
An Algebraic Approach to MaxCSP
Ilario Bonacina #

UPC Universitat Politècnica de Catalunya, Spain

Jordi Levy #

IIIA, CSIC, Spain

Abstract
Recently, there have been some attempts to base SAT and MaxSAT solvers on calculi beyond
Resolution, even trying to solve SAT using MaxSAT proof systems. One of these directions was to
perform MaxSAT sound inferences using polynomials over finite fields, extending the proof system
Polynomial Calculus, which is known to be more powerful than Resolution.

In this work, we extend the use of the Polynomial Calculus for optimization, showing its
completeness over many-valued variables. This allows using a more direct and efficient encoding
of CSP problems (e.g., k-Coloring) and solving the maximization version of the problem on such
encoding (e.g., Max-k-Coloring).

2012 ACM Subject Classification Theory of computation → Proof complexity; Computing method-
ologies → Algebraic algorithms; Mathematics of computing → Solvers

Keywords and phrases MaxCSP, Polynomial Calculus, MaxSAT

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.8

Funding This work was supported by the grant numbers PID2022-138506NB-C21, and PID2022-
138506NB-C22 funded by AEI.

1 Introduction

The Constraint Satisfaction Problem (CSP) is the problem of, given a set of constraints on
variables, finding an assignment satisfying all of them. SAT can be seen as the restriction
of this problem to Boolean, i.e., 0/1-valued, variables and constraints given as clauses.
MaxCSP and MaxSAT are their respective optimization versions, where we find assignments
maximizing the number of satisfied restrictions. CSP could be tackled via translations to
SAT, see for instance, [21]. MaxCSP could be tackled via translations to MaxSAT, but this
kind of reduction is more subtle since we have to preserve not only satisfiability, but also the
number of violated constraints. As a result, in some problems, it may be more efficient to
try to solve the original problem using CSP techniques directly, instead of these translations.

In this paper, we consider the natural adaptation of the notions of MaxCSP and MaxSAT
to sets of polynomials and we show how to use an algebraic framework to tackle optimization
problems on sets of polynomials over multi-valued variables. Sets of polynomials over
many-valued variables can be used to encode CSP and MaxCSP more directly, avoiding the
translation to SAT.

Given a set of polynomials P , we want to determine the maximum number of polynomials
in P that can be simultaneously evaluated to zero under a common assignment of the variables.
Unlike SAT and MaxSAT that rely on Boolean encodings, using sets of polynomials allows
to use a direct multi-valued encoding of MaxCSP problems that are more expressive, concise,
and closer in nature to possible underlying algebraic properties of the original problem
at hand.

The algebraic framework we use is an adaptation of Polynomial Calculus (PC) introduced
in [9]. PC is the proof system underlying the reasoning power of algorithms to compute
Gröbner bases [7, 6, 12], and, from a theoretical point of view, PC is well-studied in connection

© Ilario Bonacina and Jordi Levy;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ilario.bonacina@upc.edu
https://orcid.org/0000-0002-5697-8070
mailto:joanrpublic@dummycollege.org
https://orcid.org/0000-0001-5883-5746
https://doi.org/10.4230/LIPIcs.SAT.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 An Algebraic Approach to MaxCSP

with big open questions in Complexity Theory. From a practical point of view, the interest
in PC stems from the fact that it is stronger and more versatile than Resolution, the proof
system underlying the Conflict-Driven-Clause-Learning paradigm of state-of-the-art SAT-
solvers [20, 1]. Moreover, algorithms computing Gröbner bases are useful in practice in the
context of coloring of graphs [18, 10, 11] and verification of multiplier circuits [16, 14, 15, 13].
The previous applications use polynomials over multi-valued or Fourier encoding, i.e., using
variables such that xκ = 1. Unlike the case of PC over Boolean variables, PC over multi-
valued variables is not so well understood. Some well-known principles, such as Tseitin
formulas have short (polynomial size) proofs in PC over ±1-variables, while they do not have
short proofs over PC with Boolean variables. Recently, it has also been shown that there are
unsatisfiable formulas having polynomial size refutation in PC over Boolean variables, while
requiring exponential size in PC over ±1-valued [19].

Recently, Bonacina, Bonet and Levy [2, 3] introduced an algebraic calculus (wPCκ) for
certifying the optimum value in optimization problems on polynomials over the finite field
Fκ. This is a generalization of PC to the context of optimization and not only satisfiability.
The authors proved the completeness of the calculus in the case of polynomials over Boolean
variables.

In this work, we consider polynomials over non-Boolean encodings and therefore we give a
theoretical ground for extending the applicability of the algorithms using algebraic reasoning
and many-valued variables from the context of CSPs to MaxCSPs. For the sake of clarity, we
omit the possible generalization to the case of weights and the presence of hard constraints,
for instance coming from a Fourier encoding (i.e. using polynomials xℓ − 1 to limit the
possible values taken), although all the content of this paper will adapt easily to those cases.

The main contribution of this work is the completeness of the calculus wPCκ over arbitrary
sets of polynomials in Fκ (Theorem 5.1). This argument loosely follows the structure of the
completeness of wPCκ over polynomials forced to take Boolean values in [3] but requires
several non-trivial adaptations. This gives an algorithmic procedure that is efficient in some
cases, see Section 6.

As a proof of concept, we also show how to apply the calculus wPC3 to certify Max-3-
colorability of graphs exploiting the use of non-Boolean variables (see Section 4).

Structure of the Paper

Section 2 contains all the necessary preliminaries. Section 3 gives the definition of the
algebraic framework for optimization and the definition of wPCκ. Section 4 exemplifies the
algebraic framework to Max-coloring. Section 5 contains the completeness of the calculus
wPCκ (Theorem 5.1). This is the main technical contribution of this work. Section 6 gives
an application of the algorithmic procedure giving the completeness of wPCκ. Section 7 give
respectively some technical and more general final remarks.

2 Preliminaries

For a natural number n ∈ N, let [n] = {1, . . . , n}. Capital letters typically denote sets and
multi-sets, for instance, X usually denotes a set of variables. With p, q, f we typically denote
polynomials. κ will always denote the number of elements of a generic finite field.

I. Bonacina, J. Levy 8:3

Basic Algebra Notations

Informally, a field F is a set equipped with addition and multiplication that behave similarly
as they would do in the rationals or real numbers.

For instance, F3 is the finite field with 3 elements {0, 1, −1}. The addition is modulo 3,
that is 1 + 1 = −1 and −1 − 1 = 1, the multiplication is the usual one, and for each a ∈ F3,
a3 = a. For κ a power of a prime, Fκ is the (unique up-to-isomorphism) finite field with κ

elements. For every element a ∈ Fκ it holds that aκ = a.
Given a set of variables X and a field F, F[X] is the ring of polynomials with coefficients

in F and variables in X.
A assignment on the variables X is a map α : X → F. The evaluation of a polynomial

p ∈ F[X] on α is p(α) and it is the element of F given by substituting each variable x in p

with α(x) and then simplifying the resulting expression using the sum and multiplication
rules of F. An assignment α satisfies a polynomial p if p vanishes on α, i.e., p(α) = 0.

MaxSAT on Polynomials

Similarly to the usual MaxSAT, in the optimization problem on polynomials, we are interested
in maximizing the number of polynomials set to zero on a common assignment. For a multi-set
of polynomials P ⊆ F[X] and an assignment α let

cost(P, α) = |{p ∈ P : p(α) ̸= 0}| ,

i.e., cost(P, α) is the number of polynomials in P non vanishing in α (the polynomials are
counted with the respective multiplicity in P). The optimization problem on polynomials
becomes minimizing the quantity cost(P, α) over all possible assignments α:

cost(P) = min
α

cost(P, α) .

In this work we are interested in formal systems that can be used to certify lower bounds
on cost(P), i.e., cost(P) ⩾ s for some natural number s. To do so we use the notion of
strongly sound inference rules introduced in the context of MaxSAT Resolution in [4, 5],
adapted here from the context of clauses to generic polynomials.

▶ Definition 2.1 (strongly sound rule). Let p1, . . . , pm, q1, . . . , qℓ be polynomials in F[X]
and p1, . . . , pm

q1, . . . , qℓ
be an inference rule. The rule is strongly sound if for every assignment

α : X → F,

cost({p1, . . . , pm}, α) = cost({q1, . . . , qℓ}, α) .

The interest in strongly sound rules lies in the fact they can be used to build inference
systems for MaxSAT or, in our case, inference systems for optimization on polynomials. This
is based on the fact that a strongly sound rule p1, . . . , pm

q1, . . . , qℓ
on a multi-set of polynomials P

with p1, . . . , pm ∈ P can be used as a substitution rule giving the multi-set

P ′ = P \ {p1, . . . , pm} ∪ {q1, . . . , qℓ} ,

where cost(P) = cost(P ′). Hopefully, P ′ is simpler, and by repeating the process we would
like to arrive to a P ′ which trivially certifies that cost(P ′) ⩾ s, for instance, since there are
s-many constant non-zero polynomials in P ′. To certify that cost(P) = s we additionally
need to prove that the remaining non-constant polynomials in P ′ have a common zero.

SAT 2025

8:4 An Algebraic Approach to MaxCSP

Examples of such systems are wPC3 (Definition 3.1) or, working with clauses instead of
polynomials, MaxSAT-Resolution [17, 4, 5].

In this work, we focus on polynomials in F[X] and actually we are only interested in how
they behave after being evaluated, therefore it makes sense to consider them modulo the
following equivalence relation.

▶ Definition 2.2 (≡). Given p, q ∈ F[X], p ≡ q iff for every assignment α : X → F,
p(α) = q(α).

For every polynomial p ∈ Fκ[X], it holds that pκ ≡ p and, if p1 ≡ q1 and p2 ≡ q2, then
p1p2 ≡ q1q2. This gives the following strongly sound substitution rule:

p

q
(equivalence rule, ≡) , (1)

where p ≡ q. By the Nullstellensatz, it is possible to check efficiently whether p ≡ q since
this is equivalent to the polynomial p − q being in the ideal generated by {xκ − x : x ∈ X}.
This latter condition is efficiently checkable “multilinearizing” the polynomial p − q, that
is substituting each occurrence of variables xa(κ−1)+b with xb, where b ∈ {0, . . . , κ − 1},
and then checking that after this process all the terms cancel-out and the polynomial is
identically 0.

3 Polynomial Calculus for MaxSAT

Bonacina, Bonet and Levy in [3] introduced Polynomial Calculus for MaxSAT (wPCκ) as a
way to use a system stronger than MaxSAT-Resolution to solve MaxSAT. For simplicity, we
omit the treatment of weighted polynomials and sets of polynomials as “hard” constraints.
We also omit the case of negative weights and therefore what we call wPCκ is wPCN,Fκ

in [3].

▶ Definition 3.1 (wPCκ, [3]). Given a multi-set of polynomials P ⊂ Fκ[X], a wPCκ

derivation of a polynomial p ∈ Fκ[X] is a sequence of multi-sets L0, . . . , Lt such that
1. L0 = P , p ∈ Lt, and
2. for each i > 0, Li is the result of the application of a sum / prod / ≡ rule as a

substitution rule on Li−1, where the sum and prod rules are the following:

p q

p + q pq p((p + q)κ−1 − 1) (sum) p

pq p(qκ−1 − 1) (prod) (2)

The size of a wPCκ derivation is the total number of symbols in it.

The system wPCκ can be used to certify that for a multi-set of polynomials P ⊂ Fκ[X],
cost(P) ⩾ s. Indeed, a wPCκ derivation from P of s copies of the constant polynomial
1 implies that cost(P) ⩾ s. Or, equivalently, a wPCκ derivation of s non-zero constant
polynomials, since by the prod rule from any non-zero constant we can derive the polynomial 1
multiplying by its inverse (for an example of application, see last inference step in Example 3.3).
In wPCκ it is also possible to certify that cost(P) = s: if on top of the s-many polynomials
identically 1 we give an assignment which is a common zero of the polynomials obtained
alongside the 1s.

To clarify the rules for wPCκ, we give an equivalent, but more explicit, set of rules for
κ = 3:

p q

p + q pq pq(q − p) (sum) p

pq p(q2 − 1) (prod) (3)

I. Bonacina, J. Levy 8:5

where p, q ∈ F3[X]. The rule prod in (3) is strongly sound essentially because for any
assignment α exactly one among q(α) and q(α)2 − 1 is zero. The rule sum in (3) is strongly
sound by case analysis: the less trivial case to check is when we have an assignment α such
that cost({p, q}, α) = 2, i.e. p(α) ∈ {1, −1} and q(α) ∈ {1, −1}. In this case, the cost of the
conclusions of the rule is also 2 because p(α)q(α) ̸= 0 and, over the assignments αs we are
considering, exactly one among p(α) + q(α) and q(α) − p(α) is zero.

▶ Remark 3.2 (On the coefficients of the polynomials). Polynomial Calculus on polynomials
with coefficients in a generic ring (for instance Z) was also investigated in [8]. Both the
article [3] and ours only consider the MaxSAT/MaxCSP adaptation of Polynomial Calculus
over finite fields. The reason is that the rules sum and prod do not immediately adapt to
arbitrary finite rings such as Z/4Z (the set of integers with arithmetic modulo 4) or fields
of characteristic 0. In particular, the sum and prod rules on polynomials with coefficients
in Z/4Z are not strongly sound. This seems to be related to the presence of 0-divisors, e.g.
2 · 2 = 0 in Z/4Z. Further investigation is needed to define a suitable version of Polynomial
Calculus for MaxSAT or MaxCSP over infinite fields or generic rings.

To illustrate the calculus wPC3 and the use of the rules from (3) and (1) we give a couple
of examples.

▶ Example 3.3. Consider the set of polynomials P = {x, −y, −x + y − 1} ⊂ F3[x, y]. The
following wPC3 derivation shows that cost(P) = 1 (we use the ≡-rule implicitly):

x − y − x + y − 1
sum

−y y − 1 − x2 + xy − x xy2 + xy
sum

−1 − y2 + y 0 − x2 + xy − x xy2 + xy
prod

1 0 − y2 + y 0 − x2 + xy − x xy2 + xy

The first sum is between x and −x + y − 1. The second sum is between −y and y − 1. The
polynomial xy2 + xy in the first sum comes from the fact that

x · (−x + y − 1) · ((−x + y − 1) − x) ≡ xy2 + xy .

The 0 in the second sum comes from the fact that (−y) · (y − 1) · ((y − 1) − (−y)) ≡ 0.
This shows that cost(P) ⩾ 1. To conclude that cost(P) = 1, it is enough to show that

the assignment x = 0, y = 0 is a zero of all polynomials of the next to last multi-set except
the polynomial −1. The last step to transform this non-zero constant polynomial into 1 may
be omitted. ⋄

▶ Example 3.4. Consider P = {x2 +1} ⊂ F3[x]. Since (x2 +1)2 = x4 +2x2 +1 ≡ 3x2 +1 ≡ 1,
the following wPC3 derivation shows that cost(P) = 1:

x2 + 1
prod

(x2 + 1) · (x2 + 1) (x2 + 1) · ((x2 + 1)2 − 1)
≡

1 0

That is, in particular, the polynomial x2+1 doesn’t have roots in F3 (as expected). Proposition
5.5 generalizes this example. ⋄

SAT 2025

8:6 An Algebraic Approach to MaxCSP

▶ Example 3.5. Consider P = {−
∏n

i=1 xi,
∏n

i=1 xi − 1} ⊂ F3[x1, . . . , xn]. Clearly, P is
unsatisfiable and a single application of the sum rule gives immediately the polynomial 1.
On the other hand, encoding the multi-valued variables xi with Boolean indicator variables
will result in polynomials with an exponential (in n) number of terms. For instance, when
we encode the value of xi as yi,0 + yi,1 − yi,−1, and we add the additional polynomial
constraints yi,0 + yi,1 + yi,−1 − 1 and y2

i,j − yi,j , the Boolean analogue of the set P becomes
{−
∏n

i=1(yi,0 + yi,1 − yi,−1),
∏n

i=1(yi,0 + yi,1 − yi,−1) − 1}.

Bonacina, Bonet and Levy in [3] proved that the rules in (2) are strongly sound. This is
just a case analysis on the values of p(α), q(α) on an assignment α and uses the fact that
p(α) + q(α) ̸= 0 if and only if (p(α) + q(α))κ−1 = 1. As a consequence, the system wPCκ is
sound.

▶ Theorem 3.6 (soundness [3]). Let P ⊆ Fκ[X] be a multi-set of polynomials. If there exists
a wPCκ derivation of s copies of the polynomial 1 from P then cost(P) ⩾ s.

A converse of Theorem 3.6 (i.e., that the calculus wPCκ is also complete) is also true, under
the additional assumption that the initial polynomials P are on Boolean 0/1-valued variables
[3].

In Section 5 (Theorem 5.1), we complete and extend the completeness result in [3]
showing a converse of Theorem 3.6 for an arbitrary κ without any additional assumption.
Therefore allowing the use of wPCκ beyond multi-sets of polynomials over Boolean variables.
As Example 3.5 shows, using Boolean or multi-valued variables might result in completely
different complexities of the problem at hand.

4 A possible application: Max-3-Coloring

A calculus for optimization on polynomials on arbitrary variables allows using direct encoding
of MaxCSPs. Moreover, the algebraic language offers the possibility to concisely encode
many natural constraints used in CSP.

One notable example is the Vertex Coloring Problem (VCP), which we analyze in detail
in this section. Given an undirected graph G = (V, E), the Vertex Coloring Problem (VCP)
is the problem of finding a labeling of the vertices of G such that no vertices along an edge
share the same label. Deciding if a given graph is 3-colorable, i.e. colorable with a set of 3
labels, is one of the classical NP-complete problems.

Max-3-Coloring, the problem of maximizing the number of edges that connect 3-colored
vertexes with distinct labels, is a more difficult problem. Max-2-Coloring is exactly MaxCUT,
which is NP-complete, whereas 2-Coloring is in P.

To show that a given graph G is not say 3-colorable we can associate to the VCP on G a
CNF formula which is satisfiable iff G is 3-colorable. Alternatively, we can associate the VCP
on G to a set of polynomials with a common solution iff G is 3-colorable. To encode the VCP
algebraically, we need to express restrictions of the form x ≠ y. There are several ways of
doing this. Using polynomials with coefficients in F3, it can be encoded as x2 + xy + y2 − 1.
This polynomial evaluates to zero when x ̸= y.

This immediately generalizes to expressing the nogood ⟨v1, . . . , vℓ⟩ for variables ⟨x1, . . . , xℓ⟩,
i.e. the fact that at least for one index i, xi ̸= vi. This can be done using the polynomial∏ℓ

i=1(x2
i + vi xi + v2

i − 1) which evaluates to zero exactly when there is an index i such that
xi ̸= vi.

Alternatively, for instance, the constraint x ≠ y for 3-coloring can be encoded using
Fourier variables in F4 as {x3 − 1, y3 − 1, x2 + xy + y2 − 1}, where the first two polynomials

I. Bonacina, J. Levy 8:7

pxy pxt pyt pyz pxz pzt

sum sum sum

s′
1 o′

1,1 o′
1,2 s′

2 o′
2,1 o′

2,2 s′
3 o′

3,1 o′
3,2

sum

o′
4,1s′

4 o′
4,2

sum

o′
5,1s′

5 o′
5,2

sum

o′
6,1s′

6 o′
6,2

sum

o′
7,1s′

7 o′
7,2

s′
1 = pxy + pxt

s′
2 = pyt + pyz

s′
3 = pxz + pzt

s′
4 = s′

1 + s′
2

o′
4,2 = s′

1s′
2(s′

1 − s′
2)

s′
5 = s′

4 + s′
3

o′
5,2 = s′

4s′
3(s′

4 − s′
3)

s′
6 = s′

5 + o′
4,2

s′
7 = s′

6 + o′
5,2

Figure 1 A proof of the non-3-colorability of K4.

are hard constraints and the third one is a soft constraint. Both the encoding in F3 and
the encoding in F4 with Fourier variables generalize easily to ℓ-coloring. In this work, for
simplicity, we only consider the encoding with variables in F3.

▶ Definition 4.1 (VC3(G)). Given an undirected graph G = (V, E), consider one variable
xv, for each v ∈ V , and the set of polynomials VC3(G) ⊂ F3[{xv : v ∈ V }] given by

VC3(G) = {x2
v + xvxw + x2

w − 1 : {v, w} ∈ E} .

▶ Proposition 4.2. The polynomials in VC3(G) have a common zero iff G is 3-colorable.
Moreover, cost(VC3(G)) equals the minimum number of edges connecting two vertexes with
the same color in an optimal coloring.

Proof. It is immediate to see that x2
v + xvxw + x2

w − 1 = 0 if and only if xv ̸= xw. This
could be done either by analyzing all cases or, alternatively, noticing that if xv ̸= xw, then

0 = xv − xw

xv − xw
−1 = x3

v − x3
w

xv − xw
−1 = x2

v + xvxw + x2
w − 1 .

If xv = xw, then x2
v + xvxw + x2

w − 1 = 3x2
v − 1 = −1 . ◀

In the following, as an example, we consider the 3-colorability of the complete graph
G = K4, i.e., the graph with 4 vertexes x, y, z, t, and 6 edges connecting all pairs of vertexes.
For v, w ∈ {x, y, z, t}, let pvw = v2 + v w + w2 − 1, that is

VC3(K4) = {pxy, pxz, pxt, pyz, pyt, pzt} . (4)

In all optimal 3-colorings of K4, one edge connects two vertexes with the same color, i.e.
we must have that cost(VC3(K4)) = 1.

In Fig. 1 we show a wPC3 derivation certifying that cost(VC3(K4)) ⩾ 1. An alternative
derivation is in Fig. 2.

SAT 2025

8:8 An Algebraic Approach to MaxCSP

Every time that a polynomial is used in one inference, it is removed and cannot be used
in other inferences. Therefore, every polynomial has a unique outgoing arrow.

In the wPC3 derivation in Fig. 1, we obtain the polynomial s′
7 which is

s′
7 = s′

1 + s′
2 + s′

3 + o′
4,2 + o′

5,2

= x2y2 − x2yz − xy2z − xyz2 + y2z2 − x2yt − xy2t

+ x2zt − y2zt + xz2t − yz2t − xyt2 + y2t2 + xzt2

− yzt2 + x2 + xy + xz + yz + z2 + xt + yt

+ zt + t2 + 1 .

To complete the proof and certify that cost(VC3(K4)) ⩾ 1, we need to prove that s′
7 has no

roots. This can be proved efficiently in wPC3 following the general structure of the wPC3
derivation in Proposition 5.5.

To prove that cost(VC3(K4)) = 1, we need to show that there exists an assignment that
simultaneously evaluates to zero all the other polynomials. Obviously, this is not trivial.

An alternative wPC3 derivation for the set of polynomials in (4) is in Fig. 2. In this case,
we obtain the polynomial s5, which directly proves cost(VC3(K4)) ⩾ 1 since s5 ≡ −1. In this
second proof, we use the Rx (p) operator defined in (5) and the saturation strategy from the
completeness theorem.

pxy pxz pxt pyz pyt pzt

sum sum

s1 o1,1 o1,2 s2 o2,1 o2,2

sum

s3 o3,1 o3,2

prod

t1 r1

sum

s4 o4,1 o4,2

prod

t2 r2

sum

s5 o5,1 o5,2

s1 = pxy + pxz

s2 = pyz + pyt

s3 = s1 + pxt

t1 = s2
3 · Rx (s3)

s4 = t1 + s2

t2 = s2
4 · Ry (s4)

s5 = t2 + pzt

Figure 2 Alternative proof of the non-3-colorability of K4.

In the following section, we prove a completeness result ensuring that, instead of just an
unsolvable polynomial, we can get cost(VC3(Kn)) copies of the polynomial 1 and a set of
simultaneously solvable polynomials.

5 Completeness

In this section, we prove the converse of Theorem 3.6.

I. Bonacina, J. Levy 8:9

▶ Theorem 5.1 (completeness). Let P ⊂ Fκ[X] be a multi-set of polynomials. If cost(P) = s,
then there exists a wPCκ derivation of a multi-set containing s copies of the polynomial 1
from P .

The proof of Theorem 5.1 follows the structure of [3, Theorem 4.1] which was ultimately
inspired by [5]. Informally, the argument goes by the following algorithmic procedure. Take
an ordering on the variables X = {x1, . . . , xn}, then on the polynomials depending on x1 try
to infer as many non-trivial polynomials without x1 as possible using the sum and prod
rules. This would be, intuitively, the notion of saturation (Definition 5.6). Then repeat the
process one variable at a time. At the end of the process, we will have obtained s-many copies
of the polynomial 1 together with several other polynomials. The process will have preserved
the cost along the way, while the remaining polynomials are satisfiable, by the structural
properties of the saturation. To make this very high-level structure of the argument formal,
first, we need to formalize the notion of when a polynomial depends on a variable x.

▶ Definition 5.2 (dependence). A polynomial p ∈ Fκ[X] does not depend on a variable
x ∈ X if there exists a polynomial q ∈ Fκ[X] not containing x such that p ≡ q.

For instance, the polynomial x3 −x−1 ∈ F3[x] does not depend on x, since x3 −x−1 ≡ −1
over F3.

The following proposition gives an equivalent characterization for when a polynomial
does not depend on a variable.

For p ∈ Fκ[X], we use the notation px7→a, where x ∈ X, to denote the polynomial p where
each occurrence of x has been substituted with a ∈ Fκ, and we use the notation

Rx (p) =
∏

a∈Fκ

px7→a .

In particular, for p ∈ F3[X] and x ∈ X,

Rx (p) = px7→0 · px7→1 · px7→−1 . (5)

▶ Proposition 5.3. Let p ∈ Fκ[X] be a polynomial and x ∈ X a variable. Then the following
are equivalent
1. p does not depend on x,
2. p ≡ Rx (p).

Proof. Clearly item 2 implies item 1, since p is equivalent to the polynomial Rx (p) that
does not contain x.

Conversely, if p does not depend on x, then there exists q not containing the variable x

such that p ≡ q. Then, restricting by x 7→ a for all a ∈ Fκ, we get px7→a ≡ qx7→a ≡ q. Which
gives p ≡ px7→a for each a ∈ Fκ. Hence

Rx (p) =
∏

a∈Fκ

px7→a ≡ pκ ≡ p . ◀

The polynomials Rx (p) play a central role in our argument for Theorem 5.1. In particular,
it is possible to derive Rx (p) from p using the rules of wPC3.

▶ Lemma 5.4. From any polynomial p ∈ Fκ[X], it is possible to derive Rx (p) using prod
and the equivalence rule.

SAT 2025

8:10 An Algebraic Approach to MaxCSP

Proof. The derivation is the following:

p
prod

pκ−1 · Rx (p) p
(
(pκ−2 · Rx (p))κ−1 − 1

)
≡

Rx (p) p
(
(pκ−2 · Rx (p))κ−1 − 1

) (6)

In the last equivalence, we used the fact that pκ−1 · Rx (p) ≡ Rx (p). To see this, we just
need to show that for every assignment α : X → Fκ,

pκ−1(α) · Rx (p) (α) ≡ Rx (p) (α) . (7)

Let b = α(x). Then, the equivalence in (7) follows from the following equalities:

pκ−1(α) · Rx (p) (α) = pκ−1(α) ·
∏

a∈Fκ

px7→a(α)

= pκ(α) ·
∏

a∈Fκ\{b}

px7→a(α)

≡ p(α) ·
∏

a∈Fκ\{b}

px7→a(α)

= Rx (p) (α) . ◀

Towards proving Theorem 5.1, first consider a generalization of Example 3.4.

▶ Proposition 5.5. If p ∈ Fκ[X] is a polynomial that never vanishes, i.e. cost({p}) = 1,
then there is a wPCκ derivation of 1 from {p}.

Proof. Let the variables in X be x1, . . . , xn. A possible derivation is to consider p0 = p and,
for each i = 0,. . ., n−1, consider

pi+1 = Rxi+1 (pi) . (8)

By induction on i, we prove that pi never vanishes and pi does not depend on x1, . . . , xi. By
assumption, this holds for i = 0. Suppose then pi never vanishes and pi does not depend on
x1, . . . , xi. We have two cases.

If pi does not depend on xi+1, then, by Proposition 5.3, pi+1 ≡ pi and the inductive
hypothesis is implied.

If pi does depend on xi+1, then pi+1, by construction does not depend on xi+1. We
need to show that pi+1 never vanishes. Suppose towards a contradiction it vanishes in α.
Evaluating (8) in α we get:

0 = pi+1(α) = Rxi+1 (pi) (α) =
∏

a∈Fκ

pi,xi+1 7→a(α) =
∏

a∈Fκ

pi(αa)

where αa is the assignment α modified such that xi+1 7→ a. A contradiction immediately
arises from the fact that pi never vanishes, while the previous chain of equalities implies that
pi(αa) = 0 for some a ∈ Fκ.

The sequence of polynomials p0, . . . , pn gives a backbone of a wPCκ derivation: indeed,
by Lemma 5.4, each pi is derivable from pi−1 and pn is equivalent to 1. ◀

The argument in Proposition 5.5, give rise to the notion of saturated set of polynomials,
and the extension of the previous argument to saturated sets is Lemma 5.9, the main lemma
needed to prove Theorem 5.1.

I. Bonacina, J. Levy 8:11

▶ Definition 5.6 (x-saturated). A set of polynomials S ⊆ Fκ[X] is x-saturated if for all
ℓ-tuple p1, . . . , pℓ ∈ S depending on x and for all ℓ-tuple a1, . . . , aℓ ∈ Fκ,

Rx

(
ℓ∑

i=1
aipi

)
≡ 0 .

Some combinations of polynomials in the definition above are trivially zero or are
redundant. For instance, Rx (p) ≡ 0 if and only if Rx (−p) ≡ 0.

The notion of x-saturated set of polynomials (Definition 5.6) is more general than what
is actually needed to prove Lemma 5.9 and therefore Theorem 5.1. It is enough to check that

Rx (p1) ≡ 0
Rx (ωp1 + p2) ≡ 0

Rx (ωp1 + ωp2 + p3) ≡ 0
...

Rx (ωp1 + · · · + ωpκ−2 + pκ−1) ≡ 0
Rx (p1 + · · · + pκ) ≡ 0

for every ω ∈ Fκ \ {0} and polynomials pj ∈ Fκ[X] depending on x.
First, we show that for any set of polynomials P ⊂ Fκ[X] it is possible to derive in wPCκ

an x-saturated set S.

▶ Lemma 5.7. For polynomials p1, . . . , pℓ ∈ Fκ[X], coefficients a1, . . . , aℓ ∈ Fκ and x ∈ X,
there is a wPCκ derivation from P of a multi-set containing Rx

(∑ℓ
i=1 aipi

)
.

Proof. To derive in wPCκ the polynomial Rx

(∑ℓ
i=1 aipi

)
we first use the prod and sum

rules to derive
∑ℓ

i=1 aipi and then apply the construction in Lemma 5.4 to
∑ℓ

i=1 aipi deriving
Rx

(∑ℓ
i=1 aipi

)
. ◀

▶ Lemma 5.8. For any multi-set of polynomials P ⊆ Fκ[X] and x ∈ X, there is a derivation
from P in wPCκ of an x-saturated multi-set of polynomials S.

The proof of this lemma is similar to analoguos lemmas in [5, 3].

Proof. We start from P and whenever we have polynomials p1, . . . , pℓ ∈ P depending on
x and coefficients a1, . . . , aℓ ∈ Fκ such that Rx

(∑ℓ
i=1 aipi

)
̸≡ 0 we apply the construction

from Lemma 5.7 and get a new multi-set of polynomials P ′ with the property that for
every α, cost(P, α) = cost(P ′, α) but in P ′ we have at least one more polynomial q without
x and q ̸≡ 0. This polynomial q is Rx

(∑ℓ
i=1 aipi

)
. For a set of polynomials Q, let

σ(Q) =
∑

α cost(Qx, α) , where Qx is the multi-set of polynomials in Q depending on x. It
is always the case that σ(Q) ⩾ 0.

From the fact that q ̸≡ 0, that is σ({q}) > 0, and the fact that wPCκ rules preserve the
cost, we obtain that σ(P ′) < σ(P). We exhaustively apply this construction and in at most
σ(P) many steps we must reach a set of polynomials S which is x-saturated. ◀

The main property of saturated sets of polynomials is that they behave very nicely w.r.t.
assignments. The following is the main technical lemma of the article.

SAT 2025

8:12 An Algebraic Approach to MaxCSP

▶ Lemma 5.9. If S ⊂ Fκ[X] is an x-saturated multi-set of polynomials, then every assignment
α : X → Fκ can be modified in x to an assignment satisfying all the polynomials in S

depending on x.

Proof. Suppose towards a contradiction, there is an assignment α and polynomials fb for
b ∈ Fκ in S depending on x such that fb(αb) ̸= 0 for every b ∈ Fκ, where αb is the assignment
mapping x to b and every other value as in α. For shortness let fb,j = fb(αj), that is, in
particular fb,b ≠ 0. We just need to prove that for each b ≠ b′, fb,b′ = 0. This will imply a
contradiction in the following way: Since S is saturated,

Rx

(∑
b∈Fκ

fb

)
=
∏

j∈Fκ

(
∑
b∈Fκ

fb)x7→j ≡ 0 ,

and applying α we get

0 (⋆)= Rx

(∑
b∈Fκ

fb

)
(α) =

∏
j∈Fκ

(
∑
b∈Fκ

fb,j) (⋆⋆)=
∏

j∈Fκ

fj,j ̸= 0 ,

since fj,j ≠ 0 for any j ∈ Fκ. The equality (⋆) holds since S is saturated and applying α,
while the equality (⋆⋆) holds if we manage to prove fb,j = 0 for any j ≠ b. The rest of the
argument is to prove that for each b ≠ b′, fb,b′ = 0. This will be a consequence of S being
x-saturated. We consider all the polynomials of the form ωfb1 + ωfb2 + · · · + ωfbt−1 + fbt

,
for 1 ⩽ t < κ and ω ∈ Fκ \ {0}, and proceed by induction on t.

For t = 1, since the saturation process stopped in S we must have that, for every b ∈ Fκ,

Rx (fb) =
∏

j∈Fκ

(fb)x7→j ≡ 0 ,

and, since (fb)x7→j(α) = fb(αj) =: fb,j , we get

∏
j∈Fκ

fb,j = 0 . (9)

In turn, this implies

∏
j∈Fκ\{b}

fb,j = 0 , (10)

since by assumption fb,b ̸= 0.

For t = 2, again, since S is saturated, for any b, b′ distinct elements of Fκ and any ω ∈ Fκ,∏
j∈Fκ

(ωfb + fb′)x→j ≡ 0.

I. Bonacina, J. Levy 8:13

Evaluating in α we get

0 =
∏

j∈Fκ

(ωfb + fb′)x7→j(α)

=
∏

j∈Fκ

(ωfb(αj) + fb′(αj))

=
∏

j∈Fκ

(ωfb,j + fb′,j)

=
∑

S⊆Fκ

ω|S|
∏
j∈S

fb,j

∏
j /∈S

fb′,j

=
κ∑

ℓ=0
ωℓ

∑
S⊆(Fκ

ℓ)

∏
j∈S

fb,j

∏
j /∈S

fb′,j

(⋆)=
κ−1∑
ℓ=1

ωℓ
∑

S⊆(Fκ
ℓ)

∏
j∈S

fb,j

∏
j /∈S

fb′,j ,

where with
(Fκ

ℓ

)
we denoted the set of all subsets of Fκ of size ℓ. The equality in (⋆) is due

to (9).
Let Aℓ =

∑
S⊆(Fκ

ℓ)
∏

j∈S fb,j

∏
j /∈S fb′,j . By the previous equality, we get that


ω1 ω2

1 · · · ωκ−1
1

ω2 ω2
2 · · · ωκ−1

2
...

...
. . .

...
ωκ−1 ω2

κ−1 · · · ωκ−1
κ−1

 ·


A1
A2
...

Aκ−1

 =


0
0
...
0


where Fκ \ {0} = {ω1, . . . , ωκ−1}. The Vandermonde matrix above is invertible, therefore
the unique solution is Aℓ = 0 for every ℓ ∈ {1, . . . , κ − 1}.

For any 3 ⩽ t ⩽ κ − 1, in a similar way, starting from∏
j∈Fκ

(ωfb1 + ωfb2 + · · · + ωfbt−1 + fbt)x→j ≡ 0

we obtain that for every ℓ ∈ {1, κ − 1}

∑
S1,...,St

disjoint decomposition of Fκ

|S1|+···+|St−1|=ℓ

t∏
m=1

∏
j∈Sm

fbm,j = 0 , (11)

where S1, . . . , St being a disjoint decomposition of Fκ means that
⋃t

i=1 Si = Fκ and the Sis
are disjoint, but possibly empty. Since the equality (11) holds for every t and ℓ then, by
induction, we also have that the equality in (11) holds for non-empty S1, . . . , St, that is we
have

∑
S1,...,St

partition of Fκ

|S1|+···+|St−1|=ℓ

t∏
m=1

∏
j∈Sm

fbm,j = 0 , (12)

SAT 2025

8:14 An Algebraic Approach to MaxCSP

For t = 2 and ℓ = 1 this means

0 =
∑

S⊆(Fκ
1)

∏
j∈S

fb′,j

∏
j /∈S

fb,j

=
∑
r∈Fκ

fb′,r

∏
j∈Fκ\{r}

fb,j

(due to (10))=
∑

r∈Fκ\{b}

fb′,r

∏
j∈Fκ\{r}

fb,j

= fb,b

∑
r∈Fκ\{b}

fb′,r

∏
j∈Fκ\{r,b}

fb,j .

Multiplying by
∏

j∈Fκ\{b,b′} fb,j and using (10) we get 0 = fb,bfb′,b′
∏

j∈Fκ\{b,b′} f2
b,j , which

implies∏
j∈Fκ\{b,b′}

fb,j = 0 . (13)

For t = 3 the product in (13) is a single term fb,j = 0 for j ≠ b arbitrary, hence
concluding the argument. For an arbitrary t, we use an inductive argument with t = ℓ + 1
and ℓ = 1, . . . , κ − 2. For simplicity we show how to go from ℓ = 1, t = 2 to ℓ = 2, t = 3. We
have the following

0 =
∑

S1,S2,S3
partition of Fκ

|S1|+|S2|=2

3∏
m=1

∏
j∈Sm

fbm,j

=
∑

ℓ1,ℓ2∈Fκ

ℓ1 ̸=ℓ2

fb1,ℓ1fb2,ℓ2

∏
j∈Fκ\{ℓ1,ℓ2}

fb3,j

(due to (13))=
∑

ℓ1,ℓ2∈Fκ\{b3}
ℓ1 ̸=ℓ2

fb1,ℓ1fb2,ℓ2

∏
j∈Fκ\{ℓ1,ℓ2}

fb3,j

= fb3,b3

∑
ℓ1,ℓ2∈Fκ\{b3}

ℓ1 ̸=ℓ2

fb1,ℓ1fb2,ℓ2

∏
j∈Fκ\{ℓ1,ℓ2,b3}

fb3,j .

Multiplying by
∏

j∈Fκ\{b1,b2,b3} fb3,j and using (13) we get

0 = fb1,b1fb2,b2fb3,b3

∏
j∈Fκ\{b1,b2,b3}

f2
b3,j ,

which implies∏
j∈Fκ\{b1,b2,b3}

fb3,j = 0 . (14)

Repeating this argument inductively, when t = κ − 1 and ℓ = κ − 2, we get that the analogue
of the product in (14) becomes a single term fbt,j = 0 for j ≠ bt. This concludes the argument
for an arbitrary κ. ◀

▶ Remark 5.10. The argument for Lemma 5.9 also adapts to sets of polynomials with
coefficients in Fκ if they are forced to take non-zero values, i.e. we consider the sets of
polynomials containing xκ−1 − 1 for each variable x as hard constraints.

I. Bonacina, J. Levy 8:15

Using Lemma 5.8 and Lemma 5.9 it is then immediate to prove Theorem 5.1 using
an inductive argument. This is very similar to the argument in [5, Theorem 10] and [3,
Lemma 4.5].

Proof of Theorem 5.1. Choose some ordering on the set of variables X = {x1, . . . , xn}.
From the initial set of polynomial P using Lemma 5.8 derive using the wPCκ rules a multi-set
P1 x1-saturated. Let R1 be the part of P1 not depending on x1 and S1 be the part of P1
depending on x1. The next step is to saturate R1 w.r.t. x2 to get a P2. As before let S2
and R2 be the sets of polynomials in P2 depending on x2 and not depening on x2 (resp.).
Repeat the process on R2 saturating it w.r.t. x3. In an inductive fashion keep doing this on
all the variables one by one. Notice that that Si depends on xi but it does not depend on
x1, ..., xi−1.

At the end of the process, we get s-many constant and non-zero polynomials together
with the set of polynomials S1 ∪ S2 ∪ · · · ∪ Sn. With some trivial application of the prod
rule, we can assume that we have s-many copies of the polynomial 1.

To conclude the argument, since the cost is always preserved along the process, it is
enough to show that the remaining polynomials are satisfiable. Informally, this holds because
the saturated sets we produce are over fewer and fewer variables and therefore we can use
Lemma 5.9 inductively on the saturated sets we produced from the last to the first one.
Starting from any assignment, by Lemma 5.9 we can modify it in xn to satisfy Sn. In general,
given an assignment αi satisfying Si, by Lemma 5.9, we can modify it in the variable xi−1
obtaining an assignment αi−1 satisfying Si−1. Since all the Sj for j ⩾ i do not depend on
xi−1 the assignment αi−1 continues to satisfy Si ∪ · · · ∪ Sn. ◀

The argument for Theorem 5.1 gives a saturation-based proof-construction strategy.
Lemma 5.8 gives a possible way to obtain a saturated set, but any other heuristics to obtain
a saturated set would be equally good. We exemplify the saturation strategy in Section 6.

▶ Remark 5.11 (On the completeness). To prove Theorem 5.1 we used very little of the actual
form of the sum and prod rules. We indeed only used the fact that there are strongly sound
inference rules that given as premise a polynomial p allow to infer p q (together with other
polynomials), for an arbitrary q, and that given as premises p and q allow to infer p + q

(together with other polynomials). In other words, Theorem 5.1 will hold for any set of
strongly sound rules satisfying the properties above.

6 Another example: Flow in graphs

We exemplify the effectiveness of the saturation process on a simple constraint satisfaction
problem. Given a connected graph G = (V, E), an order on its vertices, and a function
b : V → Z, find a flow for every edge such that b(v) is the sum of the flows of all adjacent
edges, i.e. find an assignment f : E → Z such that for all v ∈ V

b(v) =
∑

u∈N(v)
u<v

f({u, v}) −
∑

u∈N(v)
u>v

f({u, v}) . (15)

The problem can be solved using linear programming and it has a solution if and only if∑
v∈V b(v) = 0. However, we are interested in possible refutations when the problem has no

solution. In this case, we can pick any prime κ not dividing
∑

v∈V b(v) and refute the set of

SAT 2025

8:16 An Algebraic Approach to MaxCSP

eq. (15) modulo κ, that is show that the set of polynomials, for v ∈ V ,∑
u∈N(v)

u<v

xu,v −
∑

u∈N(v)
u>v

xv,u − (b(v) mod κ) (16)

has no solution in Fκ. We show how the saturation process in wPCκ, independently of the
order we decide to saturate variables, always easily gives a short refutation of (16).

At the beginning choose arbitrarily a variable to saturate, let it be xu,v. There are only
two polynomials in (16) depending on xu,v, one with positive coefficient 1, one with negative
coefficient −1. It is easy to see (see Lemma 6.1 below), that to saturate w.r.t. xu,v, the
only option is to apply the sum rule to the two (linear) polynomials containing xu,v, and
the obtained set is saturated for xu,v. In this set, there is only one polynomial without
xu,v which is linear. We keep saturating for all the variables one by one. It is easy to see
that at any given moment the set to saturate w.r.t. the current variable x only has linear
polynomials and only two of them depending on x, in one x appears with coefficient 1, in the
other with coefficient −1. Again it is easy to see that the only option to saturate w.r.t. x is
to apply the sum rule to the two linear polynomials depending on x and the obtained set is
saturated. Repeating this process for all variables gives the refutation. Since G is connected
this will also show that the set of polynomials in (16) is minimally unsatisfiable.

▶ Lemma 6.1. Let p = ℓq be a polynomial in Fκ[X] with ℓ a linear polynomial depending on
a variable x. Then Rx (p) ≡ 0.

Proof. The polynomial p has the form p = (cx+ℓ′)q with ℓ′ linear not containing the variable
x and c ≠ 0. We have that Rx (p) =

∏
j∈Fκ

(cj + ℓ′|x→j)q|x→j . To show that Rx (p) ≡ 0 it is
enough to show that for every assignment α : X → Fκ, Rx (p) (α) = 0:

Rx (p) (α) =
∏

j∈Fκ

(cj + ℓ′|x→j(α))q|x→j(α) =
∏

j∈Fκ

(cj + ℓ′(α))q|x→j(α)

which is set to 0 by the factor corresponding to j = − ℓ′(α)
c . ◀

7 Conclusions

We described a calculus for MaxCSP based on polynomials and variables ranging over finite
fields Fκ. This provided a theoretical ground for further investigations of the efficiency of
algebraic methods in the context of MaxCSPs.

The calculus is proved complete, and from this proof, we derived a saturation-based
proof-construction strategy. We exemplified the constructions on a coloring principle, the
Max-3-Coloring Problem and on a Flow principle.

References
1 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with

many restarts and bounded-width resolution. Journal of Artificial Intelligence Research,
40:353–373, 2011. doi:10.1613/JAIR.3152.

2 Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy. Polynomial calculus for MaxSAT. In
Proceedings of the 26th International Conference on Theory and Applications of Satisfiability
Testing (SAT), 2023. doi:10.4230/LIPIcs.SAT.2023.5.

3 Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy. Polynomial calculus for optimization.
Artificial Intelligence, 337:104208, 2024. A preliminary version of this work appeared as [2].
doi:10.1016/j.artint.2024.104208.

https://doi.org/10.1613/JAIR.3152
https://doi.org/10.4230/LIPIcs.SAT.2023.5
https://doi.org/10.1016/j.artint.2024.104208

I. Bonacina, J. Levy 8:17

4 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. A complete calculus for Max-SAT. In
Proceedings of the 9th International Conference on Theory and Applications of Satisfiability
Testing, (SAT), volume 4121 of LNCS, pages 240–251. Springer, 2006. doi:10.1007/11814948_
24.

5 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial
Intelligence, 171(8-9):606–618, 2007. doi:10.1016/j.artint.2007.03.001.

6 Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Groebner-basis
computations with Boolean polynomials. Journal of Symbolic Computation, 44(9):1326–1345,
2009. Effective Methods in Algebraic Geometry. doi:10.1016/j.jsc.2008.02.017.

7 B. Buchberger. A theoretical basis for the reduction of polynomials to canonical forms. ACM
SIGSAM Bulletin, 10(3):19–29, aug 1976. doi:10.1145/1088216.1088219.

8 Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System
Sciences, 62(2):267 – 289, 2001. doi:10.1006/JCSS.2000.1726.

9 Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the
Theory of Computing (STOC), pages 174–183, 1996. doi:10.1145/237814.237860.

10 Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Computing infeasibility
certificates for combinatorial problems through Hilbert’s Nullstellensatz. Journal of Symbolic
Computation, 46(11):1260–1283, 2011. doi:10.1016/J.JSC.2011.08.007.

11 Jesús A De Loera, Susan Margulies, Michael Pernpeintner, Eric Riedl, David Rolnick, Gwen
Spencer, Despina Stasi, and Jon Swenson. Graph-coloring ideals: Nullstellensatz certificates,
Gröbner bases for chordal graphs, and hardness of Gröbner bases. In Proceedings of the 2015
ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC), pages
133–140, 2015. doi:10.1145/2755996.2756639.

12 Jean Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction
to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation (ISSAC), pages 75–83, 2002. doi:10.1145/780506.780516.

13 Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström. Adding dual variables
to algebraic reasoning for gate-level multiplier verification. In Proceedings of the 25th Design,
Automation and Test in Europe Conference (DATE), pages 1431–1436, 2022. doi:10.23919/
DATE54114.2022.9774587.

14 Daniela Kaufmann and Armin Biere. Nullstellensatz-proofs for multiplier verification. In
Proceedings of the 22nd International Workshop on Computer Algebra in Scientific Computing
(CASC), pages 368–389, 2020. doi:10.1007/978-3-030-60026-6_21.

15 Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combining
SAT and computer algebra. In Proceedings of the 19th Conference on Formal Methods in
Computer Aided Design (FMCAD), pages 28–36, 2019. doi:10.23919/FMCAD.2019.8894250.

16 Daniela Kaufmann, Armin Biere, and Manuel Kauers. From DRUP to PAC and back. In
Proceedigns of the 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 654–657, 2020. doi:10.23919/DATE48585.2020.9116276.

17 Javier Larrosa and Federico Heras. Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In Proceedings of the 19th International Joint Conference on Artificial In-
telligence (IJCAI), pages 193–198, 2005. URL: http://ijcai.org/Proceedings/05/Papers/
0360.pdf.

18 Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn. Expressing combinatorial
problems by systems of polynomial equations and Hilbert’s Nullstellensatz. Combinatorics,
Probability and Computing, 18(4):551–582, 2009. doi:10.1017/S0963548309009894.

19 Sasank Mouli. Polynomial calculus sizes over the Boolean and Fourier bases are incomparable.
In Proceedings of the 65th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 790–796, 2024. doi:10.1109/FOCS61266.2024.00055.

SAT 2025

https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/11814948_24
https://doi.org/10.1016/j.artint.2007.03.001
https://doi.org/10.1016/j.jsc.2008.02.017
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1006/JCSS.2000.1726
https://doi.org/10.1145/237814.237860
https://doi.org/10.1016/J.JSC.2011.08.007
https://doi.org/10.1145/2755996.2756639
https://doi.org/10.1145/780506.780516
https://doi.org/10.23919/DATE54114.2022.9774587
https://doi.org/10.23919/DATE54114.2022.9774587
https://doi.org/10.1007/978-3-030-60026-6_21
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.23919/DATE48585.2020.9116276
http://ijcai.org/Proceedings/05/Papers/0360.pdf
http://ijcai.org/Proceedings/05/Papers/0360.pdf
https://doi.org/10.1017/S0963548309009894
https://doi.org/10.1109/FOCS61266.2024.00055

8:18 An Algebraic Approach to MaxCSP

20 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence, 175(2):512–525, 2011. doi:10.1016/j.artint.2010.
10.002.

21 Toby Walsh. SAT v CSP. In Proceedings of the 6th International Conference on Principles
and Practice of Constraint Programming (CP), volume 1894, pages 441–456, 2000. doi:
10.1007/3-540-45349-0_32.

https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/3-540-45349-0_32
https://doi.org/10.1007/3-540-45349-0_32

	1 Introduction
	2 Preliminaries
	3 Polynomial Calculus for MaxSAT
	4 A possible application: Max-3-Coloring
	5 Completeness
	6 Another example: Flow in graphs
	7 Conclusions

