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Abstract
We introduce new semi-algebraic proof systems for Quantified Boolean Formulas (QBF) analogous
to the propositional systems Nullstellensatz, Sherali-Adams and Sum-of-Squares. We transfer to this
setting techniques both from the QBF literature (strategy extraction) and from propositional proof
complexity (size-degree relations and pseudo-expectation). We obtain a number of strong QBF lower
bounds and separations between these systems, even when disregarding propositional hardness.
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1 Introduction

Two key results in algebraic and semi-algebraic geometry are the Nullstellensatz and the
Positivstellensatz. The first can be seen as an algebraic identity certifying that a set of
polynomial equations is unsatisfiable while the second as an algebraic identity certifying that
a system of polynomial inequalities is unsatisfiable. In other words, both the Nullstellensatz
and the Positivstellensatz naturally give rise to proof systems and in recent years intense
research was performed on the proof complexity of such systems. In particular, the proof
system Sum-of-Squares, a special case of Positivstellensatz, starting from [7], has received a
lot of attention for its connection with algorithms based on hierarchies of SDP relaxations
(see for instance [45, 47]). For similar reasons, the even more restrictive Sherali-Adams proof
system has been investigated, named after its connection with the Sherali-Adams hierarchy
of linear programming since its original definition (see for instance [36,50]).
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11:2 Semi-Algebraic Proof Systems for QBF

In this work, we devise a simple and natural way to extend the proof systems Nullstel-
lensatz (NS), Sum-of-Squares (SOS) and Sherali-Adams (SA) from the context of propositional
existentially quantified variables to existentially and universally quantified variables. In other
words, we show how to define proof systems for quantified Boolean formulas (QBF) inspired
by the propositional proof systems above.

The study of propositional and QBF proof systems is motivated both by theoretical
reasons and also by connections to SAT and QBF solving [10, 22, 28]. While for SAT-solvers
conflict-driven clause learning (CDCL) is the ruling paradigm, which by the seminal work
of [1, 48] is essentially equivalent to the propositional proof system Resolution (Res), there
are several competing approaches in QBF, with CDCL-based [53] and expansion-based
solving [43] among the main paradigms. To model the strength of QBF-solvers several (often
incomparable) QBF proof systems have been introduced and analysed [14,39,43]. Of most
relevance to this work is QU-Resolution (QU-Res) [44, 52]. QU-Res adds to propositional
Resolution the ∀-reduction rule that allows to eliminate universal variables from clauses.
In [16] it has been shown that this approach of augmenting a propositional proof system by
a ∀-reduction rule taking care of universal quantifiers also works for other common inference-
based proof systems such as various Frege systems [16,32], Cutting Planes [19, 33] – a proof
system modelling geometric reasoning related to Chvátal-Gomory cuts – and Polynomial
Calculus [21, 31], modelling algebraic reasoning related to Gröbner bases computations.

A common feature of all the propositional proof systems above is that they are inference-
based, unlike the static systems NS/SA/SOS where a proof is just an algebraic identity of
some specific form depending on the system at hand. This has posed quite some problems
to adapt such systems to the QBF setting, and it was not clear at all whether an approach
similar to a ∀-reduction rule was even viable. Recently there has been a suggestion to define
QBF analogues of NS based on ∀-expansion [29], but these differ considerably from our
approach here and the ∀-reduction paradigm discussed above.

We show that an approach similar to a ∀-reduction rule does allow to define QBF
versions of NS/SA/SOS, which we call Q-NS/Q-SA/Q-SOS respectively. We argue that
our definitions are quite natural: they add to the algebraic equations of NS/SA/SOS simple
polynomials that strongly resemble ∀-reduction and meet the same technical condition on
variable dependence.

We begin the systematic study of these QBF proof systems in terms of lower and upper
bounds, strategy extraction, and simulations. Concerning the latter, Figure 1a recalls
the relations between propositional NS/SA/SOS and further propositional proof systems
such as Resolution (Res) and Polynomial Calculus (PC). In Figure 1b, we depict our results
on the new QBF systems Q-NS/Q-SA/Q-SOS and how they relate to QU-Res and Q-PC.
The figures are virtually identical: what changes is that proofs of the simulations, although
mimicking those in the propositional setting, require extra care. Figure 1c depicts the
simulation order when we factor out the propositional complexity and consider genuine QBF
hardness stemming from quantifier alternations – a framework that has become standard
in QBF proof complexity (cf. [20, 30] for background). We call the ‘genuine’ size measure
qsize, which only counts monomial size in the new ∀-reduction polynomials. Lower bounds
on qsize are tighter and trivially imply lower bounds on the traditional size measure that
counts all monomials. Hence, lower bounds and separations in qsize are harder to obtain. In
fact, Q-SA and Q-SOS become equivalent w.r.t. qsize while they are separated w.r.t. size.

The fact that the systems we define fit so nicely into the lattice of QBF proof systems
using the ∀-reduction approach suggests that the definitions we give are natural analogues
of ∀-reduction in this context. The analogy with the ∀-reduction rule of QU-Res gets even
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clearer when using the language of weighted clauses and Resolution to describe NS and
SA [25]. For simplicity (and length constraints) we describe Q-NS and Q-SA using the usual
algebraic language instead of the language of weighted clauses.
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Figure 1 Simulations and separations between algebraic proof systems in the propositional and
the QBF setting. By P → Q we indicate that proof system P polynomially simulates Q, while
P 99K Q means that the proof system P does not polynomially simulate Q. We omit polynomial
(non-)simulations implied by those displayed.

For lower and upper bounds we develop and adapt techniques that originate both from
propositional and QBF proof complexity.

Regarding the transfer of propositional techniques, we show how to lift common
techniques for SOS from the propositional setting to Q-SOS: we establish a size-degree
relation analogous to the propositional one [2], and show how to adapt the notion of
pseudo-expectation, the prime lower-bound method for semi-algebraic systems [40] to the
QBF setting. Both adaptations require interesting modifications and do not just replicate the
propositional techniques (see Lemma 3.11 and Definition 5.1 with the discussion thereafter).
We use pseudo-expectations to show an exponential lower bound for Q-SOS for the Equality
QBFs [11] with respect to the tighter qsize measure (Theorem 5.3).

Regarding QBF techniques, we develop strategy extraction for Q-SOS. Strategy
extraction has become the predominant technique to analyse QBF proof systems (see [12,
16, 17] for instance) and is also of tremendous practical importance for QBF solving and
verification [5, 22, 39]. Specifically, we show that Q-SOS allows strategy extraction by
polynomial threshold functions and develop a new score game interpretation. Interestingly,
this score game allows to characterise genuine proof size in Q-SOS and Q-NS (Theorem 3.6).
We also use it to elegantly show completeness of the new systems and a linear upper bound
for the Q-Majority QBFs, which are known to be hard for Q-PC [21], yielding the separation
depicted in Figure 1c.

Structure of the paper. Section 2 contains preliminaries and notation. Section 3 defines our
new semi-algebraic QBF systems and shows their soundness and completeness together with
the size-degree relation for Q-SOS. Section 4 contains the strategy extraction for Q-SOS and
some consequences. In Section 5 we develop the lower bound technique of pseudo-expectations
for Q-SOS and show an exponential lower bound. Section 6 we compare the QBF systems
via p-simulations. We conclude in Section 7 with some open problems.

SAT 2025



11:4 Semi-Algebraic Proof Systems for QBF

2 Preliminaries

QBF preliminaries. We consider Quantified Boolean Formulas (QBF) of the form Q.ϕ, where
ϕ is a CNF formula and Q is the quantifier prefix. Both the variables of ϕ and the variables
of Q range over a set of Boolean variables V . Let vars∀(Q) (resp. vars∃(Q)) be the set of
universally (resp. existentially) quantified variables in Q.

The evaluation of a QBF formula Q.ϕ can be seen as a game (the evaluation game)
between two players: the existential ∃-player and the universal ∀-player, where the ∃-player’s
goal is to satisfy the formula ϕ and the ∀-player’s goal is to falsify it. The players take turns
according to the order of the quantifiers in Q. We call this game the evaluation game to
distinguish it from a new game, the score game, which we introduce in Section 3.1.

A very well-studied QBF proof system is QU-Res [6,44,52], which can be seen as a natural
extension of the propositional proof system Resolution [24,49] to the QBF setting.

The QBF proof system QU-Res refutes a false QBF Q.ϕ inferring the empty clause ⊥
from the clauses in ϕ using the resolution rule C∨v D∨¬v

C∨D , but also using a ∀-reduction
rule C∨u

C , where all the variables in C must be on the left of u in Q. The size of a QU-Res
refutation π (size(π)) is the number of applications of rules in π, while Q-size (qsize(π)) is
the number of applications of the ∀-reduction rule.

Algebraic proof systems. Given a set of Boolean variables V , let V be the set of new formal
variables v for v ∈ V . We consider polynomials with rational coefficients and variables in
V ∪ V , i.e. polynomials in the ring Q[V ∪ V ]. Given a polynomial p and an assignment α of
its variables, we denote with p|α the evaluation of p in α.

In this work we encode clauses and CNF formulas into polynomials using the so-called
twin-variables encoding. A clause C =

∨
v∈P v∨

∨
v∈N ¬v is encoded as the set of polynomials

enc(C) =
{∏
v∈P

v
∏
v∈N

v

}
∪ {v2 − v, v + v − 1 : v ∈ P ∪N} .

A CNF ϕ =
∧m
j=1 Cj is encoded as a set of polynomials enc(ϕ) =

⋃m
j=1 enc(Cj). The formula

ϕ is satisfiable if and only if the set of polynomial equalities {p = 0 : p ∈ enc(ϕ)} is satisfiable.
I Fact 2.1. Given a polynomial r ∈ Q[V ∪ V ], if r evaluates to 0 over every Boolean
assignment satisfying ϕ (and setting v + v to 1), then r is in the ideal generated by enc(ϕ),
i.e. there are polynomials qp such that r =

∑
p∈enc(ϕ) qpp.

A refutation of an unsatisfiable CNF ϕ in variables V in the system Nullstellensatz, NS,
(resp. Sherali-Adams, SA, or Sum-of-Squares, SOS) is an algebraic identity π of the form∑

p∈enc(ϕ)

qpp+ q + 1 = 0 , (1)

where all the polynomials qp, q are in Q[V ∪ V ], and for NS q is identically 0 (resp. for SA q

is a polynomial with non-negative coefficients, and for SOS q =
∑
s∈S s

2, that is q is a sum
of squares). The size of the NS/SA/SOS refutation π, size(π), is the number of monomials
(counted with repetition) in qp and q. The degree of π, deg(π), is the maximum degree of
any of the polynomials qpp, and q.
I Remark 2.2 (On variations of NS, SA and SOS). The proof system NS has been considered
also for polynomials over arbitrary fields [27]. In this paper we focus only on polynomials
with rational coefficients. The proof systems NS, SA and SOS have been also studied using
a different encoding of CNF formulas: the encoding enc′(C), which is the same as enc(C)
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but with each v̄ variable substituted by 1 − v. The systems NS, SA and SOS under the
enc′ encoding are exponentially weaker than the corresponding system under the encoding
enc [38]. In this paper we focus only on polynomials using the encoding enc. The proof
system SOS has also been studied recently on Boolean variables representing the Boolean
values as ±1 instead of 0/1 [51], i.e. using instead of the polynomials v2 − v the polynomials
v2 − 1. In this paper we focus only on polynomials using 0/1-valued variables.

Another well-studied algebraic propositional proof system is Polynomial Calculus (PC) [31].
A Polynomial Calculus (overQ) refutation of the set of polynomials enc(ϕ), for an unsatisfiable
CNF formula ϕ, is a sequence of polynomials showing that 1 can be derived from enc(ϕ)
using the inference rules p q

p+q for polynomials p, q, and p
vp where v is a variable or v ∈ Q.

The degree and (monomial) size of the refutation are respectively the largest degree of a
polynomial in it and the number of monomials in it (counted with multiplicity).

In [16,21], the authors showed how to extend the proof system PC to the QBF context.
This resulted in QBF proof system Q-Polynomial Calculus (Q-PC). Q-PC refutes a QBF Q.ϕ
analogously to the system PC, i.e. showing that the polynomial 1 can be derived from the
polynomials in enc(ϕ) using the inference rules p q

p+q for polynomials p, q, and p
vp where

v is a variable or v ∈ Q, but also using a ∀-reduction rule p
p|u=b

, for b ∈ {0, 1} where all
the variables in p distinct from u must be left of u in Q. The size of a Q-PC refutation is
the number of monomials in the refutation (counted with repetition), while the qsize is the
number of monomials in the polynomials involved in the ∀-reduction steps (again counted
with repetition). The reason to study qsize and not just size is to factor out the propositional
hardness of the principles and focus on genuine QBF hardness (cf. [20, 30]).

3 Algebraic systems for QBFs

We introduce new QBF proof systems inspired by propositional NS/SA/SOS. We call them
Q-NS/Q-SA/Q-SOS. As their propositional counterparts they are static proof systems: a
refutation of a false QBF Q.ϕ over variables V in Q-Nullstellensatz, Q-NS, (resp. Q-Sherali-
Adams, Q-SA, and Q-Sum-of-Squares, Q-SOS) is an algebraic identity π of the form∑

p∈enc(ϕ)

qpp+
∑

u∈vars∀(Q)

qu(1− 2u) + q + 1 = 0 , (2)

where all the polynomials qp, qu q are in Q[V ∪V ], the variables in qu are all quantified before u
in Q (i.e. on the left of u), and for Q-NS q is identically 0 (resp. for Q-SA q is a polynomial with
non-negative coefficients, and for Q-SOS q =

∑
s∈S s

2, that is q is a sum of squares). We call
the expression in eq. (2) a Q-NS-refutation of Q.ϕ (resp. Q-SA-refutation/Q-SOS-refutation).

I Definition 3.1 (size, degree, qsize and qdeg∃). The size of a Q-NS/Q-SA/Q-SOS refuta-
tion π (size(π)) is the number of monomials (counted with repetition) in qp, qu and q. The
degree of π (deg(π)) is the maximum degree of any of the polynomials qpp, qu(1− 2u), and q.

The Q-size of π (qsize(π)) is defined analogously to the size but accounts only for the
monomials in the polynomials qu. The existential Q-degree of π (qdeg∃(π)) is the maximum
existential degree of any qu, where the existential degree is the highest number of existentially
quantified variables in any monomial.

The definitions of size and degree for Q-NS/Q-SA/Q-SOS are completely analogous to the
definitions in the propositional setting, while Q-size and Q-degree factor out propositional
hardness and therefore give measures more appropriate to study principles where the hardness
stems from quantification. The definition of Q-size also aligns with genuine QBF hardness

SAT 2025



11:6 Semi-Algebraic Proof Systems for QBF

measures defined in [20] and analysed e.g. in [13,21] for QU-Resolution and Q-PC, where only
universal reduction steps are counted. In a sense, the polynomial qu in (2) can be understood
as a universal reduction step on u. In particular, on QBFs without universal variables,
Q-NS/Q-SA/Q-SOS are equivalent to their propositional counterparts NS/SA/SOS.

Any lower bound on Q-size immediately implies the same lower bound on size. The
reason to consider the existential Q-degree is a connection between Q-size and existential
Q-degree similar to the inequality between size and width in resolution [13] (see Section 3.3).

As a first result we prove that Q-NS, Q-SA, Q-SOS are sound QBF proof systems.

I Theorem 3.2 (soundness). If there exists a Q-NS- or Q-SA- or Q-SOS-refutation of Q.ϕ,
then Q.ϕ is false.

Proof. Suppose, for a contradiction, that Q.ϕ is a true QBF, so the ∃-player has a winning
strategy σ, but at the same time there is a refutation of Q.ϕ of the form as in eq. (2) where
all the variables in polynomials qu are on the left of u and q is identically zero (Q-NS), or a
polynomial with non-negative coefficients (Q-SA), or a sum of squares (Q-SOS).

For every strategy τ of the ∀-player, the game proceeds following the strategies σ and τ
and constructs a total Boolean assignment ασ,τ satisfying the matrix ϕ. That is

∑
p∈enc(ϕ) qpp

evaluates to 0 under every assignment ασ,τ . For a universal variable u, we write τ<u for the
part of τ on variables to the left of u and τ>u for the rest of τ . Taking a uniform probability
distribution over all universal strategies τ , for every universal variable u it holds that:

Eτ [qu(1− 2u)] (?)= Eτ<u
[
qu Eτ>u [1− 2u]

]
= Eτ<u [qu · 0] = 0 ,

where in the equality (?) we used the fact that all the polynomials qu only depend on variables
on the left of u. Hence, evaluating both sides of eq. (2) on ασ,τ and taking Eτ , the LHS
equals Eτ [q|ασ,τ + 1], which is always at least 1, while the RHS is 0. Contradiction. J

I Remark 3.3 (Q-NS over arbitrary fields). The definition of Q-NS from eq. (2) can be trivially
adapted from polynomials over Q to arbitrary fields of characteristic different from 2. In
characteristic 2 it gives an unsound system since all the terms (1 − 2u) are identically 1.
Indeed, in characteristic 2 every formula with at least one universal variable could be “refuted”
by setting all qp = 0 and a single qu = 1.
I Remark 3.4 (unary vs binary coefficients). Unlike in the propositional setting where the
unary versions of NS/SA/SOS give rise to non-trivial (and interesting) proof systems [41],
in the QBF setting imposing unary (i.e. ±1) coefficients in Q-NS/Q-SA/Q-SOS refutations
seems to give rise to very weak systems. For instance, unary Q-SOS cannot even efficiently
refute a false QBF formula as simple as ∀u1∀u2 · · · ∀un.

∨n
i=1 ui. We omit the argument as it

is similar to the one used to prove Theorem 3.2 above.

3.1 Completeness via a score game
To show completeness of Q-NS/Q-SA/Q-SOS, we introduce a new score game. We call it
score game to distinguish it from the evaluation game used for the QBF semantics (cf. Sec. 2).

The score game, as the evaluation game, is played between a universal and an existential
player on a QBF Q.ϕ, building a total Boolean assignment. As in the evaluation game, the
players take turns according to the quantifier prefix Q and the existential player can freely
decide on the value of existential variables. For the universal variables the score game differs
from the usual evaluation game: the universal player gives a preference for the universal
variable u in the form of a number su ∈ Q. Then, the existential player sets u to b ∈ {0, 1}
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and the universal player scores su(2b− 1) points. There are two variants of this game that
differ in the winning condition:
variant 1 the universal player wins if ϕ is falsified or the total score is strictly positive;
variant 2 the universal player wins if ϕ is falsified or the total score equals 1.

Clearly every winning strategy of variant 2 is also a winning strategy of variant 1.
The intuition behind the universal preferences is that the sign of su encodes the preferred
assignment (if the preferred assignment is u = 0 then the universal player sets su > 0, and
su < 0 for u = 1) and the absolute value encodes the magnitude of this preferred choice. If
the existential player follows the choice, the universal player loses |su| points; otherwise he
gains the same amount.

Our interest in the score game is that the universal winning strategies can be transformed
into Q-NS/Q-SOS refutations.

I Proposition 3.5. A QBF Q.ϕ is false if and only if the universal player has a winning
strategy in the score game for Q.ϕ (in either variant).

Proof. Let the QBF Q.ϕ be false. Then there exists a winning strategy τ = (τu)u∈vars∀(Q)
for the universal player in the evaluation game. In the score game, on the universal variable u
the universal player plays depending on the total score S up to this point and τ . The
preferred choice of the universal player is τu and he assigns to u score

su =
{

0 if S = 1 ,
(1− 2τu)(1− S) otherwise .

If in each step of the game the universal player gets always his preference τu, then the
matrix ϕ is falsified (since τ is a winning strategy in the evaluation game). Otherwise, let u∗
be the first variable where the universal player does not get his preference and S∗ the total
score before deciding the value for u. Since, by assumption the universal player does not get
his preference but the value 1− τu∗ instead, then, after setting u∗, the total score is

S∗ + su∗(2(1− τu∗)− 1) = 1 . (3)

At this moment the universal player has essentially just won since he can set all following
scores to 0 and the final total score of the game will be 1.

For the other direction, if the universal player has a winning strategy in the score game on
Q.ϕ then he wins also against the case when the existential player makes the scores negative
in each moment of the game. In this case the resulting assignment must falsify the matrix ϕ
since the universal player is using a winning strategy. As such, this strategy is also a winning
strategy for the universal player in the usual evaluation game and the QBF Q.ϕ is false. J

We require the universal strategy for each universal variable u to be expressed as a
polynomial in all variables to the left of u in the quantifier prefix. The size of a universal
strategy in the score game is then the sum of the number of monomials in all the su.

I Theorem 3.6. Let π be a shortest Q-SOS (resp. Q-NS) refutation of Q.ϕ with respect to
its Q-size. Then qsize(π) equals the size of the shortest universal winning strategy in the
score game in variant 1 (resp. variant 2) on Q.ϕ.

Proof. Let U = vars∀(Q), let S be the size of the shortest universal winning strategy in
the score game on Q.ϕ, and let π be the LHS of a shortest Q-SOS (resp. Q-NS) refutation
written as∑

p∈enc(ϕ)

qpp+
∑

u∈vars∀(Q)

qu(1− 2u) + q = −1 . (4)

SAT 2025



11:8 Semi-Algebraic Proof Systems for QBF

To show that qsize(π) > S consider the universal strategy setting su = qu. This is a
winning strategy in the score game, i.e. for every total assignment α the universal player
wins the score game. Indeed, if α falsifies ϕ then the universal player wins automatically
(in both versions of the game). Assume then that α satisfies ϕ, that is for every p ∈ enc(ϕ),
p|α = 0. Therefore, π evaluated at α is the same as

∑
u∈U qu(1 − 2u) + q evaluated at α.

The expression
∑
u∈U qu(1 − 2u) evaluates under α to −1 if π is a Q-NS refutation or to

6 −1 < 0 if π is a Q-SOS refutation. Therefore the total score when playing the game given
the total assignment α is

∑
u∈U

su(2u− 1) =
(∑
u∈U

qu(2u− 1)
)∣∣∣∣∣

α

= −
(∑
u∈U

qu(1− 2u)
)∣∣∣∣∣

α

and this latter sum equals 1 if π is a Q-NS refutation or it is > 0 if π is a Q-SOS refutation.
In other words the universal player in such cases wins using the scores.

To prove qsize(π) 6 S, we consider the cases where π is a Q-NS or Q-SOS refutation.

Case 1: π is a Q-NS refutation. Let (su)u∈U be a shortest universal winning strategy for the
score game in variant 2 on Q.ϕ and let qu be the polynomial computing su as a function of
the variables left of u in Q. In particular, on all Boolean assignments α satisfying the matrix ϕ,
the universal player wins because the total score is 1, i.e.

(∑
u∈U qu(1− 2u)

)∣∣
α

= −1 and
therefore

∑
u∈U qu(1− 2u) + 1 is in the ideal generated by the polynomials in enc(ϕ) (this

follows from Fact 2.1). This gives a Q-NS refutation of Q.ϕ with a Q-size of at most S.

Case 2: π is a Q-SOS refutation. Let (su)u∈U be a shortest universal winning strategy for the
score game in variant 2 on Q.ϕ and let qu be the polynomial computing su as a function
of the variables left of u in Q. For an assignment α, let score(α) =

∑
u∈U su (2u− 1)|α. For

every Boolean assignment α satisfying the matrix ϕ, since (su)u is a winning strategy, we
have score(α) > 0. That is for c = 1

2 minα|=ϕ score(α) we have∑
u∈U

su
c

(1− 2u) = − score(α)
c

< −1 . (5)

In this way, for every α satisfying ϕ, 1− score(α)
c < 0. Let q = −

∑
α|=ϕ

(
1− score(α)

c

)
χα(v),

where χα(v) is the monomial which evaluates to 1 if the variables v are set according to α,
and 0 on any other Boolean assignment. Modulo the polynomials v2−v, q is a sum of squares,
hence to conclude it is enough to notice that the polynomial

∑
u∈U

1
c qu(1 − 2u) + q + 1

evaluates to 0 on every assignment satisfying enc(ϕ), hence it belongs to the ideal generated
by the polynomials in enc(ϕ) (this follows from Fact 2.1). This gives a Q-SOS refutation of
Q.ϕ having the same qsize as the strategy (su)u. J

I Corollary 3.7 (completeness). Q-NS/Q-SA/Q-SOS are complete.

Proof. Proposition 3.5 and Theorem 3.6 immediately imply the completeness of Q-NS. As
Q-NS refutations are special cases of Q-SA and Q-SOS refutations their completeness also
follows. J

3.2 Upper bounds in Q-SOS via the score game
Due to Theorem 3.6, the score game can be used to obtain bounds on the qsize of Q-SOS
refutations. The advantage is being able to argue directly on countermodels (without reference
to the syntactic representation of the matrix). To that end, we use QBFs Q-Cn from [16],
which are defined via their countermodel computed by a family of circuits Cn.
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I Definition 3.8 (Q-Cn [16]). Let n be an integer and Cn be a circuit with inputs x1, . . . , xn
and a single output. We define

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm.
(
u= Cn(x1, . . . , xn)

)
,

where the additional variables ti are used for a Tseitin-encoding of the circuit Cn into CNF
(the ith node in Cn is represented by variable ti, and if, e.g., node i is an ∧-gate between
nodes j and k, then we have clauses encoding ti ↔ (tj ∧ tk), and similarly for ∨ and ¬ gates).

For the Q-Cn formulas, the only countermodel sets u to Cn(x1, ..., xn). Here, we are
specifically interested in choosing circuits Cn that compute Majorityn. A circuit calculating
Majorityn evaluates to true, if and only if at least half of the n input variables are set to true.
We show that Q-Majorityn has short Q-SOS refutations in the qsize measure.

I Proposition 3.9. Q-Majorityn has Q-SOS refutations of linear qsize.

Proof. In the score game for Q-Majorityn, set su = −x1 − · · · − xn + n
2 −

1
4 . The choice of

the constant 1
4 is somewhat arbitrary, but should be between 0 and 1

2 . As there is only a
single universal variable, this defines a complete strategy for the universal player. We show
that su is a winning strategy. For an arbitrary assignment α, su|α < 0 if and only if at least
half of the existential xi variables are set to 1, otherwise su|α > 0. As such, the total score of
the score game on α is

(
− x1 − · · · − xn + n

2 −
1
4
)
(2u− 1)

∣∣
α
. This is negative only if either

u = 1 and at least half of the xi equal 1 or u = 0 and less then half of the xi equal 1, i.e. if
the matrix is satisfied, the score is positive.

This strategy has size n+ 1 and degree 1, hence, by Theorem 3.6, there exists a Q-SOS
refutation of Q-Majorityn with a qsize linear in n. J

It is known that Q-Majorityn requires Q-PC refutations of exponential qsize [21], therefore
the previous result yields the exponential separation between Q-PC and Q-SOS in Figure 1.

3.3 From existential Q-degree to Q-size

In various proof systems, strong enough lower bounds on the degree/width of proofs immedi-
ately imply non-trivial lower bounds on proof size. This happens for instance in propositional
proof systems such as Resolution [8], Polynomial Calculus [31], Sherali-Adams and Sum-
of-Squares [2]; and in QBF proof systems as well, for instance in QU-Resolution [13], and
Q-PC [21]. It turns out that a very similar statement holds in Q-SOS between the existential
Q-degree (qdeg∃(·), see Definition 3.1) and Q-size (qsize(·), see Definition 3.1).

I Theorem 3.10. Let Q.ϕ be a false QBF with n variables that has a Q-SOS refutation of
qsize s. Then it has a Q-SOS refutation of qdeg∃ O(

√
n log s).

The argument is similar to the proof of the analogous size-width inequality for Resolution
from [8]. The main difference is the proof of the lemma below showing how to combine a
proof of qdeg∃ k − 1 of Q.ϕ|x=1 and a proof of qdeg∃ k of Q.ϕ|x=0 into a proof of qdeg∃ k
of Q.ϕ. This is done using the score game from the previous section.

I Lemma 3.11. Let Q.ϕ be a false QBF and x ∈ vars∃(Q). If there is a Q-SOS refutation π1
of Q.ϕ|x=1 with qdeg∃(π1) 6 k−1, and a Q-SOS refutation π0 of Q.ϕ|x=0 with qdeg∃(π0) 6 k,
then there is a Q-SOS refutation π of Q.ϕ with qdeg∃(π) 6 k.
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Proof. We consider the equivalent representation of the proofs as universal strategies in the
score game. Let q1 be the final score in π1 and q0 be the final score in π0. Let c be the
maximum of |q0|+1 over all assignments, and d be the smallest positive value that q1 can take
(or 1 if q1 does not take positive values). For each u ∈ vars∀(Q), let qu = x · q1

u + d
c q

0
u, where

q0
u and q1

u are the polynomials for u in π0 and π1. Combining these qu yields a strategy π
with final score q = x · q1 + d

c q0 and qdeg∃(π) 6 k.
We still need to argue that π is a universal winning strategy, i.e. that on every assignment α

satisfying ϕ we have q(α) > 0. If α sets x = 0, then it satisfies ϕ|x=0, so q0(α) > 0 due to
the correctness of π0. But if x = 0 then q = 0 · q1 + d

c q0 > 0. If α sets x = 1, then it satisfies
ϕ|x=1, so q1(α) > 0 due to the correctness of π1. By the definitions of c and d, we have
c > −q0(α) and d 6 q1(α). This means that dc q0 > −d > −q1(α) and q = 1 ·q1 + d

c q0 > 0. J

I Lemma 3.12. Let d, n, b ∈ N>0 and Q.ϕ be a false QBF. Let π be a Q-SOS refutation
of Q.ϕ so that its qu polynomials contain, in total, fewer than (1 − d

2n )−b monomials of
existential degree > d. Then there is a Q-SOS refutation π′ of Q.ϕ with qdeg∃(π′) 6 d+ b.

The proof of this lemma is virtually identical to the proof of [8, Theorem 3.5]. Informally,
the proof is by an inductive argument on n and b, considering the high-degree monomials to
be the ones with qdeg∃ at least d. By a counting argument there will be a literal x appearing
in at least a d

2n fraction of them. Restricting by x = 0 and x = 1, we have that the first
restriction eliminates at least d

2n of the high-degree monomials, while the second eliminates
one variable. Then using the inductive hypothesis and Lemma 3.11 concludes the argument.

Given the two lemmas above it is immediate to prove Theorem 3.10.

Proof of Theorem 3.10. Set b = d =
√

2n log s and observe that s < (1− d
2n )−b. The number

of high-degree monomials in the refutation is smaller than its total number of monomials s,
so we can apply Lemma 3.12 and get a refutation of qdeg∃(b+ d) ∈ O(

√
n log s). J

4 Lower bounds via strategy extraction in the evaluation game

In QBF proof systems, strategy extraction is a welcome and ubiquitous feature. Inform-
ally, given a refutation of a false QBF, strategy extraction allows to represent in some
computational model a winning strategy of the universal player in the evaluation game.
Different QBF proof systems give rise to strategy extraction in different computational
models. For example, from QU-Res refutations we get unified decision lists [13] and from
Frege+∀-reduction refutations we get NC1 circuits [16] .

In this section, we show that Q-SOS/Q-SA/Q-NS also admit strategy extraction, using
polynomial threshold functions (PTF) as the computational model (Theorem 4.3). We use
this fact to prove a lower bound in Q-SOS (Corollary 4.4) and a p-simulation of Q-SOS by
Q-TC0-Frege (Corollary 4.5).

I Definition 4.1 (polynomial threshold function). A Boolean function f : {0, 1}n → {±1} is
computed by a polynomial threshold function (PTF), if there exists some n-variate polynomial
p ∈ Q[x] such that f(x) = sign(p(x)). The size of the PTF is the number of monomials in p
and the degree of the PTF is the degree of p.

I Remark 4.2 (On the PTF degree of parity). It is well known that f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn
cannot be computed by PTFs of degree less than n. We recall briefly the argument (see also
for instance [46]). Let f(x) = sign(p(x)) with p a n-variate polynomial of degree d. Since f is
symmetric, there exists a symmetric n variate polynomial p′ such that f(x) = sign(p′(x)) and
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deg(p′) 6 deg(p) = d. Since p′ is symmetric, there exists a univariate polynomial p′′ such that
p′′(x1+· · ·+xn) = p′(x) and deg(p′′) = deg(p′). In other words, f(x) = sign(p′′(x1+· · ·+xn)).
To conclude it is enough to notice that on 0, 1, . . . , n the polynomial p′′ must be alternating
signs and hence it must have at least n real roots; therefore d > deg(p′′) > n.

Given a Q-SOS/Q-SA/Q-NS refutation
∑
p∈enc(ϕ) qpp+

∑
u∈vars∀(Q) qu(1−2u)+q+1 = 0

of a false QBF Q.ϕ, we claim that for every universal variable u, sign(qu) computes a strategy
for 1− 2u.1 This can then be easily transformed into a strategy for u through a linear output
transformation mapping −1 to 1 and 1 to 0. Per definition, for every universal variable u,
sign(qu) is a PTF. The size of the extracted strategy is the sum of the sizes of the PTFs and,
as such, the Q-size of the refutation. Analogously, the degree of the extracted strategy, i.e.
the maximum degree of the PTFs, equals the total Q-degree of the refutation.

I Theorem 4.3. Let
∑
p∈enc(ϕ) qpp+

∑
u∈vars∀(Q) qu(1−2u) + q+ 1 = 0 be a Q-SOS/ Q-SA/

Q-NS proof of a false QBF Q.ϕ. Then the universal strategy that maps each universal variable
u ∈ vars∀(Q) to 1−sign(qu)

2 is a countermodel (i.e. falsifies ϕ).

Proof. The syntactic restriction of countermodels, i.e. that each variable only depends on
variables left of it in the quantifier prefix Q, holds by definition of qu.

For every universal variable u played according to the strategy, we have qu(1 − 2u) =
qu sign(qu) > 0. As such,

∑
u∈vars∀(Q) qu(1 − 2u) + q + 1 > 1. Hence,

∑
p∈enc(ϕ) qpp 6 −1,

which is only possible if the matrix ϕ is not satisfied (otherwise qpp = 0 for all p ∈ enc(ϕ)). J

To exemplify the strategy extraction technique for Q-SOS, we use Remark 4.2 and
Theorem 4.3 to prove that the Parity formulas [18]

Parityn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tn. (t1 ↔ x1) ∧ (u= tn) ∧
n∧
i=2

(ti ↔ ti−1 ⊕ xi).

are exponentially hard for Q-SOS. Notice that the only winning strategy for the universal
player is to set u = x1 ⊕ · · · ⊕ xn.

I Corollary 4.4. Every Q-SOS refutation of Parityn requires Q-size exp(Ω(n)).

Proof. Let d := qdeg∃(π) and apply strategy extraction (Theorem 4.3) to get a PTF of
degree d that computes u =

⊕n
i=1 xi. By Remark 4.2, its degree is at least n, so d > n.

Let s := qsize(π) and apply Theorem 3.10 to obtain n 6 d = O(
√
n log s) and therefore

s = exp(Ω(n)). Theorem 3.10 can be applied here, because Parityn only has a single universal
variable and, as such, its existential Q-degree equals its total Q-degree. J

As a second consequence of Theorem 4.3, strategy extraction can also be used to embed
Q-SOS into more powerful systems, in this case Q-TC0-Frege. Q-TC0-Frege is the TC0-Frege
system with an added universal reduction rule. The Q-size of a Q-TC0-Frege refutation is
the sum of the number of symbols of all lines involved in a ∀-reduction step.

I Corollary 4.5. Q-TC0-Frege p-simulates Q-SOS in the qsize measure.

1 We use the convention that sign(0) = +1.
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5 Lower bounds via Q-pseudo-expectation

In the propositional setting, the notion of pseudo-expectation is the standard tool to obtain
degree lower bounds for SOS, see for instance [40]. Thanks to the size-degree relation for
SOS [2], degree lower bounds also give size lower bounds.

Inspired by the propositional notion of pseudo-expectation, we give a notion of pseudo-
expectation for Q-SOS and use it to prove lower bounds on the qdeg∃ of Q-SOS refutations.
In particular, for a false QBF Q.ϕ and a Q-SOS expression π of the form∑

p∈enc(ϕ)

qpp+
∑

u∈vars∀(Q)

qu(1− 2u) + q + 1 , (6)

where all the variables in qu are on the left of u in Q and q is a sum of squares, we consider
witnesses that π 6= 0, i.e. that π is not a Q-SOS refutation of Q.ϕ. In analogy to the
propositional case, we call the witnesses we construct Q-pseudo-expectations.

I Definition 5.1 (Q-pseudo-expectation in Q-SOS). Given Q.ϕ and a Q-SOS expression π
as in eq. (6), a Q-pseudo-expectation for Q.ϕ and π is a linear function Ẽ : Q[V ∪ V ]→ R
such that:
1. Ẽ[1] = 1;
2. Ẽ[q +

∑
p∈enc(ϕ) qpp] > 0;

3. Ẽ[
∑
u∈vars∀(Q) qu(1− 2u)] > 0.

In the propositional context, a single pseudo-expectation for SOS typically targets a fixed
degree d and has properties similar to 1.–3. above but for arbitrary qp and sum-of-squares q
such that the degree of qpp and q are at most d. In this way, a single pseudo-expectation
rules out the possibility of any small-degree SOS refutation. There are exceptions to this
general approach, for instance the pseudo-expectations used in [42] that are targeting all
SOS proofs over a certain set of monomials, but we are not aware of degree lower bounds in
SOS proved by constructing a family of pseudo-expectations each tailored to a specific set
of polynomials (i.e. as in Definition 5.1 but without the condition in item 3.). In the QBF
context, this is what we do. To rule out small qdeg∃ Q-SOS refutations we use a family of
pseudo-expectations, each targeting one possible candidate Q-SOS proof, i.e. an expression
as in eq. (6). We formalise this approach in Theorem 5.2 and exemplify it in Theorem 5.3.

I Theorem 5.2. Given a QBF Q.ϕ, if for every Q-SOS expression π as in eq. (6) with
qdeg∃(π) < d there is a pseudo-expectation for Q.ϕ and π, then every Q-SOS refutation of
Q.ϕ has qdeg∃ at least d.

Proof. If there was a Q-SOS refutation π = 0 of Q.ϕ with qdeg∃(π) < d, then taking the
pseudo-expectation Ẽ for Q.ϕ and π we get Ẽ[π] = Ẽ[0] = 0. Notice that necessarily Ẽ[0] = 0,
by linearity and the identity Ẽ[0 + 0] = Ẽ[0]. On the other hand, again by linearity, and the
properties of Ẽ, we get Ẽ[π] > 1. J

We apply the Q-pseudo-expectation technique to show a qdeg∃ lower bound on Q-SOS
refutations of the Equalityn formulas [11] where

Equalityn = ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn.
n∧
i=1

(ti → (xi = ui)) ∧
n∨
i=1

ti .

For the qdeg∃ lower bound we only use the fact that every assignment satisfying the
matrix sets ui = xi for some i.
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Equalityn is a quite simple QBF. Hardness for Q-SOS might suggest that the system is
weak. Equalityn is also hard for QU-Res and Q-PC [11], but easy in Q-depth-d Frege [11], so
the hardness appears to only stem from the expressiveness of the objects used. Similarly,
Q-SOS on depth-d arithmetic circuits (instead of polynomials) would shortly prove Equalityn,
but if polynomials are represented explicitly as sums of monomials, Equalityn becomes hard.

I Theorem 5.3. Every Q-SOS refutation π of Equalityn has qdeg∃(π) > n and qsize(π) >
exp(Ω(n)).

Proof. Let Q.ϕ be the QBF encoding of Equalityn. First notice that, thanks to Theorem 3.10,
it is enough to prove the qdeg∃ lower bound. (We comment that to do this, the strategy
extraction technique from Section 4 would not work here.)

Assume, towards a contradiction, that there is a Q-SOS refutation of Q.ϕ of qdeg∃(π) < n:

∑
p∈enc(ϕ)

qpp+
∑

u∈vars∀(Q)

qu(1− 2u) + q + 1 = 0 . (7)

Let π the LHS of eq. (7). We construct a Q-pseudo-expectation for Q.ϕ and π. This, by
Theorem 5.2, implies the wanted contradiction.

Given α = (α1, . . . , αn) ∈ {0, 1}n, let x 7→ α be the Boolean assignment setting xi to αi
for each i ∈ [n]. We define analogously u 7→ α and t 7→ α. Given α,β ∈ {0, 1}n, let α⊕ β
be the vector whose ith entry is the sum αi + βi (mod 2).

Let h =
∑
u∈vars∀(Q) qu(1− 2u). We have that∑

α,β∈{0,1}n
h|x 7→α, u7→β = 0 . (8)

Let γ ∈ {0, 1}n be the assignment maximizing
∑
α∈{0,1}n h|x 7→α, u7→γ . By eq. (8),∑

α∈{0,1}n
h|x7→α, u7→γ > 0 . (9)

We define our candidate Q-pseudo-expectation as

Ẽ(p) = 2−n
∑

α∈{0,1}n
p|x 7→α, u7→γ, t 7→α⊕γ ,

and we prove that Ẽ satisfies all the conditions of the definition of Q-pseudo-expectation.
The definition of Ẽ immediately implies that Ẽ[1] = 1, and Ẽ[h] > 0 follows from eq. (9). Let
g = q +

∑
p∈enc(ϕ) qpp. To conclude the argument we need to prove that Ẽ[g] > 0.

Since g = −h− 1 and by construction h cannot contain ti variables, the polynomial g
contains only xi and ui variables. That is,

Ẽ[g] = 2−n
∑

α∈{0,1}n
g|x 7→α, u7→γ

(?)= 2−n
∑

α∈{0,1}n
g|x7→α⊕γ, u7→γ ,

where the last equality (?) follows as α⊕ γ ranges over all {0, 1}n just in a different order.
Let g′ be the polynomial such that for every α ∈ {0, 1}n, g′|x7→α = g|x 7→α⊕γ, u7→γ . The

polynomial g′ is constructed from g|u7→γ replacing every occurrence of xi by 1− xi (resp.
xi) if γi = 1 (resp. γi = 0). Crucially, g′ has degree at most n− 1, since deg(g′) 6 deg∃(g) =
deg∃(−h− 1) 6 qdeg∃(π) 6 n− 1. That is, for each monomial m in g′, there is some variable
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xi not appearing in it, and m gets the same value on every pair α,α′ where α ∈ {0, 1}n and
α′ is identical to α except in position i. This implies

∑
α∈{0,1}n(−1)|α| m|x7→α = 0, where

|α| denotes the 1-norm of α, the sum of all 1s in it. Summing over all monomials in g′, we
get

0 =
∑

α∈{0,1}n
(−1)|α| g′|x 7→α

=
∑

α∈{0,1}n
g′|x7→α +

∑
α∈{0,1}n

((−1)|α| − 1) g′|x7→α

=
∑

α∈{0,1}n
g|x 7→α⊕γ, u7→γ +

∑
α∈{0,1}n

((−1)|α| − 1) g′|x 7→α

= 2nẼ[g] +
∑

α∈{0,1}n
((−1)|α| − 1) g′|x 7→α .

Hence, to conclude that Ẽ[g] > 0 it is enough to show that∑
α∈{0,1}n

((−1)|α| − 1) g′|x7→α 6 0 . (10)

For αs such that |α| is even, the coefficient in front of g′|x 7→α is 0, while for αs such that |α|
is odd, the coefficient in front of g′|x7→α is −2. That is, to prove eq. (10), it suffices to show
that for αs such that |α| is odd, g′|x 7→α > 0. By construction g′|x 7→α = g|x 7→α⊕γ, u7→γ ,
and since there are no ti variables in g, g|x 7→α⊕γ, u7→γ = g|x7→α⊕γ, u7→γ,t 7→α.

Now, if |α| is odd, in particular α 6= 0 and α ⊕ γ 6= γ. It is easy to check that
the assignment x 7→ α ⊕ γ, u 7→ γ, t 7→ α sets to 0 (i.e. satisfies) all the polynomials
p ∈ enc(ϕ). Since q is always non-negative on every assignment, we can conclude that
g|x7→α⊕γ, u7→γ,t 7→α > 0 and therefore g′|x 7→α > 0. J

6 Simulations

We now investigate how the algebraic QBF systems relate to each other and to other known
QBF proof systems such as QU-Resolution and Q-PC and show the p-simulations of Figure 1.

I Theorem 6.1. Q-SOS p-simulates Q-SA w.r.t. the size and qsize measures.

Proof. It is well known that (degree 2d) SOS p-simulates (degree d) SA (see for instance [40,
Lemma 3.63]). The same argument works without change in the QBF setting: every variable v
in a positive monomial can be substituted by v2 summing a suitable multiple of v2−v. In this
way, every positive monomial abm with a, b ∈ N can be converted into s2

1+s2
2+s2

3+s2
4

b2 m2 where
s1, s2, s3, s4 are four integers that sum up to ab (they exists by Lagrange’s Four Squares
Theorem). This converts abm into a sum of at most four squares with rational coefficients. J

In the argument above, notice that the only increment in degree is in the propositional
part, hence, different from the propositional case, Q-SOS with qdeg∃ d p-simulates Q-SA
with qdeg∃ d. In the qsize measure, the converse also holds.

I Theorem 6.2. Q-SA p-simulates Q-SOS w.r.t. the qsize measure.

Proof. Every polynomial q that is non-negative on the Boolean assignments can be written
as a (possibly exponentially large) sum of the form

∑
α q|α χα(v), where χα(v) is a monomial

that evaluates to 1 when the variables are set according to the Boolean assignment α and on
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any other Boolean assignment it is 0. In other words, every Q-SOS refutation can be written
as a possibly exponentially larger Q-SA refutation. The exponential blow-up appears in the
propositional part which is not accounted for in qsize. J

I Theorem 6.3. Q-SA p-simulates QU-Res w.r.t. both size and qsize.

Proof. (sketch) The argument in [37, Proposition 1 and Corollary 2] showing that degree d
SA p-simulates width d Resolution can be easily adapted to the QBF setting. An alternative
proof could be using the characterization of SA as weighted Resolution [25, Theorem 5.7].
Weighted Resolution is a proof system handling weighted clauses, i.e. pairs (C,w) with C a

clause and w ∈ Z (or Q). Adding to weighted Resolution the rule (C ∨ u, 2w)
(C,w) , where all the

variables in C appear left of u in the quantifier prefix will result in a system p-equivalent to
Q-SA. QU-Res is then p-equivalent to weighted Resolution augmented with the rule above
where all weights in the proofs are non-negative. J

I Theorem 6.4. Q-PC p-simulates Q-NS w.r.t. the size and qsize measures.

Proof. Let Q.ϕ be a false QBF with n variables and m clauses and π be a Q-NS refutation
of Q.ϕ of the form∑

p∈enc(ϕ)

qpp+
∑

u∈vars∀(Q)

qu(1− 2u) + 1 = 0 , (11)

Lines in a Q-PC proof can be multiplied by arbitrary polynomials. Hence, we can obtain
in Q-PC the sum

∑
p∈enc(ϕ) qpp from the polynomials in enc(ϕ) in a polynomial number of

steps. Let vars∀(Q) be u1, u2, . . . , un. Due to the symbolic equality in eq. (11), this sum
equals −1−

∑n
i=1 qui(1− 2ui). We then use the ∀-reduction on un, then un−1 etc. In the

first step, restricting by un = 1 and un = 0, we get respectively

−1−
n−1∑
i=1

qui(1− 2ui)− qun and − 1−
n−1∑
i=1

qui(1− 2ui) + qun .

Adding them, we get −1 −
∑n−1
i=1 qui(1 − 2ui). We repeat this process until we get rid of

all universal variables and only the −1 remains. It is clear from the argument that this
simulation only increases the size and qsize linearly. J

I Theorem 6.5. Q-SOS p-simulates Q-PC w.r.t. the size and qsize measures.

Proof. (sketch) The argument in [9, Lemma 3.1] showing that degree 2d SOS p-simulates
degree d PC adapts easily to the QBF setting. The idea is that given a Q-PC derivation
p1, . . . , ps we derive an algebraic expression for −p2

i which eventually for i = s will give
a Q-SOS refutation of Q.ϕ. This is done inductively on i and is based on the following
algebraic identities:

sum rule (from p and q deduce ap+ bq with a, b ∈ Q):
−(ap+ bq)2 = −2a2p2 − 2b2q2 + (ap− bq)2;
product rule (from p deduce xp):
−(xp)2 = −p2 + (p− xp)2 + 2p2(x− x2);
∀-reduction (from p+ qu deduce p):
−p2 = −2(p+ qu)2 + (p+ q)2 − (q2 + 2pq)(1− 2u) + 2q2(u2 − u);
∀-reduction (from p+ qu deduce p+ q):
−(p+ q)2 = −2(p+ qu)2 + p2 − (q2 + 2pq)(1− 2u) + 2q2(u2 − u). J
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I Corollary 6.6. Q-SOS p-simulates Q-NS and is exponentially stronger, w.r.t. the size and
qsize measures.

Proof. The simulation follows from Theorem 6.5 and Theorem 6.4. The separation fol-
lows from Proposition 3.9 and Theorem 6.4 for the qsize measure, and from propositional
separations [4, 34] for the size measure. J

7 Conclusion

In this work we defined semi-algebraic proof systems for QBF and initiated their proof
complexity investigation. While our results already reveal an interesting picture in terms of
simulations and lower and upper bounds, a number of questions remain that appear to be of
interest for further research.

In the propositional setting Res and NS are incomparable proof systems. Are also Q-NS
and QU-Res incomparable w.r.t. the qsize measure?

In Section 4 we showed how to express strategy extraction for Q-SOS using polynomial
threshold functions. Although this suffices for lower bounds, it appears interesting to
determine the correct computational model characterizing strategy extraction for Q-SOS
and Q-NS in the same sense as the tight characterisations for QU-Res [13], Q-PC [21], and
QBF Frege systems [16].

Finally, it would be interesting to determine the relationship of our new semi-algebraic
QBF systems to the static expansion-based algebraic systems suggested in [29], which might
turn out to be incomparable in strength.
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