An Algebraic Approach to MaxCSP


Ilario Bonacina
UPC Barcelona Tech

Jordi Levy
IIIA-CSIC

Aug 15, 2025
SAT’25, Glasgow, UK

Polynomial Calculus for MaxSAT/MaxCSP over multivalued domains:
a proof-construction strategy.

MaxSAT/MaxCSP on polynomials

Input: a set of polynomials \(P=\{p_1,\dots,p_m\}\subseteq \mathbb F[\vec x]\)

Goal: find the maximum # of \(p_i\)s with a common zero in \(\mathbb F\)
(equivalently: find the minimum # \(k_P\) of \(p_i\) not set to zero)

Toy example 1

\(P=\{\ 1+x,\qquad y,\qquad -x-y,\qquad x^2+1\ \}\)

\(P\subset \mathbb Q[x,y]\)
\(k_P=\ ?\)

\(P\subset \mathbb F_3[x,y]\)
\(k_P=\ ?\)

\(P\subset \mathbb F_4[x,y]\)
\(k_P=\ ?\)

Answers: 2, 2, 1

This talk:
an algebraic system (/algorithm) to certify the correctness of \(k_P\) but only for finite fields

What can we encode nicely?

  • (Max)SAT instances can be encoded as sets of polynomials:

    \(x\lor y\lor \lnot z\) \(\to \{\) \(\bar x \bar yz\)\(,\ x^2-x,\ y^2-y,\ z^2-z, 1-x-\bar x,1-y-\bar y, 1-z-\bar z\ \}\)

  • Some problems have natural non-Boolean encodings



3-COLORING
\(G=(V,E)\) is 3-colorable

\(\Updownarrow\)

\(VC(G)=\{x_v^2+x_vx_w+x_w^2-1 \mid (v,w)\in E\}\subset \mathbb F_3[\vec x]\)
has a common zero.

Theorem: A set of polynomials \(P\) has no common zeros (in an algebraically closed extension)

\(\Updownarrow\)

\(1\in \langle P\rangle\)

\(\Updownarrow\)

from \(P\) using the inference rules \(\quad\displaystyle\frac{p\quad q}{p+q}\) \(\quad\displaystyle\frac{p}{pq}\quad\) we can derive \(1\)

In Polynomial Calculus \(pq\) is written explicitly as a polynomial.

Polynomial Calculus:

  • is behind Gröbner bases computations
    (used in practice e.g. for verification of multiplier circuits, coloring of graphs, …)

  • is connected with the quest for l.b.s for \(AC_0[\oplus]\)-Frege

  • is stronger than Resolution
    (with natural encoding, otherwise possibly incomparable [Mouli’24])

  • The strength (and understanding) of the system varies a lot

    • \(\{0,1\}\)-valued variables (somewhat understood)
    • \(\{+1,-1\}\)-valued (not-so understood)
    • \(\{1,2\}\)-valued (not a single size l.b.!!)
  • can be adapted to work for MaxSAT [Bonacina, Bonet, Levy SAT’23]

Theorem ([Bonacina, Bonet, Levy SAT’23]): from a multiset \(P\subset \mathbb F_2[\vec x]\) with cost \(k_P\) over Boolean assignments, using the substitution rules

\[ \displaystyle\frac{p\quad q}{p+q\quad pq\quad pq} \]

and

\[ \displaystyle\frac{p}{pq\quad p(q-1)} \]

and

\[ \displaystyle\frac{p}{q}\quad \text{if }p-q\in \langle x_1^2-x_1,\dots,x_n^2-x_n\rangle \]

we can obtain1 a multiset containing \(1\) with multiplicity \(k_P\)
(and the remaining polynomials with a common zero)

Theorem ([Bonacina, Bonet, Levy SAT’23]): from a multiset \(P\subset \mathbb F_\kappa[\vec x]\) with cost \(k_P\) over Boolean assignments, using the substitution rules

\[ \displaystyle\frac{p\quad q}{p+q\quad pq\quad p((p+q)^{\kappa-1}-1)} \]

and

\[ \displaystyle\frac{p}{pq\quad p(q^{\kappa-1}-1)} \]

and

\[ \displaystyle\frac{p}{q}\quad \text{if }p-q\in \langle x_1^2-x_1,\dots,x_n^2-x_n\rangle \]

we can obtain1 a multiset containing \(1\) with multiplicity \(k_P\)
(and the remaining polynomials with a common zero)

Theorem (this work): from a multiset \(P\subset \mathbb F_\kappa[\vec x]\) with cost \(k_P\) over assignments in \(\mathbb F_\kappa\), using the substitution rules

\[ \displaystyle\frac{p\quad q}{p+q\quad pq\quad p((p+q)^{\kappa-1}-1)} \]

and

\[ \displaystyle\frac{p}{pq\quad p(q^{\kappa-1}-1)} \]

and \[ \displaystyle\frac{p}{q}\quad \text{if }p-q\in \langle x_1^\kappa-x_1,\dots,x_n^\kappa-x_n\rangle \]

we can obtain1 a multiset containing \(1\) with multiplicity \(k_P\)
(and the remaining polynomials with a common zero)

Toy example 1 — cont’d.
\(P\phantom{_1}=\{\ 1+x,\quad y,\quad -x-y,\quad x^2+1\ \}\) \(\subset \mathbb F_3[x,y]\)

\(\displaystyle\frac{p}{q}\quad \text{if }p-q\in \langle x_1^3-x_1,\dots,x_n^3-x_n\rangle\)

\(\displaystyle\frac{p}{pq\quad p(q^2-1)}\)

\(\displaystyle\frac{p\quad q}{p+q\quad pq\quad p((p+q)^2-1)}\)

\(P_1=\{\ 1+x,\quad y, \quad -x-y, \quad (x^2+1)^2, \quad (x^2+1)((x^2+1)^2-1)\ \}\)

\(P_2=\{\ 1+x,\quad y, \quad -x-y, \quad 1\ \}\)

\(P_3=\{\ 1+x+y,\quad (1+x)y,\quad y((1+x+y)^2-1), \quad -x-y, \quad 1\ \}\)

\(P_4=\{\ 1,\quad (1+x+y)(-x-y),\quad (1+x)y,\quad y((1+x+y)^2-1), \quad 1\ \}\)

\(k_P=2\)

Toy Example 2
A proof in the system that \(K_4\) can be \(3\)-colored violating exactly one edge constraint.

\(p_{uv}=x_u^2+x_ux_v+x_v^2-1\in \mathbb F_3[x_u,x_v]\)

Theorem (this work): from a multiset \(P\subset \mathbb F_\kappa[\vec x]\) with cost \(k_P\) over assignments in \(\mathbb F_\kappa\), using the substitution rules

\[ \displaystyle\frac{p\quad q}{p+q\quad pq\quad p((p+q)^{\kappa-1}-1)} \]

and

\[ \displaystyle\frac{p}{pq\quad p(q^{\kappa-1}-1)} \]

and \[ \displaystyle\frac{p}{q}\quad \text{if }p-q\in \langle x_1^\kappa-x_1,\dots,x_n^\kappa-x_n\rangle \]

we can obtain1 a multiset containing \(1\) with multiplicity \(k_P\)
(and the remaining polynomials with a common zero)

Proof sketch (for simplicity for \(\mathbb F_3[x_1,\dots,x_n])\):

Definition: A set of polynomials \(S\) is \(x\)-saturated if
every assignment can be modified in just \(x\) to an assignment satisfying the polynomials in \(S\) depending on \(x\).

Toy Example 3

  • Is \(\{\ 1+x,\ y,\ -x-y\ \}\) \(y\)-saturated?
  • Is \(\{1+x,xy, (x^2-1)(y-1)\}\) \(y\)-saturated?

Answers: No, Yes

Main Lemma: (Non-trivial!)
Let \(R_x(p)\)\(\stackrel{def}=p|_{x=0}\cdot p|_{x=1}\cdot p|_{x=-1}\).

If for all polynomials \(p_1,p_2,p_3\in S\) depending on \(x\) \[ \left.\begin{array}{l} R_x(p_1)\\ R_x(p_1+p_2)\\ R_x(p_1-p_2)\\ R_x(p_1+p_2+p_3)\\ R_x(p_1-p_2-p_3) \end{array}\right\} \in \langle x_1^3-x_1,\dots,x_n^3-x_n\rangle \] then \(S\) is \(x\)-saturated.

Lemma (saturation): From \(P\) it is possible to obtain efficiently in the calculus an \(x\)-saturated set of polynomials.

A proof-contruction strategy (\(\sim\) [Bonet, Levy, Manyà ’07])

  • saturate the initial polynomials \(P\) w.r.t. \(x_1\)
  • saturate the obtained polynomials non depending on \(x_1\) w.r.t. \(x_2\)
  • saturate the obtained polynomial non depending on \(x_2\) w.r.t. \(x_3\)
  • in the end:
    • \(\ell\) polynomials not depending on any variables (i.e. non-zero constants)
    • and the Main Lemma ensures the rest of polynomials are satisfiable,
      hence \(\ell=k_P\). \(\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\)🍉

Thanks!

  • Our work shows completeness of MaxCSP Polynomial Calculus on multivalued variables
  • Might be useful in cases when Gröbner bases computations are useful in practice (future work)
  • Open: MaxCSP Polynomial Calculus on char 0 fields or rings with zero-divisors

Polynomial Calculus for MaxSAT/MaxCSP over multivalued domains:
a proof-construction strategy.