V -matching in
GA,B covering C and has negative size. Which is clearly not possible.
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Lemma 4.19 (component removal). Let A ⊆ L and B ⊆ U be such that the
pair (A,B) has the V-matching property and

|B| 6 εs. (4.10)

Then for each V-matching F contained in the subgraph of G induced by A ∪B,
we have that (A \ L(F ), B \ U(F )) has the V-matching property.

A visual hint for the notations used in this proof can be found in Figure 4.9.

U

L

A′

A C′′

B′

B

F

Figure 4.9: Component removal for V-matchings

Proof. Let A′ = A \ L(F ) and B′ = B \ U(F ) and suppose, by contradiction,
that (A′, B′) does not have the V-matching property. By Lemma 4.17, it is
sufficient to prove that for each set C ⊆ L \ A′ with ε|C| < |B′|, there is a
V-matching in GA′,B′ covering C. Let C ′ = C ∩ L(F ) and C ′′ = C \ C ′. By
construction, F is a V-matching such that L(F ) ⊆ A, U(F ) ⊆ B and F covers
C ′. Moreover, we have that

|C ′′| 6 |C| < 1
ε
|B′| < 1

ε
|B|

eq. (4.10)
6 s.

Hence there exists a V-matching F ′′ of C ′′ in GA,B, and since F and F ′′ are
vertex-disjoint, then F ∪F ′′ is a V-matching in GA′,B′ . By construction F ∪F ′′

covers C.

Lemma 4.20 (covering a vertex in L). Let A ⊆ L and B ⊆ U be such that the
pair (A,B) has the V-matching property. If

d2(|B|+ 2) 6 2εs, (4.11)

then for each vertex v in L \A, there exists a V-matching F in GA,B covering
v and such that (A ∪ L(F ), B ∪ U(F )) has the V-matching property.

A visual hint for the notations used in this proof can be found in Figure 4.10
on the next page.
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v
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Figure 4.10: Covering a vertex in L via V-matchings

Proof. Fix v ∈ L\A and let S be the set of all V-matchings F in GA,B , covering
v and such that F has a single connected component, that is F is isomorphic
to the graph GV from Figure 4.3.

Since 1 6 s and (A,B) has the V-matching property, we know that S is
non-empty. For every F ∈ S, let (AF , BF ) be the pair (A ∪ L(F ), B ∪ U(F )),
and suppose, for sake of contradiction, that for every F ∈ S, the pair (AF , BF )
doesn’t have the V-matching property. By Lemma 4.17, for every F ∈ S

there exists a set CF ⊆ L \ AF with |CF | < 1
ε |BF | and such that there is no

V-matching of CF in GAF ,BF .
Let C =

⋃
F∈S CF . Then

|C| 6
∑
F∈S
|CF | <

1
ε

∑
F∈S
|BF | 6

1
ε
|S|(|B|+ 2) 6 d2

2ε (|B|+ 2)
eq. (4.11)
6 s,

since |S| 6
(
d
2
)
6 d2

2 and |BF | = |B|+ 2. Hence |C ∪ {v}| 6 s. Furthermore,
C ∪ {v} ⊆ L \A, so by the fact that (A,B) has the V-matching property, there
exists a V-matching F ′ covering C ∪ {v} in GA,B .

There must be some F ∈ S such that F is a connected component of F ′.
Let F ′′ be F ′ with the component F removed. Then F ′′ is a V-matching in
GAF ,BF and F ′′ covers CF , contradicting the choice of CF .

Lemma 4.21 (covering a vertex in U). Let A ⊆ L and B ⊆ U be such that the
pair (A,B) has the V-matching property and let v a vertex in U \B with degree
e. If

d2(|B|+ 2e) 6 2εs, (4.12)

then there is a V-matching F in GA,B covering v and such that the pair (A ∪
L(F ), B ∪ U(F )) has the V-matching property.

A visual hint for the notations used in this proof can be found in Figure 4.11
on the facing page.
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Figure 4.11: Covering a vertex in U via V-matchings

Proof. Fix v ∈ U \ B and let D be NG(v) \ A. If |D| = 0, then NG(v) ⊆ A,
and so we can cover v by taking F to be the V-matching consisting only of
the vertex v. Since v ∈ U , this is a valid V-matching covering v and clearly
(A ∪ L(F ), B ∪ U(F )) has the V-matching property.

If |D| > 0, by hypothesis |D| 6 e and hence, by the cardinality condition
on B, cf. equation (4.12), we can apply Lemma 4.20 |D| times obtaining a
V-matching F in GA,B covering D and such that (A∪L(F ), B ∪U(F )) has the
V-matching property.

Now, since NG(v) ⊆ A ∪ L(F ), it follows that (A ∪ L(F ), B ∪ U(F ) ∪ {v})
has the V-matching property. Either v is covered by F , or it is possible to add
{v} as a new connected component to F while still maintaining the property of
being a V-matching in GA,B .

We now have all the preliminary lemmas needed to prove Theorem 4.1511,
restated below for convenience of the reader.

Restated Theorem 4.15. Let G be a bipartite graph, s a positive integer and
ε > 0 a real number. Moreover let d be the max degree of a vertex in L(G) and
µ = εs

2d2 . Suppose that the following two properties hold

1. G is a (s, 2 + ε)-bipartite expander;

2. the max degree of a vertex in U(G) is at most µ.

Then Cover wins CoverGameV(G,µ).

Proof of Theorem 4.15. Let L to be the set of all V-matchings F in G such
that (L(F ), U(F )) has the V-matching property, and |U(F )| 6 εs.

We claim that Cover can use the V-matchings in L to win CoverGameV(G,µ).
By Lemma 4.18 the empty V-matching is in L and hence L is non-empty.
Moreover, L is closed under removing connected components by Lemma 4.19.

11This theorem is from [40].



86 4.6. From C -matchings to r-BG families

Suppose now that at step i+1 of the game Choose picks a vertex v in GL(Fi),U(Fi)

and that Fi has strictly less than µ = εs
2d2 connected components. Then,

(L(Fi), U(Fi)) satisfies both the cardinality constraints of Lemma 4.20 and
Lemma 4.21. Let r is the max degree of a vertex in U(G):

d2(|U(Fi)|+ 2r) 6 d2(2µ+ 2r) (4.13)
6 d2(4µ) (4.14)
= 2εs. (4.15)

The inequality (4.13) follows from the fact that |U(Fi)| 6 2µ, and the inequality
(4.14) follows by the hypothesis that r 6 µ. The last equality is just the
hypothesis on µ.

If v is covered by Fi we take Fi+1 = Fi. Otherwise, by Lemma 4.20 and
Lemma 4.21 applied to (L(Fi), U(Fi)), there exists a V-matching Fi+1 extending
Fi by a new connected component covering v such that (L(Fi+1), U(Fi+1))
has the V-matching property. From the previous chain of inequalities, it
follows easily that the pair (L(Fi+1), U(Fi+1)) satisfies the cardinality condition
|U(Fi+1)| 6 εs.

4.6.4 A winning strategy for CoverGameVW(G,µ)

The next theorem shows that Cover has a winning strategy for the game
CoverGameVW(G,µ) for expander graphs G with appropriately chosen parame-
ters.

Theorem 4.22. Let G be a bipartite graph, s,D be integers, and ε < 1
5 be a

real number. For every integer d > D let Sd be the set of vertices of U(G) with
degree bigger than d. Suppose that

1. each vertex in L(G) has degree at most 3;

2. G is an (s, 2− ε
2 )-bipartite expander12;

3. for every Dmax > d > D, 144d(|Sd|+d) 6 εs, where Dmax is the maximum
degree of a vertex in U(G).

Then Cover wins the cover game CoverGameVW(G,µ) with µ = εs
144D .

The proof of this theorem is analogous to the proof that we have seen for
Theorem 4.15, but there are some non-trivial small changes in some crucial
preliminary lemmas we need.

12This hypothesis implies that no pair of degree 3 vertices in L(G) have the same set of
neighbors, in fact if A ⊆ L(G) has size 2 then |N(G)| > (2− 1

10 )2 = 3.8 > 3.
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To simplify the exposition in this subsection we consider fixed a bipartite
graph G, an integer s and a real number ε < 1/5 such that G is an (s, 2− ε

2 )-
bipartite expander. For shortness let L = L(G), U = U(G) and each vertex
in L has degree at most 3. As done in the previous section, given A ⊆ L and
B ⊆ U , we let GA,B GA,Bbe the subgraph of G induced by (L \A) ∪ (U \B).

Definition 4.23 (VW-matching property). Given two sets A ⊆ L and B ⊆ U ,
we say that the pair (A,B) has the VW-matching property VW-matching property, if for every C ⊆ L\A
with |C| 6 s, there exists a VW-matching F in GA,B covering C.

Lemma 4.24. Let A ⊆ L and B ⊆ U be such that the pair (A,B) does not have
the VW-matching property. Then there exists a set C ⊆ L \A with |C| < 2

ε |B|,
such that no VW-matching in GA,B covers C.

Proof. Take C ⊆ L \ A of minimal size such that no VW-matching in GA,B

covers C. We have that |C| 6 s and by minimality of C and Theorem 4.11 it
follows that

|NGA,B (C)| < (2− ε)|C|.

But, by hypothesis, G is an (s, 2− ε
2 )-bipartite expander, hence

(2− ε

2)|C| 6 |NG(C)|.

Therefore we have the following chain of inequalities

(2− ε

2)|C| 6 |NG(C)| 6 |NGA,B (C)|+ |B| < (2− ε)|C|+ |B|.

Hence |C| < 2
ε |B|, as required.

Lemma 4.24 is the only place where we directly use the version of Hall’s
Theorem for VW-matchings, cf. Theorem 4.11. However, Lemma 4.24 itself
plays a crucial role in proving the following lemmas.

Lemma 4.25. The pair (∅, ∅) has the VW-matching property.

Proof. By contradiction suppose that (∅, ∅) has not the VW-matching property,
then, by Lemma 4.24, there exists a set C ⊆ L \A that has no V -matching in
GA,B covering C and has negative size. Which is clearly not possible.

The proof of the following lemma is similar to the proof of Lemma 4.19, but,
for making this subsection as self contained as possible, we re-prove it in the
context of VW-matchings.
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Lemma 4.26 (component removal). Let A ⊆ L and B ⊆ U be such that the
pair (A,B) has the VW-matching property and

2|B| 6 εs. (4.16)

Then for each VW-matching F contained in the subgraph of G induced by A∪B,
(A \ L(F ), B \ U(F )) has the VW-matching property.

A visual hint for the notations used in this proof can be found in Figure 4.12.
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A′

A C′′

B′

B

F

Figure 4.12: Component removal for VW-matchings

Proof. Let A′ = A \ L(F ) and B′ = B \ U(F ) and suppose, by contradiction,
that (A′, B′) does not have the VW-matching property. By Lemma 4.24, it
is sufficient to prove that for each set C ⊆ L \ A′ with |C| < 2

ε |B
′|, there is

a VW-matching in GA′,B′ covering C. Let C ′ = C ∩ L(F ) and C ′′ = C \ C ′.
By construction, F is a VW-matching such that L(F ) ⊆ A, U(F ) ⊆ B and F
covers C ′. Moreover, we have that

|C ′′| 6 |C| < 2
ε
|B′| < 2

ε
|B|

eq. (4.16)
6 s.

Hence there exists a VW-matching F ′′ of C ′′ in GA,B, and so F ∪ F ′′ is a
VW-matching covering C in GA′,B′ .

Lemma 4.27 (covering a vertex in L). Let A ⊆ L and B ⊆ U be such that the
pair (A,B) has the VW-matching property and let d be the maximum degree of
a vertex in U \B. If

24d(|B|+ 3) 6 εs, (4.17)

then for each vertex v in L \A, there is a VW-matching F in GA,B covering v
and such that (A ∪ L(F ), B ∪ U(F )) has the VW-matching property.

A visual hint for the notations used in this proof can be found in Figure 4.13
on the facing page.
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Figure 4.13: Covering a vertex in L via VW-matchings

Proof. Fix v ∈ L \ A and let S be the set of all VW-matchings F in GA,B,
covering v and such that F is connected.

Since 1 6 s and (A,B) has the VW-matching property, we know that S is
non-empty. For every F ∈ S, let (AF , BF ) be the pair (A ∪ L(F ), B ∪ U(F )),
and suppose for a contradiction that for every F ∈ S, (AF , BF ) does not have
the VW-matching property. By Lemma 4.24, for every F ∈ S there is a set
CF ⊆ L \AF with |CF | < 2

ε |BF | and such that there is no VW-matching of CF
in GAF ,BF . Let C =

⋃
F∈Π CF . Then

|C| 6
∑
F∈S
|CF | <

2
ε

∑
F∈S
|BF | 6

2
ε
|S|(|B|+ 3) 6 2

ε
12d(|B|+ 3),

since there at most three V-matchings covering v and at most 3 · 2 · (d− 1) · 2
W-matchings covering v, we have that |S| 6 3 + 3 · 2 · (d − 1) · 2 6 12d and
moreover |BF | 6 |B|+ 3. Hence, by equation (4.17), we have that |C ∪{v}| 6 s.
Furthermore, C ∪ {v} ⊆ L \A, so by the fact that (A,B) has the VW-matching
property, there is a VW-matching F ′ covering C ∪ {v} in GA,B .

There must be some F ∈ S such that F is a connected component of F ′.
Let F ′′ be F ′ with the component F removed. Then F ′′ is a VW-matching in
GAF ,BF and F ′′ covers CF , contradicting the choice of CF .

Lemma 4.28 (covering a vertex in U). Let A ⊆ L and B ⊆ U be such that the
pair (A,B) has the VW-matching property and let d be the maximum degree of
a vertex in U \B. If

24d(|B|+ 3d) 6 εs, (4.18)

then for each vertex v in U \B, there is a VW-matching F in GA,B covering v
and such that (A ∪ L(F ), B ∪ U(F )) has the VW-matching property.

A visual hint for the notations used in this proof can be found in Figure 4.14
on the next page.
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Figure 4.14: Covering a vertex in U via VW-matchings

Proof. Fix v ∈ U \ B and let D be NG(v) \ A. If |D| = 0, then NG(v) ⊆ A,
and so we can cover v by taking F to be the VW-matching consisting only of
the vertex v. Since v ∈ U , this is a valid VW-matching covering v and clearly
(A ∪ L(F ), B ∪ U(F )) has the VW-matching property.

If |D| > 0, since by hypothesis |D| 6 d and by (4.18), we can apply
Lemma 4.27 |D| times obtaining a VW-matching F in GA,B covering D and
such that (A ∪ L(F ), B ∪ U(F )) has the VW-matching property.

Now, since NG(v) ⊆ A ∪ L(F ), it follows that (A ∪ L(F ), B ∪ U(F ) ∪ {v})
has the VW-matching property. Either v is covered by F , or it is possible to add
{v} as a new connected component to F while still maintaining the property of
being a VW-matching in GA,B .

We now have all the preliminary lemmas needed to prove Theorem 4.2213,
restated below for the convenience of the reader.

Restated Theorem 4.22. Let G be a bipartite graph, s,D be integers, and
ε < 1

5 be a real number. For every integer d > D let Sd be the set of vertices of
U(G) with degree bigger than d. Suppose that

1. each vertex in L(G) has degree at most 3;

2. G is an (s, 2− ε
2 )-bipartite expander14;

3. for every Dmax > d > D, 144d(|Sd|+d) 6 εs, where Dmax is the maximum
degree of a vertex in U(G).

Then Cover wins the cover game CoverGameVW(G,µ) with µ = εs
144D .

Proof of Theorem 4.22. By the hypothesis on |Sd|, for each Dmax > d > D we
can repeatedly apply Lemma 4.28 starting from (∅, ∅) to cover vertices in U

13The proof of this theorem is from [31].
14This hypothesis implies that no pair of degree 3 vertices in L(G) have the same set of

neighbors, in fact if A ⊆ L(G) has size 2 then |N(G)| > (2− 1
10 )2 = 3.8 > 3.
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of degree larger than D. By starting from vertices of U of maximum degree
and proceeding in decreasing order until reaching the vertices of degree D,
we can build a VW-matching M covering SD such that (L(M), U(M)) has
the VW-matching property. Moreover, by the choice of SD, GL(M),U(M) (the
subgraph induced by (L ∪U) \ (L(M) ∪U(M))) has degree at most D. We say
that a VW-matching F is compatible with M if each connected component of F
is either a connected component ofM or disjoint from all connected components
of M .

Let L to be the set of all VW-matchings F in G compatible with M

such that (L(M) ∪ L(F ), U(M) ∪ U(F )) has the VW-matching property, and
|U(M) ∪ U(F )| 6 εs

2 .
We show now that Cover can use the VW-matchings in L to win the

game CoverGameVW(G,µ). This family is non-empty since, by Lemma 4.25 the
empty VW-matching is in L . Moreover, L is closed under removing connected
components by Lemma 4.26. Suppose now that at step i+ 1 of the game Choose
picks a vertex v in GL(M),U(M) and that Fi has strictly less than µ = εs

144D
components. Then, (L(M) ∪ L(Fi), U(M) ∪ U(Fi)) satisfies the hypotheses of
Lemma 4.27 and Lemma 4.28:

24D(|U(M) ∪ U(Fi)|+ 3D) 6 24D(|U(M)|+ 3D) + 24D|R(Fi)| (4.19)
6 24D(3|SD|+ 3D) + 72Dµ (4.20)

6
εs

2 + 72Dµ = εs

2 + 72D εs

144D = εs, (4.21)

where the inequality (4.20) follows from the fact that |U(Fi)| 6 3µ and |U(M)| 6
3|SD|, where SD is the set of vertices in U of degree bigger than D. The
inequality (4.21) follows by the hypothesis on the size of SD.

Hence, if v is covered by Fi we take Fi+1 = Fi. If v is covered by M we
take Fi+1 = Fi ∪Mv, where Mv is the connected component of M covering v.
Otherwise, by Lemma 4.27 and Lemma 4.28 applied to (L(M)∪L(Fi), U(M)∪
U(Fi)), there exists a VW-matching Fi+1 extending Fi ∪M by a new connected
component covering v such that (L(Fi+1), U(Fi+1)) has the VW-matching
property. From the previous chain of inequalities, it follows easily that the
pair (L(Fi+1), U(Fi+1)) satisfies the cardinality condition |U(M) ∪ U(Fi+1)| =
|U(Fi+1)| 6 εs

2 .

4.7 Random bipartite graphs

We say that a graph is a (n, d,∆)-random bipartite graph (n, d,∆)-random bipartite graphif it is chosen according
to the uniform distribution on the set of bipartite graphs G such that U(G) = n
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and L(G) = ∆n and the maximum degree of a vertex in L(G) is exactly d.
The proof of the next theorem is standard and can be found for instance
in [13, 24, 30, 54, 83].

Theorem 4.29 (Ben-Sasson and Galesi [24, Lemma 5.1]). For any d > 3,
∆ > 1 and any real constant ε ∈ (0, d − 2), there is a constant γ = γd,ε,∆
such that, for large n if G is a (n, d,∆)-random bipartite graph then, with high
probability, G is a (γn, 1 + ε)-bipartite expander.

Lemma 4.30. Let G be a (n, d,∆)-random bipartite graph with ∆ and d positive
constants. Then, with high probability, there is no vertex in U(G) of degree
bigger than logn.

Proof. The expected number of vertices in U(G) of degree at least logn is at
most

n

(
∆n

logn

)((n−1
d−1
)(

n
d

) )logn

6 n

(
e∆n
logn

)logn(
d

n

)logn
= o(1).

So, with high probability, there are no such vertices.

Theorem 4.31. Let d > 4, ∆ > 1 and G a (n, d,∆)-random bipartite graph
then, for large n, with high probability there exists a constant γ such that Cover
has a winning strategy for CoverGameV(G, γn).

Proof. Fix ε = 1.5 then, by Theorem 4.29, with high probability for large n
there exists a constant γ = γd,ε,∆ such that G is a (γn, 2.5)-bipartite expander.
Moreover, by Lemma 4.30, no vertex in U(G) has degree bigger than logn and
henceforth, for large n, no vertex in U(G) has degree bigger than γn. Hence,
for large n, with high probability, G satisfies the hypotheses of Theorem 4.15,
hence Cover has a winning strategy for CoverGameV(G, γn).

Clearly the setting of ε = 1.5 is not strictly necessary in the previous proof.
Any ε > 1 would have been equally good but the hypothesis d > 4 was crucial.
Let ∆ > 0 a constant and G be a (n, 3,∆)-random bipartite graph: it is not true
that Cover has a winning strategy for CoverGameV(G, γn) for some constant γ
but, with high probability Cover has a winning strategy for CoverGameVW(G, γn)
for some constant γ, cf. Theorem 4.33. In order to prove this result we have
to show a preliminary lemma bounding the number of high degree vertices of
U(G). The next lemma is from [31].
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Lemma 4.32. Let ∆ be a constant and G be a (n, 3,∆)-random bipartite graph.
For every integer d, let Sd = {v ∈ U(G) : degG(v) > d}. Then for every
real constant c > 0, with high probability for sufficiently large n there exists a
constant D such that for every logn > d > D,

d(|Sd|+ d) 6 cn. (4.22)

Proof. We claim that for every logn > d > 12e∆, with high probability

|Sd| 6
en

2d . (4.23)

Before proving equation (4.23), we show how to conclude the desired bound on
Sd. Fix a positive constant c and let logn > D > 12e∆ big enough to have that
eD
2D 6 c/2. Moreover, for sufficiently large n, we have also that log2 n 6 cn/2.
For d such that logn > d > D we have the following chain of inequalities:

d(|Sd|+ d)
eq. (4.23)
6

end

2d + d2 6
eDn

2D + log2 n 6
cn

2 + cn

2 = cn.

It remains to show just equation (4.23). Consider logn > d > 24e∆. The
probability that there are at least en

2d many variable nodes of degree at least d
is at most

Pr
[
|Sd| >

en

2d
]
6

(
n
en
2d

)[(
∆n
d

)(
3
n

)d] en2d

. (4.24)

6

[
2d
(
e∆n
d

)d( 3
n

)d] en2d

(4.25)

6

(
6e∆
d
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= o(1), (4.28)

where the equation (4.28) holds since logn > d > 12e∆, and we used the
standard estimation

(
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6
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m

)m.

Theorem 4.33. Let ∆ > 1 and G a (n, 3,∆)-random bipartite graph then, for
large n, with high probability there exists a constant γ such that Cover has a
winning strategy CoverGameVW(G, γn).

Proof. Fix ε = 0.95 then, by Theorem 4.29, with high probability for large n
there exists a constant γ′ = γ′ε,∆ such that G is a (γ′n, 1.95)-bipartite expander.
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Moreover,with high probability, by Lemma 4.30, the maximum degree of a
vertex in U(G) is logn and, by Lemma 4.32, for large enough n there exists a
constant D such that for every logn > d > D,

144d(|Sd|+ d) 6 εγ′n,

where Sd = {v ∈ U(G) : degG(v) > d}. Hence, for large n, with high probability
G satisfies the hypotheses of Theorem 4.22, and then Cover has a winning
strategy for CoverGameVW(G, γn) with γ = εγ

144D .

Unlike Theorem 4.31, in the previous proof, the choice of ε is not completely
arbitrary. To apply Theorem 4.11 and hence Theorem 4.22 we need to have
ε > 0.9, any ε ∈ (0.9, 1) would have been equally good in the previous proof.

4.8 Random k-CNF formulas

We recall that given a positive integer k and a positive real number ∆, a
(n, k,∆)-random CNF(n, k,∆)-random CNF is a k-CNF formula with n variables and ∆n clauses
picked uniformly at random from the set of all CNF formulas in the variables
{x1, . . . , xn} which consist of exactly ∆n clauses, each clause containing exactly
k literals and no variable appearing twice in a clause.

A fundamental conjecture about the (n, k,∆)-random CNF formula model,
cf. [45, 50, 54, 72, 90], says that there exists a constant θk, the satisfiability
threshold, such that if ∆ > θk then a (n, k,∆)-random CNF formula is almost
surely unsatisfiable, while if ∆ < θk then a (n, k,∆)-random CNF formula is
almost surely satisfiable. Friedgut [71] showed that for each n there exists a
threshold θk(n) with such property. It is known that θ2(n) = 1, cf. [53, 64,
76], and that for each n, θk(n) is bounded between two constants that are
independent of n, e.g. 3.003 6 θ3(n) 6 4.598, cf. [72, 90]. For large k there
exists an explicit constant γk not depending on n such that θk(n) = γk, cf. [65].

Chvátal and Szemerédi [54] showed that every (n, k,∆)-random CNF for-
mula, with ∆ a constant such that ∆ > θk, is extremely hard for Resolution to
refute, that is every Resolution refutation is 2Ω(n). On the other hand Beame
et al. [17] showed that Resolution, for k = 3, produces refutations of size at
most 2O(n/∆), which is polynomial when ∆ > n/ logn. Indeed it is believed
that (n, k,∆)-random CNF formulas with ∆ close to the satisfiability threshold
θk are the ones that are most computationally hard, cf. e.g. [51].

The importance of [54] relies in showing that resolution is a very weak proof
systems, in the sense that almost all 3-CNF formulas require exponential size
Resolution refutations. Then the hardness of (n, k,∆)-random CNF formulas
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has been investigated in depth in proof complexity, in particular the lower
bounds in [54] was improved and simplified by Beame and Pitassi [13], improved
for a ∆ = o(n1/4) by Beame et al. [18] and simplified using the size-width
relation by Ben-Sasson and Wigderson [30]. All these results, as well the one we
show in this section, hold for k > 315. The (n, k,∆)-random CNF formulas have
been shown to be hard to refute also for the Polynomial Calculus, cf. [3, 26]
and for Res(k), a version of Res manipulating k-DNF formulas, cf. [2].

With respect to space they have been shown to require large clause space in
Resolution, more precisely given a (n, k,∆)-random CNF formula ϕ,

CSpace(ϕ ` ⊥) > Ω(n/∆1+ε),

cf. [24] while on the other hand Zito [143] showed an upper bound on clause
space

CSpace(ϕ ` ⊥) 6 O(n∆−1/(k−2)).

In this section we further deepen the understanding of the space complexity of
random k-CNF formulas proving total space lower bounds in resolution and
monomial space lower bounds in Polynomial Calculus, cf. Theorem 4.36. For
simplicity we focus on the case where ∆ is a constant.

If ϕ is a (n, k,∆)-random CNF then the clauses-variables adjacency graph
on ϕ, Gϕ, is a (n, k,∆)-random bipartite graph. The same holds if we consider
the adjacency graph GM on the set of monomials {tr(C) : C ∈ ϕ}. The formal
definition of adjacency graph is the following.

Definition 4.34 (adjacency graph). Let J ⊆ N be a set of indices and let
ϕ =

∨
j∈J Cj be a CNF formula in the variables {x1, . . . , xn}. The adjacency

graph of ϕ Gϕ, Gϕ, is the bipartite graph with vertex-set (J ×{0})∪ ([n]×{1}) and
{(j, 0), (i, 1)} ∈ E(Gϕ) if and only if xi ∈ var(Cj). Hence the clauses of ϕ can
be identified with the lower part of Gϕ and variables with the upper part of Gϕ.

The following result was proven in [31, 37].

Theorem 4.35. Let k > 3 and ∆ > θk. If ϕ is a (n, k,∆)-random CNF, then
there is a constant γ > 0 and non-empty (γn)-BG family for tr(ϕ) with respect
to the 0 ideal and with respect to the ideal generated by the Boolean axioms.

Proof. Let M be the translation of the clauses of ϕ into a set of polynomials
(actually monomials) in the ring F[X ∪ X], that is M = {tr(C) : C ∈ ϕ}.

15For completeness we recall that (n, 2,∆)-random CNF formulas are easy for Resolution
since 2-SAT is in P and the easy polynomial time algorithm to solve it can be formalized in
Resolution.
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Since ϕ is a (n, k,∆)-random CNF, then the adjacency graph of GM is a
(n, k,∆)-random bipartite graph. We distinguish now between the case of
k = 3 and k > 3. If k > 3 then, by Theorem 4.31, for large n, with high
probability there exists a constant γ such that Cover has a winning strategy for
CoverGameV(GM , γn).

If k = 3, by Theorem 4.33, for large n, with high probability there exists a
constant γ such that Cover has a winning strategy CoverGameVW(GM , γn).

In both cases, we can apply Lemma 4.14 since the graph GM is equivalent
to the A -adjacency graph GA

M , where A = {A1, . . . , An} with Ai = {αi, α′i}
where dom(αi) = dom(α′i) = {xi, x̄i} and

αi(xi) = 1− αi(x̄i) = α′i(x̄i) = 1− α′i(xi) = 0.

Lemma 4.14 implies that there is a non-empty (γn)-BG family F forM∪B, that
is tr(ϕ), where B is the set of boolean axioms, B = {x2

i −xi, xi+ x̄i−1}i=1,...,n.
Moreover F is also a (γn)-BG family for tr(ϕ) with respect to the 0 ideal,
since clearly for each p ∈ B we have that there exists some Ai such that
var(p) ⊆ Ai.

Theorem 4.36. Let k > 3 and ∆ > 1. If ϕ is a (n, k,∆)-random CNF, then
for large n, with high probability,

1. MSpacesem(tr(ϕ) `I 1) > Ω(n) with respect to the ideal I generated by
the Boolean axioms.

2. TSpaceRes(ϕ ` ⊥) > Ω(n2). More precisely, for large n, with high prob-
ability, any Res refutation of ϕ passes through a memory configuration
containing Ω(n) clauses of width at least Ω(n).

Proof. By Theorem 4.35 for large n, with high probability, there exists a
constant γ > 0 and a non-empty (γn)-BG family F for tr(ϕ) with respect to
the ideal I generated by the Boolean axioms. Hence to obtain (1.) we just apply
Theorem 3.6. To obtain (2.) we use the fact that F is a also a (γn)-BG family
for tr(ϕ) with respect to the 0 ideal and we apply Proposition 3.5 obtaining a
non-empty (γn− 1)-BK family, and hence, by Theorem 2.5, the lower bound
for the total space in resolution.

Notice that an alternative proof of the total space lower bound could follows
also from the fact that for large n, with high probability, there exists a constant
γ > 0 such that width(ϕ ` ⊥) > γn, cf. [30, 54], and hence a total space lower
bound in Resolution follows also from Corollary 2.11.
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4.9 Matching principles over graphs

Matching principles over graphs have been studied largely in the context of
proof complexity, cf. for example [24, 30] or [89, Section 18.1].

Let G be a bipartite graph with |L(G)| > |U(G)|. We think of L(G) as a
set of pigeons and U(G) as a set of holes. The graph pigeonhole principle G-PHPover
the graph G, G-PHP, is an unsatisfiable CNF formula in the variables

X = {xuv : {u, v} ∈ E(G)}.

It asserts that the variables describe a map, given by a subset of the edges of
G, in which each pigeon gets mapped to at least one hole but no hole receives
two pigeons or more. Formally, it is a conjunction of all the following clauses

(hole axioms) for each distinct pair of variables xuv, xu′v ∈ X,

¬xuv ∨ ¬xu′v;

(pigeon axioms) for each u ∈ L(G),∨
{xuv : xuv ∈ X}.

Notice that if maxv∈L(G) degG(v) 6 d then G-PHP is a d-CNF formula and
since |L(G)| > |U(G)| it is unsatisfiable. The graph pigeonhole principle is a
generalization of the standard pigeonhole principle: indeed PHPmn is the graph
pigeonhole principle Km,n-PHP, where Km,n is the complete bipartite graph
between a set of vertices of size m and a (disjoint) set of vertices of size n.

We recall that the encoding of G-PHP as a set of polynomials tr(PHPmn ) in
F[X ∪X] is the following

tr(G-PHP) =
{
xuvxu′v

}
xuv,xu′v∈X

u6=u′
∪
{
x2
uv − xuv, xuv + x̄uv − 1

}
{u,v}∈E(G)

∪
{ ∏
v:xuv∈X

x̄uv

}
u∈L(G)

.

Theorem 4.37. Let d > 3 and ∆ > 1. If G is a (n, d,∆)-random bipartite
graph, then there is a constant γ > 0 and non-empty (γn)-BG family for
tr(G-PHP) with respect to the 0 ideal and the ideal I generated by the hole
axioms and the Boolean axioms, that is the following set of polynomials{
xuvxu′v : xuv, xu′v ∈ X ∧ u 6= u′

}
∪
{
x2
uv − xuv, xuv + x̄uv − 1 : xuv ∈ X

}
.

(4.29)



98 4.9. Matching principles over graphs

Proof. Given v ∈ U(G) let Xv denote the set of variables representing the edges
touching the hole v, that is

Xv = {xuv : ∃u ∈ L(G) {u, v} ∈ E(G)}.

Given u ∈ L(G) and v ∈ U(G), let αuv be the partial assignment with
domain Xv defined as follows

αuv(xu′v) = 1− αuv(x̄u′v) =

1 if u′ = u,
0 if u′ 6= u.

Given v ∈ U(G), let Av = {αuv : {u, v} ∈ E(G)} and let A = {Av : v ∈ U(G)}.
Clearly we have that Av is flippable; dom(Av) = Xv and hence, if v 6= v′ then
dom(Av) and dom(Av′) are disjoint. Moreover Av is I-consistent, where I is
the ideal generated by the polynomials in equation (4.29).

Let M be the following set of monomials

M =
{ ∏
v:xuv∈X

x̄uv : u ∈ L(G)
}
.

An edge {u, v} in in E(G) if and only if

var
( ∏
v:xuv∈X

x̄uv

)
∩ dom(Av) 6= ∅,

hence G and GA
M , the A -adjacency graph of M , are isomorphic.

Since G is a (n, d,∆)-random bipartite graph, then the A -adjacency graph
of M is a (n, d,∆)-random bipartite graph. We distinguish now between the
case of d = 3 and d > 3. If d > 3 then, by Theorem 4.31, for large n, with high
probability there exists a constant γ such that Cover has a winning strategy for
CoverGameV(GA

M , γn).
If d = 3, by Theorem 4.33, for large n, with high probability there exists a

constant γ such that Cover has a winning strategy CoverGameVW(GA
M , γn).

In both cases, Lemma 4.14 implies that there is a non-empty (γn)-BG family
F for M ∪ I = tr(G-PHP) with respect to the ideal I. Moreover F is also a
(γn)-BG family for tr(G-PHP) with respect to the 0 ideal, since clearly for each
p ∈ I we have that there exists some Ai such that var(p) ⊆ Ai.

Theorem 4.38. Let d > 3 and ∆ > 1. If G is a (n, d,∆)-random bipartite
graph, then, for large n, with high probability,

1. MSpacesem(tr(G-PHP) `I 1) > Ω(n) with respect to the ideal I generated
by polynomial encodings of the hole axioms and the Boolean axioms of
G-PHP.
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2. TSpaceRes(G-PHP ` ⊥) > 1Ω(n2). More precisely, for large n, with
high probability, any Res refutation of G-PHP passes through a memory
configuration containing Ω(n) clauses of width at least Ω(n).

Proof. By Theorem 4.37 for large n, with high probability, there exists a
constant γ > 0 and a non-empty (γn)-BG family F for tr(G-PHP) with respect
to the ideal I generated by the polynomial encodings of hole axioms and the
Boolean axioms of G-PHP. Hence to obtain (1.) we just apply Theorem 3.6.
To obtain (2.) we use the fact that F is a also a (γn)-BG family for tr(G-PHP)
with respect to the 0 ideal and we apply Proposition 3.5 obtaining a non-empty
(γn− 1)-BK family, and hence, by Theorem 2.5, the lower bound for the total
space follows.

4.10 Open problems

1. Give an explicit formula ϕ in n variables and poly(n) clauses such that

TSpacesemPCR(tr(ϕ) ` 1) > ω(n).

Moreover all the open problems on total space in Polynomial Calculus
from [4] are still open.

2. There are plenty of examples of formulas that are well-studied in proof
complexity but for which we do not know monomial space lower bounds,
for instance the following.

a) Given an arbitrary small ε > 0, a constant γ and an unsatisfiable CNF
formula ϕ in n variables such that the clauses-variables adjacency
graph of ϕ is a (γn, 1 + ε)-bipartite expander, is this expansion
property enough to have that

MSpacesem(tr(ϕ) ` 1) > Ω(γn)?

This is the case for the clause space in Resolution [24] and indeed we
suspect that the same happens for the monomial space in Polynomial
Calculus.

b) We conjecture that, with high probability (for large n)

MSpacesem(tr(Tseitin(G, σ)) ` 1) = Ω(n),

where G is a random 3-regular graph of n vertices and σ an odd
weight function, cf. Section 4.5 for the definition of the formula
Tseitin(G, σ).
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c) Is it true that if ϕ is r-semiwide then

MSpacesem(tr(ϕ) ` 1) > Ω(r)?

As particular cases of this question we have the question about
monomial space lower bounds for the functional pigeonhole principle,
fPHPmn , cf. Section 4.4.1, and the Graph Tautologies, GTn, cf. [4,
Definition 3.12].



5
A postlude: SETH and

Resolution size

In this chapter we put the spotlight again on Resolution and in particular
to its connection with conjectures about the exact complexity of the k-SAT
problem, that is the conjectures known as the Exponential Time Hypothesis
(ETH) and the Strong Exponential Time Hypothesis (SETH). For (a subsystem
of) Resolution we show size lower bounds stronger than the one we get from the
size-width relation of [30], cf. equation (5.3). Our technique use combinatorial
characterizations of size and width, cf. respectively [118] and [8]. Then we show
a general hardness amplification result. Before going into details we recap the
state of the art of strong lower bounds known and their connection to Resolution
and the complexity of k-SAT.

5.1 Introduction

We recall that the k-SAT problem is the decision problem for satisfiability of
k-CNF formulas. There are several non-trivial algorithms known to solve k-SAT,
cf. for instance [61, 110, 111, 133]. Despite this however, the exact complexity
of k-SAT under suitable hardness assumptions remains unknown. Formalizing
what this complexity could be, Impagliazzo and Paturi [85] formulated the
following two hypotheses:

The Exponential Time Hypothesis ETH, ETH, states that the k-SAT problem requires
exponential time, for every k > 3.

101
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The Strong Exponential Time HypothesisSETH , SETH, states that the complexity of
k-SAT grows as k increases and it approaches that of exhaustive search. More
precisely let σk = inf{δ : k-SAT can be solved in time O(2δn)}. SETH states
that limk→∞ σk = 1.

Both ETH and SETH are stronger than NP 6= P and hence any proof is far
beyond reach at the moment but such hypotheses are important since they
imply a plethora of fine grained complexity results in the realm of parameterized
complexity. We refer to [59] for more details on how this hypotheses are useful
in such context.

However one can ask whether SETH holds for specific algorithms, that is
whether there are k-CNF formulas on which the algorithms run for at least
2(1−εk)n steps. This turns out to be the case for certain classes of algorithms,
for instance for the PPSZ algorithm, cf. [111], such lower bound was proved
by Scheder et al. [131]. Clearly, one may ask for such result for a class of
algorithms rather than for a specific one. Since we can think on the run of a
k-SAT algorithm on an unsatisfiable instance as a proof of its unsatisfiability.
Then, if the algorithm is structured enough, we can employ tools from proof
complexity and obtain lower bounds on the running time.

For natural proof systems, such as Resolution, exponential lower bounds
consistent with ETH are known from a long time, cf. for instance [139]. These
are 2Ω(n) lower bounds for k-CNF formulas on n variables and hence not strong
enough to support SETH. For tree-like Resolution Pudlák and Impagliazzo [120]
constructed unsatisfiable k-CNF formulas ϕn such that

sizetree-Res(ϕ ` ⊥) > 2(1−εk)n, (5.1)

where εk = O(k− 1
8 ). It is well known that a run of a DPLL algorithm on

an unsatisfiable k-CNF formula gives a tree-like refutation (and viceversa),
therefore a tree-like Resolution refutation lower bound implies a DPLL running
time lower bound. So Pudlák and Impagliazzo [120] proved, in particular, a
lower bound on the running time of the DPLL algorithm of the form

2(1−εk)n,

where εk = O(k− 1
8 ). If we ignore, for the moment, the precise asymptotic of εk,

the result from [120] can be informally stated saying that

‘SETH is consistent with tree-like Resolution’,

that is no algorithm whose run result in a proof system that is p-equivalent to
tree-like Resolution will be able to disprove SETH. So, proving that SETH is
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consistent with a proof system P will be an indirect support to the truth of
SETH or, at least, that no algorithm confuting SETH will be formalizable in
P . For example, proving that SETH is consistent with Resolution will mean
that no CDCL solver (with some hypothesis on its behavior) will be able to
refute SETH, due to the fact that CDCL solvers are p-simulated by Resolution,
cf. Section 1.3. Hence, from the proof complexity point of view, we could be
interested in what is the strongest proof systems in which an inequality as in
(5.1) holds.

Given a family of k-CNF formulas in n variables ϕn, we call strong strong size lower boundsize
lower bound a lower bound of the form

size(ϕn ` ⊥) > 2(1−εk)n,

where εk → 0 as k →∞. Similarly a strong strong width lower boundwidth lower bound is a lower bound
of the form

width(ϕn ` ⊥) > (1− εk)n,

where εk → 0 as k →∞.
We recall that the size-width relationship by [30, Corollary 3.4] for tree-like

Resolution has the following form

sizetree-Res(ϕ ` ⊥) > 2width(ϕ`⊥)−k. (5.2)

Hence a strong width lower bound in Resolution imply a strong size lower bound
in tree-like Resolution. This is not the case for general Resolution, since the
best known general relation between width and size is again from [30, Theorem
3.5]:

sizeRes(ϕ ` ⊥) > 2 1
16

(width(ϕ`⊥)−k)2
n . (5.3)

Hence, in general, in Resolution is not true that a strong width lower bound
imply a strong size lower bound: this is due to the constant in the exponent in
equation (5.3). However, if the formula is structured in some sense, that is for
instance it a xorification, we can avoid this loss.

Indeed it is not known if ‘SETH is consistent with Resolution’ (although
it is expected to be) but, in a recent construction, Beck and Impagliazzo [21]
showed that

‘SETH is consistent with regular Resolution’,

where we recall that a regular reg-ResResolution derivation from a formula ϕ in n

variables is a Resolution derivation in which along any path no variable is



104 5.2. Main results + credits

resolved multiple times. This result was obtained relying on a strong width
lower bound for Resolution of the form

width(ϕn ` ⊥) > (1− εk)n,

where εk = Õ(k− 1
4 ) and the Õ notation is hiding log factors. Contextually their

result improves also the asymptotic of the strong size lower bound in tree-like
Resolution from the εk = O(k− 1

8 ) of [120] to εk = Õ(k− 1
4 ).

In [38], we further improved the asymptotic of εk to Õ(k− 1
3 ), hence an

obvious question is how far this improvements on the asymptotic of εk can
be pushed. It turns out that the best possible would be εk = O(k−1) since
for every unsatisfiable k-CNF formula on n variables there exists a tree-like
Resolution of size at most 2

(
1−Ω(k−1)

)
n, cf. Theorem 5.2.

Moreover in [39] we improved the result in [21] proving that

‘SETH is consistent with δ-regular Resolution’,

for small δ ∈ [0, 1], cf. Corollary 5.8, where a δ-regularδ-reg-Res Resolution refutation of
a formula ϕ is a Resolution refutation in which along any path of its associated
DAG a fraction of most δ variables is resolved multiple times. Hence a 0-regular
Resolution refutation is just a regular refutation and a 1-regular Resolution
refutation is one without any constraint. For δ = 0 our result simplify [21]
and induces a game theoretical proof of the fact that ‘SETH is consistent with
regular Resolution’.

5.2 Main results + credits

The main goal of this chapter is to prove that for any large enough natural
numbers N and K there exists an unsatisfiable K-CNF formula ψ in N variables
such that

sizeδ-reg-Res(ψ ` ⊥) > 2(1−εK)N , (5.4)

where both εK and δ are Õ(K−1/4), cf. Corollary 5.8. In order to prove the result
in equation (5.4) we further develop the game characterization of Resolution size
by Pudlák [118]; we show a general hardness amplification result lifting width
lower bounds to size lower bounds in δ-regular Resolution; and we improve (and
simplify) the strong width lower bound by Beck and Impagliazzo [21].

Section 5.3 First of all we prove an upper bound on Resolution size of the
form

sizetree-Res(ϕ ` ⊥) 6 2
(

1−Ω(1/k)
)
n,
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where ϕ is a k-CNF formula in n variables, cf. Theorem 5.2. This result relies
on canonical decision trees and a Switching Lemma, cf. Lemma 5.1. A similar
argument was used by Miltersen et al. [104] to prove upper bounds on the
size of decision trees for k-CNF formula’s. However, we are not aware of any
adaptation of this result in the proof complexity literature and hence we present
a formal account of this observation.

Section 5.4 We give a common formalization of the Pudlák games character-
izing Resolution size and the games characterizing Resolution width by Atserias
and Dalmau [8]. Informally, we have two players Prover and Delayer that play
on some formula ϕ. Prover has the objective of showing that the formula ϕ is
unsatisfiable by querying variables. Delayer on the other hand wants to play as
long as possible before the formula is falsified while answering to the queries
Prover asks her. The size of Resolution proofs of ϕ is then characterized as
the minimal number of records, i.e. partial assignments, Prover has to consider
in a winning strategy. The w-AD families from Chapter 2 corresponds to the
winning strategies of Delayer in such games, cf. Theorem 5.3.

We observe that the size in δ-regular Resolution is characterized by a Pudlák
game where Prover is allowed to re-query in each run of the game at most δn
variables, where n is the number of variables of the formula ϕ on which they are
playing, cf. Theorem 5.4. Then to prove a Resolution size lower bound we show
that, in order to win, Prover must keep a large number of records and we can
do that by producing a lot of sufficiently different strategies for Delayer. Prover
must win against each of them, hence in his winning strategy he must have a lot
of distinct records, since the strategies of Delayer are sufficiently different. In
the literature this is done essentially by making Prover play against a Delayer
that plays according to a random strategy [60, 118]. Then the size lower bound,
that is a lower bound on the number of records that Prover must have in a
winning strategy, is obtained by probabilistic arguments. This may very likely
lead to some loss in the constants and that is what we want to avoid to prove a
SETH lower bound for Resolution size.

Section 5.5 We still use Pudlák’s characterization of Resolution size as games
but we will apply it to a structured formula, a xorification of some unsatisfiable
CNF formula ϕ. This allows us to avoid the use of probabilistic arguments
and it is the core of our main technical result, cf. Theorem 5.5. There we
prove that if there is a width lower bound for refuting an unsatisfiable CNF
formula ϕ in Resolution, then there exists a ‘sufficiently strong’ exponential
size lower bound for refuting a xorification of ϕ. For the Pudlák game, played
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on the xorified instance of a formula ϕ, we give a series of strategies for Delayer
to which Prover has to answer in order to win. To construct such strategies
we use the characterization of Resolution width as a game [8], played on the
original formula ϕ. At a very high level, the crucial idea here is to amplify a
winning strategy for Delayer in the width game on ϕ. By this we mean that
each strategy σ for the game corresponding to width gives rise to a multitude
of strategies, each of them acting differently on the xorified formula, but in
a sense they all act the same as σ on the original formula. This is done by
exploiting the combinatorial properties of the xorified formula in such a way that
the number of Delayer strategies, for the Pudlák game played on the xorified
formula, does indeed hugely amplify. Then, the desired size lower bound follows
from a counting argument.

Section 5.6 The fact that SETH is consistent with δ-regular Resolution follows
then from the hardness amplification in Theorem 5.5, and a strong width lower
bound: for any large n and k, there exist an unsatisfiable k-CNF formula ϕ on
n variables such that

width(ϕ ` ⊥) > (1− ζk)n,

where ζk = Õ(k−1/3), cf. Theorem 5.6. More precisely the result we show is
that for any large enough N and K ∈ N there exists an unsatisfiable K-CNF
formula ψ in N variables such that

sizeδ-reg-Res(ψ ` ⊥) > 2(1−εK)N ,

where εK = δ = Õ(K−1/4), cf. Corollary 5.8. Contextually, we also prove that
for any large enough k ∈ N there exists an unsatisfiable k-CNF formula ϕ in N
variables such that

sizetree-Res(ϕ ` ⊥) > 2(1−εk)N ,

where εk = Õ(k−1/3), cf. Corollary 5.7. Both the strong lower bound for tree-like
Resolution and the strong lower bound for δ-regular Resolution give better
bounds on the asymptotic of εk with respect to the bounds given in [21].

Section 5.7 We end this chapter with the proof of the fact that for any large
n and k, there exist an unsatisfiable k-CNF formula ϕ on n variables such that

width(ϕ ` ⊥) > (1− ζk)n,

where ζk = Õ(k−1/3), cf. Theorem 5.6. As in [21], we prove this width lower
bound for a family of CNF formulas encoding unsatisfiable linear systems of
equations over a finite field with p element, Fp, for large enough p. If the
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coefficients in such system of linear equation are chosen uniformly at random
then with high probability they satisfy a certain kind of expansion property,
cf. Definition 5.9 and Proposition 5.10.

The main technical difference, between the our width lower bound and [21],
is in the way such linear systems over Fp are encoded using Boolean variables.
We encode such systems of linear equations in a more efficient way in the number
variables used and in this way we improve the asymptotic of the width lower
bound. The main technical improvement over [21] is Lemma 5.11. Our width
lower bound, Theorem 5.6, is a modification of the analogue of [21, Theorem
5.5] and ultimately relies on the widely used idea in proof complexity that
medium complexity clauses in a proof should have large width.

The results presented in this chapter rely on two joint works with Navid
Talebanfard, cf. [38, 39].

5.3 An upper bound on Resolution size

Using the Switching Lemma, cf. Lemma 5.1, we show that if ϕ is a k-CNF
formula then

sizetree-Res(ϕ ` ⊥) 6 2
(

1−Ω( 1
k )
)
n.

Before proving this result we need to recall some notations and terminology, in
particular decision trees and canonical decision trees.

Let ϕ be an unsatisfiable CNF formula. A decision tree decision treefor ϕ is a binary
tree where the inner nodes are labeled with variables from the variables of ϕ
and the leaves are labeled with clauses from ϕ. Each path in the decision tree
corresponds to a partial assignment where a variable x gets the value 0 or 1
according whether the path branches left or right at the node labeled with x.
The condition on the tree is that each clause on the leaves is falsified by the
partial assignment given by the path reaching the clause. Decision trees for an
unsatisfiable CNF formula ϕ are in a bijective correspondence with tree-like
Resolution refutations of ϕ, cf. for example Beyersdorff et al. [34].

Following [12], a canonical decision tree canonical decision treeis defined as follows. Given a CNF
formula ϕ =

∧
i Ci consider fixed an ordering 6 on the variables of ϕ and an

ordering � on the clauses of ϕ. The canonical decision tree T (ϕ)of ϕ, T (ϕ), is
inductively defined as follows: look at the first clause C of ϕ according to the
ordering � and let ϕ = C ∧ ϕ′. Then do a full decision tree on the variables of
C respecting the order 6 of the variables, that is along each directed path from
the root to leaves the sequence of variables encountered xi1 , . . . , xi` is such that
xi1 6 · · · 6 xi` . Each path from the root to a leaf defines a partial assignment
and there is exactly one path from the root to a leaf v that correspond to a
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partial assignment that falsifies C. We label the leaf v with the clause C. For
all the other other leaves w, let αw be the partial assignment corresponding to
the path from the root to the leaf w. We replace the leaf w with T (αw(ϕ′)),
cf. Figure 5.1.

w

T (αw(ϕ′))

αw

v

C

Figure 5.1: A canonical decision tree

A random restrictionrandom restriction leaving ` unassigned variables in a set of variables X
can be obtained as follows: first pick a subset S of the variables of size |X| − `
uniformly at random, then set each x ∈ S to either 0 or 1 with equal probability.
The following variant of the Switching Lemma is due to [12].

Lemma 5.1 (Switching Lemma, Beame [12]). Let ϕ be a k-CNF formula on
n variables. Let ρ be a random restriction chosen uniformly at random from
the set of all restrictions that leave exactly ` variables unset, with ` 6 n

7 . The
probability that the canonical decision tree of ρ(ϕ) has depth bigger than d is at
most

( 7k`
n

)d.
Theorem 5.2. For any unsatisfiable k-CNF formula ϕ on n variables

sizetree-Res(ϕ ` ⊥) 6 2
(

1−Ω( 1
k )
)
n.

The proof of this result is based on [39].

Proof. Miltersen et al. [104] showed that every k-CNF formula has a decision
tree representation of size 2

(
1−Ω( 1

k )
)
n. We follow their argument and adapt it

to the unsatisfiable setting.
Let ` = n/14k and let d = `/2. By the Switching Lemma, for a 1 − 2−d

fraction of partial assignments ρ with |ρ| = n − `, the depth of T (ρ(ϕ)) is at
most d. Then, by an averaging argument, there exists a subset S of the variables
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of ϕ with |S| = n− ` such for at least 1− 2−d of the partial assignments ρ with
domain S, the depth of the canonical decision tree T (ρ(ϕ)) is at most d. Then
we can construct a decision tree for ϕ as follows: first we do a full decision
tree on variables in S; then for each leaf with the corresponding restriction σ,
we append T (σ(ϕ)) to that leaf. The number of leaves of this tree is upper
bounded by

2d2n−` + 2−d2n−`2`, (5.5)

since at most a 2−d fraction of the leaves of the full decision tree on S can have
maximal depth `, cf. Figure 5.2.

6 2−d2n−`

full decision tree on Sn− `

6 d

`

· · · · · ·

T (σ(ϕ))
· · ·

σ

Figure 5.2: Size upper bound via canonical decision trees

Since d = `/2 then equation (5.5) is upper bounded by

2n− `2 +1 = 2
(

1−Ω( 1
k )
)
n.

Hence we constructed a decision tree for ϕ with size at most 2
(

1−Ω( 1
k )
)
n. Since

decision trees correspond to tree-like Resolution refutations we have the desired
upper bound.

5.4 Resolution size and width as games

We start introducing a common framework for the games described by Atserias
and Dalmau [8] for Resolution width, and by Pudlák [118] for Resolution size.

Given an unsatisfiable CNF formula ϕ and a set of partial assignments R
containing the empty assignment, we define a game, Game(ϕ,R) Game(ϕ,R), between two
players Prover (he) and Delayer (she). At each step i of the game the players
maintain a partial assignment αi ∈ R, where α0 is the empty partial assignment,
then at step i+ 1 the following moves take place:
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1. Prover picks some variable x 6∈ dom(αi).

2. Delayer answers x = b for some bit b ∈ {0, 1}.

3. Prover set αi+1 ∈ R such that αi+1 ⊆ αi ∪ {x 7→ b}.

If at any point in the game αi falsify ϕ then Prover wins; otherwise Delayer wins.
As usual, we say that Prover has a winning strategy for the game Game(ϕ,R) if
for any strategy of Delayer, he can play so that he wins the game. Otherwise
we say that Delayer has a winning strategy.

Let ϕ be a CNF formula in n variables and let δ be a parameter. If in each
play of Game(ϕ,R), Prover is allowed to re-query at most δn variables, we call
the corresponding game Gameδ(ϕ,R)Gameδ(ϕ,R) .

For a suitable choice of R the Game(ϕ,R) is exactly the one used by [8] to
characterize the minimal width of Resolution refutations of ϕ. In particular [8]
show the following result (rephrased here with the notations we just set up).

Theorem 5.3 (Atserias and Dalmau [8]). Given an unsatisfiable CNF formula
ϕ and an integer w, the following are equivalent

1. Delayer has a winning strategy for Game(ϕ,W), where W is the set of all
possible partial assignments with a domain of size strictly less than w;

2. width(ϕ ` ⊥) > w;

3. there exists a w-AD family for ϕ.

Due to this equivalence, we will denote Game(ϕ,W) by width-Game(ϕ,w)width-Game(ϕ,w) .

Pudlák [118] showed that one can characterize the minimal size of Resolution
refutations of a CNF formula ϕ in terms of the games we just introduced.
Essentially from a Resolution refutation π we can construct a winning strategy
for Prover for the game Game(ϕ,R) with a set of assignments R with the same
size of π and vice versa: each play of the Game(ϕ,R) correspond to a path in
the DAG associated to π. If π is a δ-regular refutation, then, in each play of the
game Game(ϕ,R), the set of variables Prover is going to re-query has size at
most δ| var(ϕ)|, hence he is playing a Gameδ(ϕ,R). The next result, contained
in [39], is essentially based on [118], just adapted to δ-regular Resolution.

Theorem 5.4. Let ϕ be an unsatisfiable CNF formula and let δ be any real in
the interval [0, 1]. The following are equivalent

1. Prover has a winning strategy for Gameδ(ϕ,R), for some set of partial
assignments R such that |R| 6 s;
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2. sizeδ-reg-Res(ϕ ` ⊥) 6 s.

Proof. (1) ⇐ (2) Given a refutation π of ϕ of minimal size, for each clause C
in π let θC denote the minimal partial assignment mapping C to false. We now
define the set of R to be R = {θC : C ∈ π}. By minimality of π and by (2.)
we have that |R| 6 s. A winning strategy for Prover can be described simply
taking the DAG associated to π and reversing the direction of all edges. Notice
that each play of the Gameδ(ϕ,R) correspond to a path in π. Then, if π is
δ-regular then in each play the set of variables Prover is going to query many
times is at most δ| var(ϕ)|.

(1) ⇒ (2) (sketch) Take a minimal winning strategy for Prover. This can be
described as a DAG G where each node v has a label αv from R and the label
of the leaves of G are falsifying some clause from ϕ. By minimality, there is a
unique source, labeled with the empty partial assignment, and each internal
node v has one or two children corresponding to the possible choices of Prover
when Delayer is challenged to set some variable xv to 0 or to 1. We now reverse
all the edges of G obtaining a DAG G′ over the same vertex set of G. Each
internal node v in the DAG G′, starting from the sink, can then be labeled with
the clause Cv of minimal size such that that

(a) αv(Cv) = 0;

(b) if v has just one predecessor w then Cw � Cv, that is every partial
assignment satisfying Cw satisfies Cv;

(c) if v has two predecessors w1 and w2 then there exists a variable xv
such that Cw1 has the literal xv, Cw2 has the literal ¬xv and Cv is the
weakening of a resolvent of Cw1 and Cw2 with respect to xv.

Since G correspond to a winning strategy of Prover then the source nodes
of G′ are labeled with clauses from ϕ that are falsified by the corresponding
assignments in R. By the properties (b) and (c) above G′ corresponds to a
Resolution (with weakening) derivation π from ϕ. By the property (a) above
we have that π is a refutation of ϕ. Each run of the game corresponds to a path
in G and the variable queried multiple times in each path are exactly those
resolved multiple times. Hence if G was obtained from a winning strategy for
Prover for Gameδ(ϕ,R), then π is a δ-reg-Res refutation of ϕ.

Notice that to prove δ-reg-Res size lower bounds we will use only the im-
plication “(2) ⇒ (1)” from the previous theorem. This, and the fact that the
reverse implication was already proven in [118], are the main reason why we
just sketched the proof of “(1) ⇒ (2)”.
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5.5 Hardness amplification

We now prove our structural hardness amplification result that relies on xori-
fications, cf. Theorem 5.5. Given a CNF formula ϕ over the set of Boolean
variables X = {x1, . . . , xn}, the `-xorificationϕ[⊕`] of ϕ, ϕ[⊕`], is a formula over the
set of new Boolean variables Y = {yji : i ∈ [n], j ∈ [`]}, and it is obtained by
replacing each occurrence of xi in ϕ with y1

i ⊕ · · · ⊕ y`i . Notice that if ϕ is a
k-CNF formula, then ϕ[⊕`] can be expanded to a k`-CNF formula.

Xorifications have proved to be helpful in proof complexity, see for exam-
ple [107, Section 2.4] and [23]. Here we use them to have many different strategies
in the game Game(ϕ[⊕`],R). The next result is based on the analogous result
in [39].

Theorem 5.5. Let ϕ an unsatisfiable CNF formula in n variables and let w, δ
and ` be parameters. If width(ϕ ` ⊥) > w then

sizeδ-reg-Res(ϕ[⊕`] ` ⊥) > 2(1−ε)w`,

where ε = 1
` log

(
e3`n
w

)
+ δn

w log
(
e3`
δ

)
.

Proof. We start setting up some notations and terminology we use in the proof.
Let X and Y be the set of variables defined above. We call the variables in Yy-variables ,
y-variables, the variables in Xx-variables , x-variables and we say that all the y-variables
y1
i , . . . , y

`
i form a block of variables corresponding to the x-variable xi.

For each partial assignment α over Y there is naturally associated a partial
assignment α′α′ over the variables X, defined as follows

α′(xi) =

α(y1
i )⊕ . . .⊕ αr(y`i ) if ∀j = 1, . . . , `, yji ∈ dom(α),

? otherwise.

By Theorem 5.4, it is enough to show that if Prover wins Gameδ(ϕ[⊕`],R) then

log2 |R| > w(`− log(e
3`n

w
)− δ`n

w
log e

3`

δ
).

So suppose Prover wins Gameδ(ϕ[⊕`],R) for some set of partial assignments
RR . Since width(ϕ ` ⊥) > w, by Theorem 5.3, there is a winning strategy σσ for
Delayer in the game width-Game(ϕ,w). We use such strategy σ to build many
strategies for delayer in the game Gameδ(ϕ[⊕`],R). For each total assignment
β over Y , consider a strategy σβσβ for Delayer in the game Gameδ(ϕ[⊕`],R)
as follows: let αr be the partial assignment over Y at the stage r of the
game Gameδ(ϕ[⊕`],R) and suppose that Prover at the stage r + 1 of the game
Gameδ(ϕ[⊕`],R) queries yji . Then the strategy σβ for Delayer goes as follows:
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1. if there exists j′ 6= j such that yj
′

i 6∈ dom(αr), set yji to β(yji );

2. otherwise, if for all j′ 6= j, yj
′

i ∈ dom(αr), then look at the value b ∈ {0, 1}
the strategy σ sets the variable xi when given the partial assignment α′r.
Then set yji to q ∈ {0, 1} such that

q ⊕
⊕
j′ 6=j

αr(yji ) = b. (5.6)

By induction on the length of partial assignments α′ we can see easily that α′r
must appear in the strategy σ, hence the value b we get as an answer for the
variable xi is well-defines. Moreover, the assignment of q in equation (5.6) can
done since xi ≡ y1

i ⊕ . . . ⊕ y`i and the value of xi can be set freely to 0 or 1
appropriately even after all but one of y1

i , . . . , y
`
i have been set.

Since we are assuming that Prover has a winning strategy for the game
Gameδ(ϕ[⊕`],R), this means, in particular, that for every total assignment β
over Y , he wins against the Delayer’s strategy σβ . On the other hand, it is
immediate to see that for each total assignment β over Y , σβ is a winning
strategy for Delayer in the game width-Game(ϕ[⊕`], w`). This means that for
each total assignment β over Y , R must contain some partial assignment,
denoted by ρβ ρβ, with domain of size at least w` and such that at least w blocks
of y-variables are completely fixed by ρβ . Without loss of generality we assume
that each ρβ fixes exactly w blocks of y-variables, that is if ρβ is setting more
y-variables we simply ignore some of the variables and only consider w blocks.
Our goal is to show that we have ‘many distinct’ such partial assignments ρβ .

Let B ⊆ [n] Bdenote a generic set of size w and consider for each possible
such B the set SB of the total assignments βs over the y-variables such that ρβ
is fixing all the variables y1

i , . . . , y
`
i corresponding to all i in B, that is

SB = {β tot. ass. over Y : ∀i ∈ B, xi ∈ dom(ρβ)}.

Clearly we have that for any possible B ⊆ [n] of size w,

|R| > |{ρβ : β ∈ SB}|. (5.7)

This last part of the proof is just to show that there exists some B∗ such that
equation (5.7) for B∗ provide the desired lower bound.

There are 2n` possible total assignments β over Y and
(
n
w

)
possible sets

B ⊆ [n] of size w, hence, by the pigeonhole principle, there is a set B∗ ⊆ [n] B∗of
size w such that

|SB∗ | >
2n`(
n
w

) . (5.8)
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Let S′B∗S′B∗ be the set of all the restrictions of partial assignments in SB∗ to
{yji : i ∈ B∗ ∧ 1 6 j 6 `}. We clearly have that

|SB∗ | 6 |S′B∗ | · 2n`−`|B
∗| = |S′B∗ | · 2n`−w`,

and, by equation (5.8), we get that

|S′B∗ | >
2w`(
n
w

) . (5.9)

We have now that S′B∗ and {ρβ : β ∈ SB∗} both consist of assignments of
domain {yji : i ∈ B∗ ∧ 1 6 j 6 `}. We show that |{ρβ : β ∈ SB∗}| cannot be
too small compared to |S′B∗ |, this will be, intuitively, due to the fact that the
βs we start with are very different.

Let ZβZβ be the set of variables that Prover re-queried when playing against σβ
and for any i = 1, . . . , n let Zβi = Zβ ∩ {y1

i , . . . , y
`
i}. By hypothesis |Zβ | 6 δ`n.

When Delayer follows the strategy σβ and fixes all y-variables in a block
corresponding to xi, this assignment is within Hamming distance |Zβi |+ 1 from
β in the block corresponding to xi. This means that for each β ∈ SB∗ and
for each i, ρβ restricted to the set {yi1, . . . , yi`} has Hamming distance at most
|Zβi |+ 1 from some partial assignment in S′B∗ restricted to {yi1, . . . , yi`}. Let ZZ

be the set of all possible sets Z ⊆ Y of size δ`n such that there exists β ∈ SB∗
with Zβ ⊆ Z. For any i = 1, . . . , n, let Zi = Z∩{y1

i , . . . , y
`
i}. Then, by counting

the variables where ρβ and an assignment in S′B∗ could differ, we have that

|S′B∗ | 6 |{ρβ : β ∈ SB∗}| ·
∑
Z∈Z

∏
i∈B∗

2|Zi|+1
(

`

|Zi|+ 1

)
. (5.10)

Hence we have the following chain of inequalities

|S′B∗ |
(5.10)
6 |{ρβ : β ∈ SB∗}| ·

∑
Z∈Z

∏
i∈B∗

2|Zi|+1
(

`

|Zi|+ 1

)
(5.11)

6 |{ρβ : β ∈ SB∗}| ·
∑
Z∈Z

∏
i∈B∗

(
e2`

|Zi|+ 1

)|Zi|+1

(5.12)

6 |{ρβ : β ∈ SB∗}| ·
∑
Z∈Z

( ∑
i∈B∗ e

2`∑
i∈B∗(|Zi|+ 1)

)∑
i∈B∗

(|Zi|+1)

(5.13)

6 |{ρβ : β ∈ SB∗}| ·
(
`n

δ`n

)
·
(
e2`
)δ`n+w (5.14)
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The inequality (5.13) follows from the weighted AM-GM inequality1 and the
inequality (5.14) follows from the fact that w 6

∑
i∈B∗(|Zi|+ 1) 6 δ`n+ w.

Putting all together we have that

|R|
(5.7)
> |{ρβ : β ∈ SB∗}| >

|S′B∗ |(
n`
δ`n

)
(e2`)δ`n+w

(5.9)
>

2w`(
n
w

)(
`n
δ`n

)
(e2`)δ`n+w

>
2w`

( enw )w
(
e
δ

)δ`n (e2`)δ`n+w

= 2w
(
`−log( e3`n

w )− δ`nw log( e3`
δ )
)
.

5.6 SETH is consistent with δ-regular Resolution

The next step now is to obtain formulas which require very large Resolution
width. Such a construction is in [21] and improved in [38], where the next
theorem is from.

Theorem 5.6. For any large n and k, there exist an unsatisfiable k-CNF
formula ϕ on n variables such that

width(ϕ ` ⊥) > (1− ζk)n,

where ζk = Õ(k− 1
3 ).

The proof of this result is a bit long and hence it is postponed to the next
section, cf. Section 5.7. We now prove how from Theorem 5.5 and Theorem 5.6
follow both a strong size lower bound in tree-like Resolution and in δ-regular
Resolution.

Corollary 5.7. For any large enough k ∈ N there exists an unsatisfiable k-CNF
formula ϕ in n variables such that

sizetree-Res(ϕ ` ⊥) > 2(1−εk)n,

where εk = Õ(k− 1
3 ).

1The weighted Arithmetic Mean - Geometric Mean inequality says that given non-negative
numbers a1, . . . , an and non-negative weights w1, . . . , wn then∏

i

a
wi
i 6

(∑
i
wiai

w

)w
,

where w =
∑

i
wi. We applied this inequality with ai = e2`

|Zi|+1 and wi = |Zi|+ 1.
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Proof. Let ϕ be the unsatisfiable CNF formula coming from Theorem 5.6. By
[30] we have that

sizetree-Res(ϕ ` ⊥) > 2width(ϕ`⊥)−k,

hence the strong size lower bound follows.

Corollary 5.8. For any large enough N and K ∈ N there exists an unsatisfiable
K-CNF formula ψ in N variables such that

sizeδ-reg-Res(ψ ` ⊥) > 2(1−εK)N ,

where εK = δ = Õ(K− 1
4 ).

Proof. Let ϕ be the k-CNF formula in n variables given by Theorem 5.6, in
particular

width(ϕ ` ⊥) > (1− ζk)n,

where ζk = Õ(k− 1
3 ).

Then ϕ[⊕`] is a K-CNF formula on N = n` variables where K = k`. If we
choose ` = Θ̃(k 1

3 ), δ = Õ(k− 1
3 ) then, by Theorem 5.5, it follows that

sizeδ-reg-Res(ϕ[⊕`] ` ⊥) > 2(1−ζk)n(`−log( e3`n
w )− δ`nw log e3`

δ ) (5.15)

= 2(1−ζk)n(`−O(log k)−`Õ(k−
1
3 )) (5.16)

= 2(1−Õ(k−
1
3 ))n`. (5.17)

In particular the equality (5.16) follows from the choice of ` = Θ̃(k 1
3 ) and

δ = Õ(k− 1
3 ). To obtain the asymptotic behavior of εK with respect to K, just

observe that K = k` = Θ̃(k 4
3 ) and Õ(k− 1

3 ) = Õ(K− 1
4 ), hence εK = Õ(K− 1

4 ).
Similarly we get the asymptotic behavior of δ as a function of K.

5.7 Proof of Theorem 5.6

Let p be a prime, Fp be the finite field with p elements and v = (v1, v2, . . .)v = (v1, v2, . . .)

be a vector over Fp, then by supp(v)supp(v) we denote the indices of v with non-zero
entries mod p, that is supp(v) = {i : vi 6≡ 0 mod p}.

We now construct a system of linear equations over Fp. In this section we
use the letter E, with subscripts, to denote linear equations mod p, that is
expressions of the form ∑

j

ajzj ≡ b mod p,

with aj , b ∈ Fp. We denote with supp(E)supp(E) the set of indices j having non-zero
ajs. Given two linear equalities E and E′, respectively

∑
j ajzj ≡ b mod p and
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∑
j a
′
jzj ≡ b′ mod p, we denote the sum of E and E′ with E + E′, that is the

following linear equation:
∑
j(aj + a′j)zj ≡ (b+ b′) mod p. Similarly we define

αE for α ∈ F and
∑
i αiEi for a set of linear equations {Ei}i and αi ∈ F.

Definition 5.9 ((α, β, γ)-expander, Beck and Impagliazzo [21]). Let α, β, γ in
R>0, m ∈ N and E := {E1, . . . , Em}, that is E is a set of m linear equations
over Fp. We say that the set E is an (α, β, γ)-expander (α, β, γ)-expanderif and only if

∀v ∈ Fmp , α 6 | supp(v)| 6 β →
∣∣∣ supp

( m∑
i=1

viEi
)∣∣∣ > γ.

Proposition 5.10 (Beck and Impagliazzo [21, Lemma 4.2]). Let p a suffi-
ciently large prime. There exists a set E := {E1, . . . , En+1} consisting of linear
equations in n variables over Fp such that:

1. E is unsatisfiable,

2. for each Ei ∈ E | supp(Ei)| 6 p2,

3. E is (δn, 3δn, (1− cθ)n)-expander, where δ = O(1/p), θ = Õ(1/p) δ = O(1/p) θ = Õ(1/p)and c
is a constant2,

4. no subset of at most 3δn equations from E is unsatisfiable.

In [21] the authors encode each variable of the set of linear equations from
Proposition 5.10 using a sum of roughly p2 Boolean variables and show that
with this encoding the linear system requires very large Resolution width.

The key property of this representation is the following: let z =
∑p2

i=0 xi,
where xi are boolean variables, then even setting a lot of variables (that is
p2 − p) we still can obtain all possible Fp values for z setting the remaining
variables. In other words what is really needed in [21] is a function that can
extract log p bits even after many bits in the input are fixed. We show that
a random function satisfies this property, cf. Lemma 5.11, and we use this
function instead of the sum of p2 Boolean variables. Then the arguments of [21]
still goes through Theorem 5.6 and following lemma is then the main technical
improvement over the construction in [21].

Lemma 5.11. Let p a sufficiently large prime and θ be the parameter coming u = θ−1 log2 p

from Proposition 5.10 and let u = θ−1 log2 p. Then there exists a function
g : {0, 1}u → {0, 1}log p g : {0, 1}u → {0, 1}log psuch that for any restriction σ with |σ| 6 u− log2 p we
have that the image of g|σ, Img(g|σ), is {0, 1}log p.

2Of course the constant c in this statement is redundant, but it will be helpful in what
follows to have it explicitly written.
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Proof. Let g be random function that assigns to every x ∈ {0, 1}u a value in
{0, 1}log p independently and uniformly at random. We bound the probability
that there exist a y ∈ {0, 1}log p and a restriction ρ with |ρ| = u− log2 p such
that y 6∈ Img(g|ρ). Let A be such event. A bound on Pr [A] is easily given as
follows:

Pr [A] 6 2log p
(

u

log2 p

)
2u−log2 p

(
1− 1

p

)2log2 p

(5.18)

6 pθ− log2 p2u−log2 pelog2 p− 1
p 2log2 p

(5.19)
= o(1), (5.20)

since θ = Õ(1/p). The inequality in (5.18) follows by the union bound, since
once we fixed y ∈ {0, 1}log p and a restriction ρ such that |ρ| = u− log2 p then

Pr [y 6∈ Img(g|ρ)] 6 (1− 1/p)2log2 p
.

Then there must exist at least one function g realizing the complementary
event that we bounded. Such function works also for each σ such that |σ| 6
u− log2 p.

We have now all the ingredients to define the family of CNF formulas for
which we will prove the strong width lower bound.

Let Z = {z1, . . . , zn} a set of variables taking values over Fp. The function
g : {0, 1}θ−1 log2 p → {0, 1}log p obtained from Lemma 5.11 can be used to
define each variable zi over Fp using u = θ−1 log2 p new Boolean variables
X = {xi1, . . . , xiu}:

zi =
log p∑
j=1

2j−1gj(xi1, . . . , xiu), (5.21)

where gj represents the projection of g on the j-th coordinate. Hence a linear
equation mod p in n variables, say∑

i

aizi ≡ b mod p,

can be transformed into a Boolean function using equation (5.21) and N =
nu = nθ−1 log2 p Boolean variables xij :

n∑
j=1

aij

log p∑
k=1

2k−1gk(xi1, . . . , xiu) ≡ bi mod p.
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Moreover if | supp(a1, . . . , an)| 6 d then the Boolean encoding of this function
as a CNF formula turns out to be a (du)-CNF formula. We will use this
construction applied to the system of linear equations from Proposition 5.10 to
prove Theorem 5.6 from previous section.

Restated Theorem 5.6. For any large n and k, there exist an unsatisfiable
k-CNF formula ϕ on n variables such that

width(ϕ ` ⊥) > (1− ζk)n,

where ζk = Õ(k− 1
3 ).

Proof. Let p be a sufficiently large prime and let E := {E1, . . . , Em} be the set
of linear equations in n variables over Fp from Proposition 5.10. Let δ, θ and c
as in Proposition 5.10, that is δ = O(1/p) and θ = Õ(1/p). Let u = θ−1 log2 p

and g : {0, 1}u → {0, 1}log p as in Lemma 5.11. Let Ei be the linear equation∑n
j=1 aijzj ≡ bi mod p with aij , bi ∈ Fp. Replacing each zj with the expression

given in (5.21), we obtain a Boolean function

Ebi :=
n∑
j=1

aij

log p∑
k=1

2k−1gk(xi1, . . . , xiu) ≡ bi mod p.

The CNF formula ϕ we will consider is the encoding of the following Boolean
function:

ϕ :=
m∧
i=1

Ebi , (5.22)

as a CNF formula. Notice that, since for each i we have | supp(Ei)| 6 p2, ϕ is
a (p2θ−1 log2 p)-CNF formula in N = nu = nθ−1 log2 p variables. Let ϕ be the
unsatisfiable CNF formula above, then we prove that

width(ϕ ` ⊥) > (1− (c+ 1)θ)N,

where c is as in Proposition 5.10. From this follows immediately the strong
width lower bound we want to prove recalling that θ = Õ(1/p).

Let E b := {Ebi : Ei ∈ E } and for each clause C let µ(C)let µ(C) be the
following complexity measure:

µ(C) := min{|S| : S ⊆ E b ∧ S � C}.

We say that a clause C has medium complexity with respect to µ medium complexityif and only if

µ(C) ∈
(

3
2δn, 3δn

]
.
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We have that if C,D � E then µ(E) 6 µ(C) + µ(D) and hence in each possible
refutation of ϕ there will be a clause of medium complexity with respect to
µ. We prove that for each medium complexity clause C it must hold that
width(C) > (1− (c+ 1)θ)N . By contradiction, fix a medium complexity clause
C and suppose that

width(C) < (1− (c+ 1)θ)N.

To avoid confusion we call the variables in the set Z = {z1, . . . , zn}, Z-variablesZ-variables

and, similarly, the variables in the set X = {xij : i ∈ [n] ∧ j ∈ [u]}, X-variablesX-variables .
Take the minimal restriction ρ over the X-variables setting C to false, then
|ρ| = width(C). We say that a variable zi is freefree if and only if

|dom ρ ∩ {xi1, . . . , xiu}| 6 u− log2 p.

First we prove that there are at least cθn free variables. Let ξξ be the number
of Z-variables that are free. We have both an upper and a lower bound for the
(N − width(C)) X-variables non-assigned by ρ:

(c+ 1)θN < N − width(C) 6 (n− ξ)(u− (u− log2 p)) + uξ.

Hence
cθN + θN < n log2 p− ξ log2 p+ uξ.

Now if ξ 6 cθn a contradiction follows immediately recalling that N = un and
θN = n log2 p.

We say that an assignment σ : X → {0, 1, ?} is a completion of ρcompletion of ρ if it extends
ρ and has domain {xij : zi not-free}. Let A be the set of all partial assignments
over X that are completions of ρ. Recalling the definition of the X-variables in
term of the Z-variables, cf. equation (5.21), we have that each σ ∈ A naturally
define a partial assignmentσ′ σ′ : Z → Fp ∪ {?} with domain {zi : zi non-free}:

σ′(zi) =


∑log p
j=1 2j−1gj(σ(xi1), . . . , σ(xiu)) if zi non-free,

? otherwise.

So, for each σ ∈ A, the Z-variables that are free are exactly, by construction,
the ones not in the domain of σ′ and for each σ ∈ A, σ set C to false. As
observed we have that the number of free variables ξ > cθn and hence

|σ′| < n− cθn = (1− cθ)n. (5.23)

As C is of medium complexity with respect to µ, there exists some set of
equationsS S ⊆ E b such that S � C, |S| ∈ ( 3

2δn, 3δn] and S is minimal with
respect to inclusion. This implies that for each possible σ ∈ A of the form
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described above, S|σ is unsatisfiable and hence also S′S′ = {E : Eb ∈ S} is such
that S′|σ′ is unsatisfiable. Moreover, by the minimality of S, for each equation
E ∈ S′ there exists some σ ∈ A such that E|σ′ is not a trivial constraint, that
is a constraint that is always satisfied.

The fact that, for each σ ∈ A, S′|σ′ is unsatisfiable means exactly that for
all σ ∈ A there exists some v = (v1, . . . , vn+1) ∈ Fn+1

p (dependent on σ) with
| supp(v)| 6 |S| = |S′| and such that

∑n+1
i=1 viEi|σ′ is unsatisfiable. Hence for

each σ ∈ A,

supp(
n+1∑
i=1

viEi) ⊆ dom(σ′),

otherwise we could use the variables not fixed by σ′ to satisfy the equality∑
i viEi|σ′ . Moreover by what observed before, for each E ∈ S there exists

some σ ∈ A such that E|σ′ does not trivialize and hence Ei will appear in the
sum above for that particular σ.

Given σ ∈ A, let Eσ =
∑
i viEi, where v = (v1, . . . , vm) depends on σ as in

the sum above. Then we take a random linear combination of all the Eσ for all
the possible σ ∈ A: let

∑
σ∈A ασE

σ be such combination. Again we have that

supp(
∑
σ∈A

ασE
σ) ⊆

⋃
σ∈A

dom(σ′).

Each Ei ∈ S′ appears in the previous sum since, as already observed, for
each Ei there exists some σ ∈ A such that Ei appears in Eσ. Moreover, the
coefficient of each Ei ∈ S is uniformly random, and hence by averaging, there
exists a linear combination such that at least (1− 1/p) 3

2δn > δn of the Ei have
non-zero coefficient. But this contradicts the expansion property of E as we
have that

| supp(
∑
σ∈A

ασE
σ)| 6 |

⋃
σ∈A

dom(σ′)| < (1− cθ)n,

where the last inequality follows from the inequality in (5.23) and the fact that
all the σ ∈ A have the same domain.

5.8 Open problems

1. Prove any strong size lower bound for Resolution or any stronger system
where we already have some exponential size lower bounds, for instance
Polynomial Calculus.

2. Is there any unsatisfiable k-CNF formula ϕ in n variables such that

sizetree-Res(ϕ ` ⊥) > 2(1−O(k−1))n?
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That is formulas for which the upper bound of Theorem 5.2 is tight.
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A
Appendix

A.1 r-BGT families

A piecewise assignment α to a set of variables X is a set of non-empty partial
assignments to X, with pairwise disjoint domains.

A piecewise assignment α to X naturally gives rise to a partial assignment to
X, namely

⋃
α, the union of all the partial assignments in α. It also gives rise

to a partition of the domain of
⋃
α, into the set of domains of all the members

of α. Therefore an alternative, but notationally less convenient, way to define
a piecewise assignment would be as such a pair of a partial assignment and a
partition of its domain, and we will often write α when our intended meaning is
the partial assignment

⋃
α. For example, we will write α(ϕ) for the evaluation

of ϕ under
⋃
α, and dom(α) for the domain of

⋃
α

We call the elements of α the pieces of α. For piecewise assignments α, β
we will write α v β to mean that every piece of α appears in β. We will write
‖α‖ to mean the number of pieces in α. Note that these are formally exactly
the same as α ⊆ β and |α|, using the definition of α and β as sets of partial
assignments.

The following definition is the main combinatorial tool used in [40] to prove
total space lower bounds. It was inspired by similar, but more complicated,
combinatorial properties used in [36, 37]. The analysis of that combinatorial
objects, the r-BG families, and their relation with monomial space in PCR, is
in Chapter 3.

Definition A.1 (r-BGT). A non-empty family H of piecewise assignments is
r-free for a CNF ϕ if it has the following properties.
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(Consistency) No α ∈ H falsifies any clause from ϕ.

(Retraction) If α ∈ H, β is a piecewise assignment and β v α then β ∈ H.

(Extension) If α ∈ H and ‖α‖ < r, then for every variable x /∈ dom(α) there
exist β0, β1 ∈ H with α v β0, β1 such that β0(x) = 0 and β1(x) = 1.

Theorem A.2 (Bonacina et al. [40]). Let ϕ be an unsatisfiable CNF formula.
If there is a non-empty family of piecewise assignments which is r-BGT for ϕ,
then

TSpaceRes(ϕ ` ⊥) > r2/4.

More precisely, any Resolution refutation of ϕ must pass through a memory
configuration containing at least r/2 clauses each of width at least r/2.

Notice that, although independently introduced, the r-BGT families are
similar to r-BK families and in both cases we do not require that the families
are closed under generic restrictions. The r-BGT families are closed under some
restrictions respecting the piecewise structure of the assignments. It turns out
that this is an inessential feature in the proof of Theorem A.2. Hence we have
the proof of Theorem A.2 in [40] is essentially the same of Theorem 2.5.

A.2 Asymmetric width, full proofs

In this section we collect some results on asymmetric width that are needed in
Section 2.6.

Restated Theorem 2.9 (Beyersdorff and Kullmann [32, Theorem 22]). Let
ϕ be an unsatisfiable CNF formula, then awidth(ϕ `Res ⊥) > r if and only if
there exists a non-empty r-BK family of assignments for ϕ.

Proof. Suppose that the awidth(ϕ `Res ⊥) > r, then let

S = {C clause : awidth(ϕ ` C) 6 r},

then clearly ϕ ⊆ S and ⊥ 6∈ S. Let F be the family of all the partial assignments
of maximal size that are not falsifying a clause in S. Then, since ϕ ⊆ S we
have that F is consistent and since ⊥ 6∈ S, then λ ∈ F so F is non-empty. We
have to show the extension property of F : let α ∈ F , β ⊆ α such that |β| < r

and x 6∈ dom(α). For ease of notation, given ε ∈ {0, 1} let

xε =

x if ε = 0,
¬x if ε = 1.
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By maximality of α we have that for each ε ∈ {0, 1} there exists a clause Cε in
S such that αε = α ∪ {x 7→ ε} falsify Cε. Since α ∈ F then x ∈ var(Cε), so it
must be that Cε = C ′ε ∨ xε where C ′ε is a clause such that var(C ′ε) ⊆ dom(α)
and α(C ′ε) = ⊥. Suppose, for sake of contradiction, that there exists ε ∈ {0, 1}
such that there is no β′ ∈ F such that β′ ⊇ β and β′(x) = ε. In particular
βε = β ∪ {x 7→ ε} is not in F . Then, by construction, there exists a clause
D ∈ S such that βε(D) = ⊥. Since |βε| = |β|+ 1 6 r then |D| 6 r. Since β ⊆ α
and α ∈ F does not falsify any clause in S, then it must be that D = D′ ∨ xε

and D′ is a clause such that α(D′) = β(D′) = ⊥. But now

D C1−ε

D′ ∨ C ′1−ε
is a valid instance of the Res rule. Hence, by definition of asymmetric width,

awidth(ϕ ` D′ ∨ C′1−ε) 6 max{awidth(ϕ ` D), awidth(ϕ ` C1−ε), awidth(D′ ∨ C′1−ε)},

that means that awidth(ϕ ` D′ ∨C ′1−ε) 6 r and hence D′ ∨C ′1−ε ∈ S. On the
other hand α(D′ ∨ C ′1−ε) = ⊥ contradicting the fact that α ∈ F .

Suppose now that we are given a non-empty r-BK family F and, by contra-
diction, suppose that there exists a sequence of clauses π = (C1, . . . , C`) such
that awidth(π) 6 r and π is a resolution refutation of ϕ. We show, by induction
on i = 1, . . . , `, that no assignment for F falsify Ci. Since F is non-empty
when i = ` this will be a contradiction. By the consistency property of r-BK
families, no assignment in F can falsify clauses from ϕ. So the only case to
consider is when Ci is inferred by some Cj , Cj′ in π such that j, j′ < i. Let x be
the variable resolved in the inference Cj Cj′

Ci
. Since awidth(π) 6 r, without loss

of generality suppose that |Cj | 6 r. Let α ∈ F . By the inductive hypothesis
we have that α does not falsify Cj . If, by contradiction, α(Ci) = ⊥ then it
cannot be that x ∈ dom(α), otherwise α will falsify one among Cj and Cj′ . Let
β ⊆ α the restriction of α to var(Cj) \ {x}. Since |Cj | 6 r then |β| < r. By
the extension property of F there are β0, β1 ∈ F such that β0 ⊇ β ∪ {x 7→ 0}
and β1 ⊇ β ∪ {x 7→ 1}. Either β0 or β1 falsify Cj . Contradicting the inductive
hypothesis.

Restated Theorem 2.10 (Kullmann [100, Lemma 8.5]). Let ϕ be an unsat-
isfiable k-CNF formula, then

awidth(ϕ ` ⊥) 6 width(ϕ ` ⊥) 6 awidth(ϕ ` ⊥) + max{awidth(ϕ ` ⊥), k}.

Proof. Clearly awidth(ϕ ` ⊥) 6 width(ϕ ` ⊥), hence we focus on proving the
other inequality. Given a set of clauses A we call A-input Resolution derivation A-input derivation

of a clause C a Resolution derivation of C from A such that each application of
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the inference rule has at least a premise from A. The main property of A-input
Resolution derivations is the following: if there exists an A-input derivation of
a clause C then

width(A ` C) 6 width(A) + |C|. (A.1)

Notice that, to prove the property above, we can restrict to consider A-input
refutations, that is A-input derivations of the empty clause ⊥. Indeed, suppose
we have π an A-input derivation of a clause C, and let ρ the minimal partial
assignment mapping C to false. Clearly |ρ| 6 |C| and π|ρ is a A|ρ-input
refutation, hence, if the property we want to prove holds for input refutations,
then width(A|ρ ` ⊥) 6 width(A|ρ). So, by the fact that ρ is killing at most |C|
literals from each clause, then width(A ` C) 6 width(A) + |C|.

So now we focus on proving the property in equation (A.1) in the case
when C = ⊥ and there exists an A-input Resolution refutation. Let A be
the set of all set of clauses A that have an A-input Resolution refutation but
width(A ` ⊥) > width(A). By contradiction suppose that A is non-empty, so
there will be some Ā ∈ A with the minimum number of variables. Since Ā ∈ A
then it must be that Ā is non-trivial, e.g. ⊥ cannot appear in Ā.

By hypothesis there exists some Ā-input refutation π and let ` be the last
literal resolved in π. Since π is an Ā-input refutation it must be that either
` ∈ Ā or ¬` ∈ Ā. Without loss of generality suppose that ¬` ∈ Ā. Now
consider π|`=0, this is an Ā|`=0-input Resolution refutation and Ā|`=0 has
strictly less variables than Ā, hence, by the minimality of Ā, it cannot be in A.
So width(Ā|`=0 ` ⊥) 6 width(Ā|`=0) and there must exist some π′ which is a
refutation of Ā|`=0 and such that width(π′) 6 width(Ā|`=0).

Now we just construct π′′ as follows: π′′ = (Ā, π′), that is we just write down
before π′ all the clauses in Ā. Notice that π′′ is not, in general, a valid Ā-input
Resolution refutation. Still π′′ is a valid Resolution refutation of Ā. This is
because ¬` ∈ Ā and hence each clause in Ā|`=0 can be seen as the result of an
inference step between some clause in Ā and ¬`. Since width(π′) 6 width(Ā|`=0),
we clearly have that width(π′′) 6 width(Ā), which implies that

width(Ā ` ⊥) 6 width(π′′) 6 width(Ā). (A.2)

On the other hand Ā ∈ A implies that width(Ā ` ⊥) > width(Ā) and this
clearly contradicts equation (A.2).

Let w be awidth(ϕ ` ⊥) and consider the following set SS defined as the
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closure of ϕ under input derivations, that is:
S0 = ϕ,

Si+1 = Si ∪ {C clause : |C| 6 w ∧ C has an Si-input Resolution derivation},
S =

⋃
i Si.

Notice that each clause in S has width at most max{w, k} and hence S is
just a finite union as Si+1 can be strictly bigger than Si at most O(nmax{w,k})
many times, since this is the number of clauses in n variables of width at most
max{w, k}. Now we claim to have the two following properties:

1. ⊥ has an S-input Resolution derivation;

2. if C has an S-input Resolution derivation then

width(ϕ ` C) 6 w + max{w, k}. (A.3)

Then (1) and (2) immediately imply the inequality between width(ϕ ` ⊥) and
awidth(ϕ ` ⊥) we want to prove.

To prove (1), consider a refutation π of ϕ such that awidth(π) = w: we
claim that π is an S-input Resolution derivation of ⊥. Let, by contradiction, C
be the first clause in π inferred from previous C ′, C ′′ in π with both C ′, C ′′ 6∈ S.
Since awidth(π) = w we have that without loss of generality |C ′| 6 w, hence it
must be that for each i, C ′ does not have an Si-input Resolution derivation,
otherwise C ′ ∈ Si+1 but we are supposing that C ′ 6∈ S. Hence, C ′ doesn’t have
a S-input Resolution derivation either, contradicting the minimality of C in π.

We now prove (2) by induction on Si. That is, we prove that if C has an
Si-input Resolution derivation then width(ϕ ` C) 6 w + max{w, k}.

For S0 this is clearly true. For the inductive step let C be a clause in
Si+1 \ Si, let Si = {C1, . . . , Cm} and let π be an Si-input Resolution derivation
of C. By what observed before, there exists some π′ which is a Resolution
derivation of C from Si such that

width(π′) 6 |C|+ width(Si) 6 w + max{w, k}.

Finally, by induction, for each j = 1, . . . ,m, Cj has a Resolution derivation πj
from ϕ of width at most w + max{w, k}, hence

π̃ = (π1, . . . , πm, π
′)

is a Resolution derivation of C from ϕ and

width(ϕ ` C) 6 width(π̃)
= max{width(π1), . . . ,width(πm),width(π′)}
6 w + max{w, k}.
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