Semi-Algebraic Proof Systems for QBF

Olaf Beyersdorff¹ Ilario Bonacina² **Kaspar Kasche**¹ Meena Mahajan³ Luc Spachmann¹

 1 Friedrich Schiller University Jena 2 UPC Barcelona 3 The Institute of Mathematical Sciences, Chennai

August 12, 2025

Why?

- theoretical insights and connections to complexity theory
- certifying solvers

How?

- Proof system P
- **Formula** φ , UNSAT resp. false QBF
- **P** proof π of φ in P

Resolution

 ${\sf QU\text{-}Resolution}$

Resolution	QU-Resolution
geometric (Cutting Planes)	Q-Cutting Planes

Resolution	QU-Resolution	
geometric (Cutting Planes)	Q-Cutting Planes	
logical (Frege)	Q-Frege	

Resolution	QU-Resolution	
geometric (Cutting Planes)	Q-Cutting Planes	
logical (Frege)	Q-Frege	
(semi-)algebraic	?	

Resolution	(line-based)	QU-Resolution
geometric (Cutting Planes)	(line-based)	Q-Cutting Planes
logical (Frege)	(line-based)	Q-Frege
(semi-)algebraic	(static)	?

universal reduction

$$\frac{L}{L[u=b]}(\forall \text{red}); b \in \{0,1\}, u \text{ is universal and rightmost in } L$$

turns (almost) all line-based propositional proof systems into QBF systems (Beyersdorff, Bonacina, Chew, and Jan Pich 2020).

Roadmap

- define QBF versions of semi-algebraic proof systems
- see simulations and separations between these systems
- look at techniques for *upper* and *lower bounds*

Quantified Boolean Formulas

- extension of propositional logic
- ▶ prenex form: $\exists X_1 \forall U_1 \exists X_2 \dots \forall U_d \exists X_{d+1} : \varphi$
- recursive definition of truth value:
 - \triangleright $(\forall u: Q)$ is true if both Q[u=0] and Q[u=1] are true
 - $ightharpoonup (\exists x:Q)$ is true if Q[u=0] or Q[u=1] is true
- variables can be 0 or 1

The Evaluation Game

- ▶ two players, existential (\exists) and universal (\forall)
- assign their respective variables in order according to the prefix
- universal player wins if matrix becomes false, otherwise existential player wins

On a QBF Q, the universal player has a winning strategy if and only if Q is false.

(Semi-)Algebraic proof systems for UNSAT

- ▶ to apply to CNF: convert clauses to monomials
- $ightharpoonup a \lor b \lor \overline{c}$ becomes $\overline{a} \cdot \overline{b} \cdot c$
- monomial is 0 iff clause is satisfied, positive otherwise

(Semi-)Algebraic Proof Systems for UNSAT

Proof is algebraic identity in \mathbb{Q} :

$$\sum q_{
ho}
ho \qquad \qquad +q+1=0$$

- p are input clauses or additional axioms
 - $x^2 x = 0$
 - $x + \overline{x} 1 = 0$
- $ightharpoonup q_p$ are arbitrary polynomials
- q is nonnegative on Boolean inputs
 - Nullstellensatz: q = 0
 - Sherali-Adams: q only has nonnegative coefficients
 - ► Sum Of Squares: *q* is sum of squares

(Semi-)Algebraic Proof Systems for QBF

QBF given:
$$\exists X_1 \forall U_1 \exists X_2 \dots \forall U_d \exists X_{d+1} : \varphi$$

Proof is algebraic identity in \mathbb{Q} :

$$\sum q_p p + \sum \mathbf{q_u} (\mathbf{1} - \mathbf{2u}) + q + 1 = 0$$

- p are input clauses or additional axioms
 - $x^2 x = 0$
 - $x + \overline{x} 1 = 0$
- q_p are arbitrary polynomials
- **\triangleright** polynomial q_u for every universal variable u; only in variables left of u
- q is nonnegative on Boolean inputs
 - ightharpoonup Q-Nullstellensatz: q=0
 - Q-Sherali-Adams: q only has nonnegative coefficients
 - Q-Sum Of Squares: q is sum of squares

Soundness

$$\sum q_{p}p + \sum q_{u}(1-2u) + q + 1 = 0$$

Soundness: A true QBF cannot have a valid refutation.

- ▶ true QBF ⇒ existential winning strategy S
- universal player plays randomly
- \Rightarrow random distribution on Boolean assignments; matrix is always satisfied
- consider $\mathbb{E}\left[\sum q_p p + \sum q_u (1-2u) + q + 1\right]$

Soundness

$$\sum q_p p + \sum q_u (1 - 2u) + q + 1 = 0$$

Soundness: A true QBF cannot have a valid refutation.

- ▶ true QBF \Rightarrow existential winning strategy S
- universal player plays randomly
- ⇒ random distribution on Boolean assignments; matrix is always satisfied
- consider $\mathbb{E}\left[\sum q_p p + \sum q_u (1-2u) + q + 1\right]$
 - $ightharpoonup \mathbb{E}\left[q_p p\right] = 0$ (matrix is satisfied)
 - $ightharpoonup \mathbb{E}\left[q_u(1-2u)\right]=0$ (balance between u=0 and u=1)
 - $ightharpoonup \mathbb{E}\left[q
 ight] \geq 0 \; (q \geq 0 \; \text{always})$
 - ightharpoonup $\mathbb{E}\left[1\right]=1$
 - $\Rightarrow \mathbb{E}\left[\sum q_{p}p + \sum q_{u}(1-2u) + q+1\right] \geq 1$

Size measures

$$\sum q_p p + \sum q_u (1 - 2u) + q + 1 = 0$$

Proof size

The size of a semialgebraic proof is the total number of monomials in all of its polynomials.

Size measures

$$\sum q_p p + \sum q_u (1 - 2u) + q + 1 = 0$$

Proof size

The size of a semialgebraic proof is the total number of monomials in all of its polynomials.

- hard problem for Q-SOS: take hard problem for SOS, add existential quantifiers
- ▶ looking for *genuine QBF hardness*

Proof q-size

The q-size of a semialgebraic proof is the total number of monomials in the q_u polynomials.

Simulation order

(a) propositional systems simulations w.r.t. size

(b) QBF systems simulations w.r.t. size

(c) QBF systems simulations w.r.t. qsize

Techniques

- score-based games
- strategy extraction to polynomial threshold functions
- size-degree lower bounds
- Q-pseudo-expectations

The score-based game

- ightharpoonup two players, \exists and \forall
- go over variables in prefix order
- existential variable: assigned by existential player
- universal variable u:
 - \triangleright universal player picks preference s_{ij}
 - ightharpoonup existential player picks value $u=b,\ b\in\{0,1\}$
 - universal player scores $s_u(2b-1)$ points
- lacktriangle universal player wins if matrix is falsified or final score is >0

$$\exists x_1 \forall u_1 \exists x_2 \forall u_2. (x_1 \vee u_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{u_1} \vee x_2) \wedge (\overline{x_2} \vee u_2)$$

- initial score = 0
- ▶ Player $_\exists$ sets $x_1 = 1$.

$$\exists x_1 \forall u_1 \exists x_2 \forall u_2. (x_1 \vee u_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{u_1} \vee x_2) \wedge (\overline{x_2} \vee u_2)$$

- initial score = 0
- ▶ Player_∃ sets $x_1 = 1$.
- **▶** *u*₁:
 - ▶ Player $_\forall$ picks $s_{u_1} = -3$.
 - ▶ Player $_{\exists}$ sets $u_1 = 0$.
 - ▶ Player_∀ gains score $s_{u_1}(2u_1 1) = 3$. New score: 3

$$\exists x_1 \forall u_1 \exists x_2 \forall u_2. (x_1 \vee u_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{u_1} \vee x_2) \wedge (\overline{x_2} \vee u_2)$$

- initial score = 0
- ▶ Player= sets $x_1 = 1$.
- *u*₁:
 - ▶ Player_{\forall} picks $s_{u_1} = -3$.
 - ▶ Player_∃ sets $u_1 = 0$.
 - ▶ Player_∀ gains score $s_{u_1}(2u_1 1) = 3$. New score: 3
- ▶ Player_∃ sets $x_2 = 0$.

$$\exists x_1 \forall u_1 \exists x_2 \forall u_2. (x_1 \vee u_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{u_1} \vee x_2) \wedge (\overline{x_2} \vee u_2)$$

- initial score = 0
- ▶ Player_∃ sets $x_1 = 1$.
- *u*₁:
 - ▶ Player_{\forall} picks $s_{u_1} = -3$.
 - ▶ Player_∃ sets $u_1 = 0$.
 - ▶ Player_∀ gains score $s_{u_1}(2u_1 1) = 3$. New score: 3
- ▶ Player_∃ sets $x_2 = 0$.
- ► u₂:
 - ▶ Player_{\forall} picks $s_{u_2} = 1$.
 - ▶ Player_∃ sets $u_1 = 0$.
 - ▶ Player_∀ gains score $s_{u_2}(2u_2 1) = -1$. New score: 2

$$\exists x_1 \forall u_1 \exists x_2 \forall u_2. (x_1 \vee u_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{u_1} \vee x_2) \wedge (\overline{x_2} \vee u_2)$$

- initial score = 0
- ▶ Player_∃ sets $x_1 = 1$.
- **▶** *u*₁:
 - ▶ Player $_\forall$ picks $s_{u_1} = -3$.
 - ▶ Player_∃ sets $u_1 = 0$.
 - ▶ Player_∀ gains score $s_{u_1}(2u_1 1) = 3$. New score: 3
- ▶ Player_∃ sets $x_2 = 0$.
- ► u₂:
 - ▶ Player_{\forall} picks $s_{u_2} = 1$.
 - ▶ Player_∃ sets $u_1 = 0$.
 - ▶ Player_∀ gains score $s_{u_2}(2u_2 1) = -1$. New score: 2
- $ightharpoonup \varphi$ is true, but score is positive \Rightarrow Player $_\forall$ wins

The score-based game

- universal player can win iff QBF is false (same as evaluation game)
- provides upper bounds for e.g. Majority formulas

Theorem

For a given false QBF, encode the universal winning strategies as polynomials. The minimal number of monomials in such a strategy equals the qsize of the shortest Q-SOS refutation.

Majority

Majority(n):

$$\exists x_1 \dots x_n \forall u \exists t_0 \dots t_m. \left(u \leftrightarrow \left(\sum_{i=1}^n x_i \geq \frac{n}{2} \right) \text{ encoded using } t_j \text{ variables} \right)$$

Majority

Majority(n):

$$\exists x_1 \dots x_n \forall u \exists t_0 \dots t_m . \left(u \leftrightarrow \left(\sum_{i=1}^n x_i \geq \frac{n}{2} \right) \text{ encoded using } t_j \text{ variables} \right)$$

Theorem

The Majority formulas have Q-SOS proofs of qsize O(n).

$$s_u = \sum_{i=1}^n x_i - \frac{n}{2} + \frac{1}{4}$$

- $ightharpoonup \sum x_i \geq \frac{n}{2}$, u = 0: matrix is false
- $\sum x_i \ge \frac{n}{2}$, u = 1: s_u is positive, receive positive score
- $\sum x_i < \frac{n}{2}$, u = 0: s_u is negative, receive positive score
- $ightharpoonup \sum x_i < \frac{n}{2}$, u = 1: matrix is false

Strategy extraction

Parity:

$$\exists x_1 \ldots x_n \forall u \exists t_1 \ldots t_n . (t_1 = x_1) \wedge \bigwedge_{i=2}^n (t_i = t_{i-1} \oplus x_i) \wedge (u \neq x_n)$$

Theorem

The Parity formulas require Q-SOS refutations of size $O(2^n)$.

- from a short refutation, we could extract a short polynomial threshold function computing the parity of its inputs
- we know exponential lower bounds for polynomial threshold functions

Size-degree relations

Theorem,

If a QBF in n variables has a Q-SOS refutation of qsize s, it has a refutation of existential q-degree $O(\sqrt{n \log s})$.

- ightharpoonup existential q-degree: largest number of existential variables of all the monomials in q_u
- proof: very similar to size-width in Ben-Sasson and Wigderson 2001
- linear degree lower bounds lead to exponential size lower bounds

Pseudo-expectations

- variant of lower bound technique from propositional semi-algebraic proof systems
- ightharpoonup gives lower bounds on existential q-degree (highest existential degree in q_u polynomials) of proof
- use size-degree to obtain lower bound on proof size

Pseudo-expectations

To rule out a Q-SOS proof $\sum q_p p + \sum q_u (1-2u) + q + 1 = 0$, find $\tilde{\mathbb{E}}$ such that:

- $ightharpoonup ilde{\mathbb{E}}$ is linear
- $ightharpoonup \tilde{\mathbb{E}}[1] = 1;$
- $\blacktriangleright \ \tilde{\mathbb{E}}[q+\sum q_p p] \geq 0;$
- $ightharpoonup \widetilde{\mathbb{E}}[\sum q_u(1-2u)] \geq 0.$

Proof technique: $\tilde{\mathbb{E}}$ exists for any Q-SOS proof of degree < d \Rightarrow minimal proof degree d

Conclusion

$$\sum q_p p + \sum q_u (1-2u) + q + 1 = 0$$

- natural extension of Nullstellensatz, Sherali-Adams, and Sum of Squares to QBF
- simulation order is similar to propositional case
- intuition via new score-based game
- variety of lower bounds techniques
 - strategy extraction
 - size-degree relations
 - pseudo-expectations

Bibliography

- Ben-Sasson, Eli and Avi Wigderson (2001). "Short proofs are narrow resolution made simple". In: *J. ACM* 48.2, pp. 149–169. DOI: 10.1145/375827.375835.
 - Beyersdorff, Olaf, Ilario Bonacina, and Leroy Chew (2016). "Lower Bounds: From Circuits to QBF Proof Systems". In: *Proc. ACM Conference on Innovations in Theoretical Computer Science (ITCS'16)*, pp. 249–260. DOI: 10.1145/2840728.2840740.
- Beyersdorff, Olaf, Ilario Bonacina, Leroy Chew, and Jan Pich (2020). "Frege Systems for Quantified Boolean Logic". In: *J. ACM* 67.2. Preliminary versions of this work appeared as Beyersdorff, Bonacina, and Chew 2016 and; Beyersdorff and Ján Pich 2016., 9:1–9:36. DOI: 10.1145/3381881.
- Beyersdorff, Olaf and Ján Pich (2016). "Understanding Gentzen and Frege systems for QBF". In: *Proc. ACM/IEEE Symposium on Logic in Computer Science (LICS)*. DOI: 10.1145/2933575.2933597.