Redundancy Rules for MaxSAT

llario Bonacina Maria Luisa Bonet Sam Buss

Massimo Lauria
SAPIENZA

UNIVERSITA DI ROMA

joint with

SAT 2025, Glasgow

The context

Redundancy rules: adding clause C to the database 1

o« (' A1 satisfiable iff I satisfiable

* models preprocessing / inprocessing in SAL. [JHB’12]
e studied from proof complexity perspective

* what about MaxSAT? [BMM’13, BJ’19]

Our contribution: simple proof system for MaxSAT redundancy

Our contribution: simple proof system for MaxSAT redundancy

» extension of proof system RAT/LPR, SPR, PR, SR, ... [see BT'21]
* polynomially verifiable
* proof power only depends on the redundancy rule (e.g. LPR, SPR, ...)

» GOAL: amenable to proof complexity analysis

« BONUS: maybe easy to integrate with tools as dpr-trim

SIAS,A .\ HAHyA ...

soft clauses hard clauses

or, equivalently

FbIVSl)A(bZVSZ)A.../\Hl/\HZ/\..: cost:=2bi

hard clauses

Add (' to clause database

(' is redundant

e search space reduction
 some optimal solutions lost
e but not all

Add (' to clause database

(cannot be added because it

removes all optimal solutions

Short witness of SAT redundancy

Clause database I, proof that C is redundant is a witnessing substitution o

if a satisfies] A 7 C, then a o o satisfies] A C

o uniformly fixes all
problematic o

I'loeH TAC) T,

[....BT’21, ...]

Substitution Redundancy (SR) o : {variables} — {literals} U {0,1}
Propagation Red. (PR) o Is a partial assignment
Set Propagation Red. (SPR) o only sets variables in C

Literal Propagation Red. (LPR, RAT) o only sets one variable in C

*in8this work: no new variables and no deletions

cost-SR / cost-PR / cost-SPR / cost-LPR

A new clause C can be added to I when

cost-SR / cost-PR / cost-SPR / cost-LPR

A new clause C can be added to I when

e there is a withessing substitution o so that

I'loe i AC) T, (sat-redundancy)

cost-SR / cost-PR / cost-SPR / cost-LPR

A new clause C can be added to I when

e there is a withessing substitution o so that

I'loe i AC) T, (sat-redundancy)

» whenever a falsifies C, cost(a o) < cost(a) (cost)

cost-SR / cost-PR / cost-SPR / cost-LPR

A new clause C can be added to I when

e there is a withessing substitution o so that

I'loe i AC) T, (sat-redundancy)

» whenever a falsifies C, cost(a o) < cost(a) (cost)

. equivalently, (Zibi — Zia(bl-))

must be non-negative (EASY!)
-C

cost-SR / cost-PR / cost-SPR / cost-LPR

A new clause C can be added to I when

e there is a withessing substitution o so that

I'loe i AC) T, (sat-redundancy)

» whenever a falsifies C, cost(a o) < cost(a) (cost)

. equivalently, (Zibi — Zia(bi)) must be non-negative (EASY!)
-C

A proof that cost(F) > k is a derivation of unit clauses b, , b, , ..., b; from F

9

Seavel A deal with the devil...

, $pece

X % BXZ‘.XSMXEX

S LA Our system: check cost(a o 6) < cost(a) whenever a

falsifies C

Actual redundancy: check cost(a » 6) < cost(a) whenever o

falsifies C and satisfies |

10

Other observations...

11

Other observations...

Symmetry breaking is often beneficial in solving, but here is a necessity.

Mitigation: disjoint sets of b;s minimum HS

11

Other observations...

Symmetry breaking is often beneficial in solving, but here is a necessity.

Mitigation: disjoint sets of b;s minimum HS

Cost requirement can be checked in parallel, and separately from redundancy

11

Other observations...

Symmetry breaking is often beneficial in solving, but here is a necessity.

Mitigation: disjoint sets of b;s minimum HS

Cost requirement can be checked in parallel, and separately from redundancy

This is a minimum viable system that highlights redundancy in MaxSAT

11

Comparison with some other approaches

Journal of Artificial Intelligence Research 77 (2023) 1539-1589 Submitted 10/2022; published 08/2023

Certified Dominance and Symmetry Breaking for
Combinatorial Optimisation

Bart Bogaerts
Vrije Universiteit Brussel, Brussels, Belgium

Stephan Gocht

Lund Universits

BART.BOGAERTS@QVUB.BE

STEPHAN.GOCHT@CS.LTH.SE

ark
CIARAN.MCCREESHQGLASGOW.AC.UK
CeSS.lng‘ mn JN@DI.KU.DK
o
Prept
and I
dancy = . capility
Clause Redu? mum S:at’ﬁlf’ﬁa‘b1 11 proof 8
Maximt it fu
ded verst act
E:I;ten 001/7(»,(-,0/806“) and rucial for solving hard combinatorial search
- ias Ber \(\(‘2(1;:724063)\'\ bf th.csc techniq_ucs sonu-,tifncs m]..ic.s }ou sub-
Jalaimen: ,‘exe'ﬂ \0“00/000 L F'm\ﬁ“d b pwduuc_‘ cfﬁucut, md‘(,hm_c-wnﬁa ble cer-
Hannes 1 {aki Jarvisalo sy of Helsinkd ctly. Building on the cutting planes proof
Matt < jences Uh’\‘le‘js‘ Y N fnisation problems in which symmetry and
of Compute® S;name\f@)elsu‘kl' berimental evaluation demonstrates that
1T D"/P“‘f““em{i-lrsm a8 AT) preaking in Boolean satisfiability (SAT)
w 1isfabili® (S ‘o method to certify a range of advanced
ey olea) ontal insights \“0 parity (XOR) reasoning. In addition,
dund® from § ndame ad Y’“\’ d constraint programming as a proof
te er be of combinatorial problems.
natorial problems. As an illustration
ilit gure 1, which is often used in intro-
ve er might notice that the puzzle is the
T) constraint A < G to eliminate this
2‘ o induces a symmetry, which could
IN that the values are symmetrical,
na ° ; this can be eliminated by saying
! dging th) O proving at preserves satisfiability overall,
gene\a(3 ssor IncoTPO @ p“cab';\'\ty in cion ness from each equivalence class
repefgmems s “"diw Landancy propag? erformance. However, although
5‘323‘ MaxSN solver ity clause 164 kints is correct individually, are
‘ paximum satisfiab at if we had said F' < C instead
words: W sing
‘rf:\}\,n\(\ami&' - prepr \ axi- -future-an-old-british—
ng (131, 1
o (QAT) SOWVIRE L res &
. e pility O T consth
ction o \,\S&\(\\’)l\‘ . of € arn (‘)\ n
grodu \ean S tension 1s 139,00 R
1 In s Of BOOEE Lo R O 129, ons Attribution License CC BY 4.0.
Aly on the suc® as the P A OPbi\“‘Za"‘O“ yedun ancy _
A+ 1ine heavily TaxSAT) 28 JP-harc £ clause SproCess
Buildin® vy (Mex alworld U) aspectS @ 1 cpes of p‘k‘s fi-
atis ng . men > ove ” bling
m\)\b“\ﬁzpproac\\ ‘Ts‘i\\“’e :é y of fw 1 for develop 1 :S well as v 632“ of most
viable of SAT, W~ ren C = os 129 € Jresente 1
the contex! 2,23 has P solving " ‘7‘\‘\”\ ccinet ¥¢F 322 308718
31,20 sqo-style s B fras-
2&207 L ocessingTet 15,16, yder & “fen o
X 1 mpro! - 18, 19: aipland WY . Sompev age
ng a“(r ¢ checkers 0 Academy f ‘::“;‘\s‘ﬂ nput! nd date stora®
cient ly pponeé | o thank the atat
+ Work find :c"\jh.é thors W‘: is P
242145. pPO
and 34 \C1) for
o (FCC
gructure
Tesources:

12

rocess'mg n

Clause Red\mdancy and PreP
Maximu® Sat ﬁabxhty
i unth full

proof

em Je ml S Bercr
\0000
sinkis

mputer Seien
o.last

s

¥ inland

ause red!
\ous ter

var

en, Ber
) g, Jarv

maxi-

duction

1 Intro

cavily O the suc
REW

cient P
« Work financl cially § ported by Ac
and 342145- The aW athors wish to ghan
gructure FCC) for ,upport'mg this
Sources:

Te!

* cost conditi
ion:
n: cost(FAC,0) =c¢
— ()St(F 0) <
) ~ C()S‘[(F C
o |)

e Not pOlW\ _
omially ch
le, requires a SAT cal
all (i.e. addi
' ditional
proof)

oly-
poly-checkable subsyst
stems CS
PR, CLP
’ R

13

* pase language is cutting planes

[Bogaerts

* very expressive: redundancy, dominance, extension variables,...

» redundancy of C is expressible in ver iPB itself, hence can be

ertified by a veriPB proof.

 veriPB easily simulates cost-SR

14

Certified Dominance and Symmetry Breaking for
Combinatorial Optimisation

Bart Bogaerts BART.BOGAERTS@VUB.BE
Vrije Universiteil Brussel, Brussels, Belgium

Stephan Gocht STEPHAN.GOCHT@CS.LTH.SE
Lund University, Lund, Sweden

Univer: of Copenhagen, Copen. n, Den
a; Crees
of Glasgo laspi.
o ordstro:
ver: Copen n ,n,.nmark

i .M EESIGLASGOW.AC. UK
IN@DI.KU.DK
Lund University, Lund, Sweden

Abstract

Symmetry and dominance breaking can be crucial for solving hard combinatorial search
and optimisation problems, but the correctness of these techniques sometimes relies on sub-
tle arguments. For this reason, it is desirable to produce efficient, machine-verifiable cer-
tificates that solutions have been computed correctly. Building on the cutting planes proof
system, we develop a certification method for optimisation problems in which symmetry and
dominance breaking is easily expressible. Our experimental evaluation demonstrates that
we can efficiently verify fully general symmetry breaking in Boolean satisfiability (SAT)
solving, thus providing, for the first time, a unified method to certify a range of advanced
SAT techniques that also includes cardinality and parity (XOR) reasoning. In addition,
we apply our method to maximum clique solving and constraint programming as a proof
of concept that the approach applies to a wider range of combinatorial problems.

1. Introduction

Symmetries pose a challenge when solving hard combinatorial problems. As an illustration
of this, consider the Crystal Maze puzzle! shown in Figure 1, which is often used in intro-
ductory constraint modelling courses. A human modeller might notice that the puzzle is the
same after flipping vertically, and could introduce the constraint A < G to eliminate this
symmetry. Or, they may notice that flipping horizontally induces a symmetry, which could
be broken with A < B. Alternatively, they might spot that the values are symmetrical,
and that we can interchange 1 and 8, 2 and 7, and so on; this can be eliminated by saying
that A < 4. In each case a constraint is being added that preserves satisfiability overall,
but that restricts a solver to finding (ideally) just one witness from each equivalence class
of solutions—the hope is that this will improve solver performance. However, although
we may be reasonably sure that any of these three constraints is correct individually, are
combinations of these constraints valid simultaneously? What if we had said F' < C' instead

1. https://theconversation.com/what-problems-will-ai-solve-in-future-an-old-british-
gameshow-can-help-explain-49080

(©)2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

[Bonacina, Bonet, Lauria ’24]

|

redundancy condition via multiset inclusion I'[_~-2 (I'AC) |,

rule applies directly to soft clauses
preserves # of falsified soft clauses

can be integrated with MaxSAT resolution

15

Some results about these systems

16

cost-SR is sound: only proves true cost bounds.

cost-SPR is complete:
(oroof sketch) use an optimal assignment as witness o, to

block every other assignment a, with redundant clause —a.

cost-LPR iIs iIncomplete

17

Upper bound

I is minimally unsat, with short refutation in PR

—>

cost-PR has a short proof that cost(F) > 1

Upper bound*

cost-SR has a short proof that cost(PHP}") > m —n

*for refutation, system SPR is sufficient [BT’21]

18

The requirement of unit clauses b; , b, , ..., b; to prove cost(f') > k seems rigid

..

19

The requirement of unit clauses b; , b, , ..., b; to prove cost(f') > k seems rigid

..

flip(C, o) := max HammingDistance(a, o ¢ 6), for « that falsifies C

Thm. Assuming any two optimal assignments of F' have distance > d, and no b; is

determined in optimal assignments. Even proving cost(F) > 1 requires a redundant
C with witness ¢ and flip(C, o) > d.

19

To cut distant solutions o0 must “fix” many variables

Corollary. There is a formula family F,
with O(n) variables, O(n) clauses and cost(F,) = (n)
where, in order to prove cost(f,) > 1, any cost-SR proof derives a clause C

with flip(C, o) = €2(n), where o is its witnessing substitution.

Corollary. cost-LPR/cost-RAT is incomplete, since it can flip at most one variable

Corollary. cost-SPR can only flip variables in C, hence some C must be of large width

20

Summary

* A proof system for understanding redundancy in MaxSAT

* Potentially simpler to analyze, i.e. good for theory

21

Open Problems

* Our cost condition is easy to check, but too restrictive

» awkward to express cost(F) > k with by, b,, ...

e cost-SR vs MaxSAT resolution

* lower bound for cost-SPR (could be easier than SPR)

22

Thank you!

