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Proof Systems

Why?

▶ theoretical insights and connections to complexity theory

▶ certifying solvers

How?

▶ Proof system P

▶ Formula φ, UNSAT resp. false QBF

▶ proof π of φ in P
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Proof systems

Resolution QU-Resolution

geometric (Cutting Planes) Q-Cutting Planes

logical (Frege) Q-Frege

(semi-)algebraic ?

universal reduction

L

L[u = b]
(∀red); b ∈ {0, 1}, u is universal and rightmost in L

▶ turns (almost) all line-based propositional proof systems into QBF
systems (Beyersdorff, Bonacina, Chew, and Jan Pich 2020).
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Proof systems

Resolution (line-based) QU-Resolution

geometric (Cutting Planes) (line-based) Q-Cutting Planes

logical (Frege) (line-based) Q-Frege

(semi-)algebraic (static) ?

universal reduction

L

L[u = b]
(∀red); b ∈ {0, 1}, u is universal and rightmost in L

▶ turns (almost) all line-based propositional proof systems into QBF
systems (Beyersdorff, Bonacina, Chew, and Jan Pich 2020).
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Roadmap

▶ define QBF versions of semi-algebraic proof systems

▶ see simulations and separations between these systems

▶ look at techniques for upper and lower bounds
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Quantified Boolean Formulas

▶ extension of propositional logic

▶ prenex form: ∃X1∀U1∃X2 . . . ∀Ud∃Xd+1 : φ
▶ recursive definition of truth value:

▶ (∀u : Q) is true if both Q[u = 0] and Q[u = 1] are true
▶ (∃x : Q) is true if Q[u = 0] or Q[u = 1] is true

▶ variables can be 0 or 1
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The Evaluation Game

▶ two players, existential (∃) and universal (∀)
▶ assign their respective variables in order according to the prefix

▶ universal player wins if matrix becomes false, otherwise existential
player wins

On a QBF Q, the universal player has a winning strategy if and only if Q
is false.
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(Semi-)Algebraic proof systems for UNSAT

▶ to apply to CNF: convert clauses to monomials

▶ a ∨ b ∨ c becomes a · b · c
▶ monomial is 0 iff clause is satisfied, positive otherwise
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(Semi-)Algebraic Proof Systems for UNSAT

Proof is algebraic identity in Q:∑
qpp+

∑
qu(1− 2u) + q + 1 = 0

▶ p are input clauses or additional axioms
▶ x2 − x = 0
▶ x + x − 1 = 0

▶ qp are arbitrary polynomials
▶ q is nonnegative on Boolean inputs

▶ Nullstellensatz: q = 0
▶ Sherali-Adams: q only has nonnegative coefficients
▶ Sum Of Squares: q is sum of squares
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(Semi-)Algebraic Proof Systems for QBF

QBF given: ∃X1∀U1∃X2 . . . ∀Ud∃Xd+1 : φ

Proof is algebraic identity in Q:∑
qpp +

∑
qu(1− 2u) + q + 1 = 0

▶ p are input clauses or additional axioms
▶ x2 − x = 0
▶ x + x − 1 = 0

▶ qp are arbitrary polynomials

▶ polynomial qu for every universal variable u; only in variables left of u
▶ q is nonnegative on Boolean inputs

▶ Q-Nullstellensatz: q = 0
▶ Q-Sherali-Adams: q only has nonnegative coefficients
▶ Q-Sum Of Squares: q is sum of squares
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Soundness

∑
qpp +

∑
qu(1− 2u) + q + 1 = 0

Soundness: A true QBF cannot have a valid refutation.

▶ true QBF ⇒ existential winning strategy S

▶ universal player plays randomly

⇒ random distribution on Boolean assignments; matrix is always satisfied
▶ consider E [

∑
qpp +

∑
qu(1− 2u) + q + 1]

▶ E [qpp] = 0 (matrix is satisfied)
▶ E [qu(1− 2u)] = 0 (balance between u = 0 and u = 1)
▶ E [q] ≥ 0 (q ≥ 0 always)
▶ E [1] = 1
⇒ E [

∑
qpp +

∑
qu(1− 2u) + q + 1] ≥ 1
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Size measures

∑
qpp +

∑
qu(1− 2u) + q + 1 = 0

Proof size

The size of a semialgebraic proof is the total number of monomials in all
of its polynomials.

▶ hard problem for Q-SOS: take hard problem for SOS, add existential
quantifiers

▶ looking for genuine QBF hardness

Proof q-size

The q-size of a semialgebraic proof is the total number of monomials in
the qu polynomials.
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Simulation order
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Techniques

▶ score-based games

▶ strategy extraction to polynomial threshold functions

▶ size-degree lower bounds

▶ Q-pseudo-expectations
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The score-based game

▶ two players, ∃ and ∀
▶ go over variables in prefix order

▶ existential variable: assigned by existential player
▶ universal variable u:

▶ universal player picks preference su
▶ existential player picks value u = b, b ∈ {0, 1}
▶ universal player scores su(2b − 1) points

▶ universal player wins if matrix is falsified or final score is > 0
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The score-based game: example

∃x1∀u1∃x2∀u2.(x1 ∨ u1 ∨ x2) ∧ (x1 ∨ u1 ∨ x2) ∧ (x2 ∨ u2)

▶ initial score = 0

▶ Player∃ sets x1 = 1.

▶ u1:
▶ Player∀ picks su1 = −3.
▶ Player∃ sets u1 = 0.
▶ Player∀ gains score su1(2u1 − 1) = 3. New score: 3

▶ Player∃ sets x2 = 0.
▶ u2:

▶ Player∀ picks su2 = 1.
▶ Player∃ sets u1 = 0.
▶ Player∀ gains score su2(2u2 − 1) = −1. New score: 2

▶ φ is true, but score is positive ⇒ Player∀ wins
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The score-based game

▶ universal player can win iff QBF is false (same as evaluation game)

▶ provides upper bounds for e.g. Majority formulas

Theorem

For a given false QBF, encode the universal winning strategies as
polynomials. The minimal number of monomials in such a strategy equals
the qsize of the shortest Q-SOS refutation.
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Majority

Majority(n):

∃x1 . . . xn∀u∃t0 . . . tm.

(
u ↔

(
n∑

i=1

xi ≥
n

2

)
encoded using tj variables

)

Theorem

The Majority formulas have Q-SOS proofs of qsize O(n).

su =
n∑

i=1

xi −
n

2
+

1

4

▶
∑

xi ≥ n
2 , u = 0: matrix is false

▶
∑

xi ≥ n
2 , u = 1: su is positive, receive positive score

▶
∑

xi <
n
2 , u = 0: su is negative, receive positive score

▶
∑

xi <
n
2 , u = 1: matrix is false
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Strategy extraction

Parity:

∃x1 . . . xn∀u∃t1 . . . tn.(t1 = x1) ∧
n∧

i=2

(ti = ti−1 ⊕ xi ) ∧ (u ̸= xn)

Theorem

The Parity formulas require Q-SOS refutations of size O(2n).

▶ from a short refutation, we could extract a short polynomial threshold
function computing the parity of its inputs

▶ we know exponential lower bounds for polynomial threshold functions
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Size-degree relations

Theorem

If a QBF in n variables has a Q-SOS refutation of qsize s, it has a
refutation of existential q-degree O(

√
n log s).

▶ existential q-degree: largest number of existential variables of all the
monomials in qu

▶ proof: very similar to size-width in Ben-Sasson and Wigderson 2001

▶ linear degree lower bounds lead to exponential size lower bounds
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Pseudo-expectations

▶ variant of lower bound technique from propositional semi-algebraic
proof systems

▶ gives lower bounds on existential q-degree (highest existential degree
in qu polynomials) of proof

▶ use size-degree to obtain lower bound on proof size
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Pseudo-expectations

To rule out a Q-SOS proof
∑

qpp +
∑

qu(1− 2u) + q + 1 = 0, find Ẽ
such that:

▶ Ẽ is linear

▶ Ẽ[1] = 1;

▶ Ẽ[q +
∑

qpp] ≥ 0;

▶ Ẽ[
∑

qu(1− 2u)] ≥ 0.

Proof technique: Ẽ exists for any Q-SOS proof of degree < d
⇒ minimal proof degree d
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Conclusion

∑
qpp +

∑
qu(1− 2u) + q + 1 = 0

▶ natural extension of Nullstellensatz, Sherali-Adams, and Sum of
Squares to QBF

▶ simulation order is similar to propositional case

▶ intuition via new score-based game
▶ variety of lower bounds techniques

▶ strategy extraction
▶ size-degree relations
▶ pseudo-expectations
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