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ABSTRACT
We prove that for k ≪ 4

√
n regular resolution requires length nΩ(k )

to establish that an Erdős–Rényi graph with appropriately cho-

sen edge density does not contain a k-clique. This lower bound
is optimal up to the multiplicative constant in the exponent, and

also implies unconditional nΩ(k ) lower bounds on running time for

several state-of-the-art algorithms for finding maximum cliques in

graphs.

CCS CONCEPTS
• Theory of computation → Proof complexity; • Mathemat-
ics of computing → Random graphs;
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1 INTRODUCTION
Deciding whether a graph has a k-clique is one of the most basic

computational problems on graphs, and has been extensively stud-

ied in computational complexity theory ever since it appeared in

Karp’s list of 21 NP-complete problems [15]. Not only is this prob-

lem widely believed to be infeasible to solve exactly—unless P = NP
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there does not even exist any polynomial-time algorithm for ap-

proximating the maximal size of a clique to within a factor n1−ϵ

for any constant ϵ > 0, where n is the number of vertices in the

graph [13, 34]. Furthermore, the problem appears to be hard not

only in the worst case but also on average in the Erdős-Rényi ran-

dom graph model—we know of no efficient algorithms for finding

cliques of maximum size asymptotically almost surely on random

graphs with appropriate edge densities [16, 31].

In terms of upper bounds, the k-clique problem can clearly be

solved in time roughly nk simply by checking if any of the

(n
k
)

many sets of vertices of size k forms a clique, which is polynomial

if k is constant. This can be improved slightly to O(nωk/3) using
algebraic techniques [26], where ω ≤ 2.373 is the matrix multipli-

cation exponent, although in practice such algebraic algorithms are

outperformed by combinatorial ones [33].

The motivating problem behind this work is to determine the

exact time complexity of the clique problem when k is given as a

parameter. As noted above, all known algorithms require timenΩ(k ).
It appears quite likely that some dependence on k is needed in the

exponent, since otherwise we have the parameterized complexity

collapse FPT =W[1] [11]. Even more can be said if we are willing

to believe the Exponential Time Hypothesis (ETH) [14]—then the

exponent has to depend linearly on k [8], so that the trivial upper

bound is essentially tight.

Obtaining such a lower bound unconditionally would, in par-

ticular, imply P , NP, and so currently seems completely out of

reach. But is it possible to prove nΩ(k ) lower bounds in restricted

but nontrivial models of computation? For circuit complexity, this

challenge has been met for circuits that are of bounded depth [30]

or are monotone [32]. In this paper we focus on computational

models that are powerful enough to capture algorithms that are

used in practice.

When analysing such algorithms, it is convenient to view the

execution trace as a proof establishing the maximal clique size

for the input graph. In particular, if this graph does not have a

k-clique, then the trace provides an efficiently verifiable proof of

the statement that the graph is k-clique-free. If one can establish a

lower bound on the length of such proofs, then this implies a lower
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bound on the running time of the algorithm, and this lower bound

holds even if the algorithm is a non-deterministic heuristic that

somehow magically gets to make all the right choices. This brings

us to the topic of proof complexity [9], which can be viewed as the

study of upper and lower bounds in restricted nondeterministic

computational models.

Using a standard reduction from k-clique to SAT, we can trans-

late the problem of k-cliques in graphs to that of satisfiability of

formulas in conjunctive normal form (CNF). If an algorithm for

finding k-cliques is run on a graph G that is k-clique-free, then we

can extract a proof of the unsatisfiability of the corresponding CNF

formula—the k-clique formula on G—from the execution trace of

the algorithm. Is it possible to show any non-trivial lower bound

on the length of such proofs? Specifically, does the resolution proof

system—the method of reasoning underlying state-of-the-art SAT

solvers [2, 23, 25]—require length nΩ(k ), or at least nωk (1), to prove

the absence of k-cliques in a graph? This question was asked in,

e.g., [7] and remains open.

The hardness ofk-clique formulas for resolution is also a problem

of intrinsic interest in proof complexity, since these formulas escape

known methods of proving resolution lower bounds for a range

of interesting values of k including k = O(1). In particular, the

interpolation technique [18, 28], the random restriction method [4],

and the size-width lower bound [5] all seem to fail.

To make this more precise, we should mention that some previ-

ous works do use the size-width method, but only for very large k .

It was shown in [3] that for n5/6 ≪ k ≤ n/3 resolution requires

length exp

(
nΩ(1)

)
to certify that a dense enough Erdős-Rényi ran-

dom graph is k-clique-free. The constant hidden in the Ω(1) in-
creases with the density of the graph and, in particular, for very

dense graphs and k = n/3 the length required is 2
Ω(n)

. Also, for

a specially tailored CNF encoding, where the ith member of the

claimed k-clique is encoded in binary by logn variables, a lower

bound of nΩ(k ) for k ≤ logn can be extracted from a careful read-

ing of [21]. However, in the more natural unary encodings, where

indicator variables specify whether a vertex is in the clique, the

size-width method cannot yield more than a 2
Ω(k2/n)

lower bound

since there are resolution proofs of width O(k). This bound becomes

trivial when k ≤
√
n.

In the restricted subsystem of tree-like resolution, optimal nΩ(k )

length lower bounds were established in [6] for k-clique formulas

on complete (k − 1)-partite as well as on average for Erdős-Rényi

random graphs of appropriate edge density. There is no hope to get

hard instances for general resolution from complete (k − 1)-partite
graphs, however—in the same paper it was shown that all instances

from the more general class of (k − 1)-colourable graphs are easy
for resolution. A closer study of these resolution proofs reveals that

they are regular, meaning that if the proof is viewed as a directed

acyclic graph (DAG), then no variable is eliminated more than once

on any source-to-sink path.

More generally, regular resolution is an interesting and non-

trivial model to analyse for the k-clique problem since it captures

the reasoning used in many state-of-the-art algorithms used in prac-

tice (for a survey, see, e.g., [24, 27]). Nonetheless, it has remained

consistent with state-of-the-art knowledge that for k ≤ n5/6 regular

resolution might be able to certify k-clique-freeness in polynomial

length independent of the value of k .

Our contribution. We prove optimal nΩ(k ) average-case lower
bounds for regular resolution proofs of unsatisfiability for k-clique
formulas on Erdős-Rényi random graphs.

Theorem 1.1 (Informal). For any integer k ≪ 4

√
n, given an

n-vertex graph G sampled at random from the Erdős-Rényi model
with the appropriate edge density, regular resolution asymptotically
almost surely requires length nΩ(k) to certify that G does not contain
a k-clique.

In order to make this formal, we need to define how the prob-

lem is encoded: depending on the formula considered, the exact

statement of what we can prove differs. In this conference paper

we consider the simpler encoding for which we can prove an nΩ(k )

lower bound for k ≪
√
n. For a stronger encoding, which in par-

ticular captures this simpler one, we prove the above result in the

full-length version of this paper.

At a high level, the proof is based on a bottleneck counting

argument in the style of [12] with a slight twist that was introduced

in [29]. In its classical form, such a proof takes four steps. First,

one defines a distribution of random source-to-sink paths on the

DAG representation of the proof. Second, a subset of the vertices

of the DAG is identified—the set of bottleneck nodes—such that

any random path must necessarily pass through at least one such

node. Third, for any fixed bottleneck node, one shows that it is very

unlikely that a random path passes through this particular node.

Given this, a final union bound argument yields the conclusion that

the DAG must have many bottleneck nodes, and so the resolution

proof must be long.

The twist in our argument is that, instead of single bottleneck

nodes, we need to define bottleneck pairs of nodes. We then argue

that any random path passes through at least one such pair but

that few random paths pass through any fixed pair; the latter part

is based on Markov chain-type reasoning similar to [29, Theorems

3.2, 3.5]. Furthermore, it crucially relies on that the graph satisfies

a certain combinatorial property, which captures the idea that the

common neighbourhood of a small set of vertices is well distributed

across the graph. Identifying this combinatorial property is a key

contribution of our work. In a separate argument (that, surprisingly,

turned out to be much more elaborate than most arguments of

this kind) we then establish that Erdős-Rényi random graphs of

the appropriate edge density satisfy this property asymptotically

almost surely. Combining these two facts yields our average-case

lower bound.

Another contribution of this paper is a relatively simple ob-

servation that not only is regular resolution powerful enough to

distinguish graphs that contain k-cliques from (k − 1)-colourable
graphs [6], but it can also distinguish them from graphs that have

a homomorphism to any fixed graph H with no k-cliques.

Paper outline. The rest of this paper is organized as follows. Sec-

tion 2 presents some preliminaries. We show that some nontrivial

k-clique instances are easy for regular resolution in Section 3. Sec-

tion 4 contains the formal statement of the lower bounds we prove

for Erdős-Rényi random graphs. In Section 5 we define a combina-

torial property of graphs and show that clique formulas on such
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graphs are hard for regular resolution, and the proof that Erdős-

Rényi random graphs satisfy this property asymptotically almost

surely is in Section 6. We conclude in Section 7 with a discussion

of open problems.

2 PRELIMINARIES
We writeG = (V ,E) to denote a graph with verticesV and edges E,
where G is always undirected, without loops and multiple edges.

Given a vertex v ∈ V , we write N (v) = {u | there exists v ∈ V
such that {u,v} ∈ E} to denote the set of neighbours of v . For a
set of vertices R ⊆ V we write N̂ (R) =

⋂
v ∈R N (v) to denote the

set of common neighbours of R. For two sets of vertices R ⊆ V

andW ⊆ V we write N̂W (R) = N̂ (R) ∩W to denote the set of

common neighbours of R insideW . For a set U ⊆ V we denote by

G[U ] the subgraph ofG induced by the setU . For n ∈ N+ we write

[n] = {1, . . . ,n}. We say that V1
.
∪ V2

.
∪ · · ·

.
∪ Vk = V is a balanced

k-partition of V if for all i, j ∈ [k] it holds that |Vi | ≤ |Vj | + 1. All
logarithms are natural (base e) if not specified otherwise.

Probability and Erdős-Rényi random graphs. We denote random

variables in boldface and write X ∼ D to denote that X is sampled

from the distribution D . A p-biased coin, or a Bernoulli variable, is
the outcome of a coin flip that yields 1 with probability p and 0 with

probability 1 − p. We use the special case of Markov’s inequality

saying that if X is non-negative, then Pr[X ≥ 1] ≤ E[X ]. We also

need the following special case of themultiplicative Chernoff bound:

if X is a binomial random variable (i.e., the sum of i.i.d. Bernoulli

variables) with expectation µ = E[X ], then Pr[X ≤ µ/2] ≤ e
−µ/8

.

We consider the Erdős-Rényi distribution G (n,p) of random
graphs on a fixed setV of n vertices. A random graph sampled from

G (n,p) is produced by placing each potential edge {u,v} indepen-
dently with probability p, 0 ≤ p ≤ 1 (the edge probability p may

be a function of n). A property of graphs is said to hold asymptot-
ically almost surely on G (n,p(n)) if it holds with probability that

approaches 1 as n approaches infinity.

For a positive integer k , let Xk be the random variable that

counts the number of k-cliques in a random graph from G (n,p). It
follows from Markov’s inequality that asymptotically almost surely

there are no k-cliques in G (n,p) whenever p and k are such that

E[Xk ] = p
(k
2
) (n
k
)
approaches 0 as n approaches infinity. This is the

case, for example, if p = n−2η/(k−1) for k ≥ 2 and η > 1.

CNF formulas and resolution. A literal over a Boolean variable x
is either the variable x itself (a positive literal) or its negation ¬x (a

negative literal). A clauseC = a1∨· · ·∨aw is a disjunction of literals;

we say that the width of C isw . The empty clause will be denoted

by ⊥. A CNF formula F = C1 ∧ · · · ∧Cm is a conjunction of clauses.

We think of clauses as sets of literals and of CNF formulas as sets

of clauses, so that order is irrelevant and there are no repetitions.

For a formula F we denote by Vars(F ) the set of variables of F .
A resolution derivation from a CNF formula F is as an ordered

sequence of clauses π = (D1, . . . ,DL) such that for each i ∈ [L]
either Di is a clause in F or there exist j < i and k < i such that Di
is derived from D j and Dk by the resolution rule

B ∨ x C ∨ ¬x
B ∨C

, (1)

Di = B ∨C, D j = B ∨ x , Dk = C ∨ ¬x . We refer to B ∨C as the

resolvent of B∨x andC∨¬x over x , and to x as the resolved variable.
The length (or size) of a resolution derivation π = (D1, . . . ,DL) is L
and it is denoted by |π |. A resolution refutation of F , or resolution
proof for (the unsatisfiability of) F , is a resolution derivation from F
that ends in the empty clause ⊥.

A resolution derivation π = (D1, . . . ,DL) can also be viewed as

a labelled DAGwith set of nodes {1, . . . ,L} and edges (j, i), (k, i) for
each application of the resolution rule deriving Di from D j and Dk .

Each node i in this DAG is labelled by its associated clause Di , and

each non-source node is also labelled by the resolved variable in its

associated derivation step in the refutation. A resolution refutation

is called regular if along any source-to-sink path in its associated

DAG every variable is resolved at most once.

For a partial assignment ρ we say that a clause C restricted
by ρ, denoted C↾ρ , is the trivial 1-clause if any of the literals

in C is satisfied by ρ or otherwise is C with all falsified literals

removed. We extend this definition to CNFs in the obvious way:

(C1 ∧ . . . ∧Cm )↾ρ = C1↾ρ ∧ . . .∧Cm↾ρ . Applying a restriction pre-

serves (regular) resolution derivations. To see this, observe that in

every application of the resolution rule the restricted consequence

is either killed (becomes identically 1) or obtained, as before, by

resolving the two restricted premises or it is a copy of one of them.

Thus, we have:

Fact 2.1. Let π be a (regular) resolution refutation of a CNF for-
mula F . For any partial assignment ρ to the variables of F there is
an efficiently constructible (regular) resolution refutation π↾ρ of the
CNF formula F↾ρ , so that the length of π↾ρ is at most the length of π .

Branching programs. Abranching program on variablesx1, . . . ,xn
is a DAG that has one source node and where every non-sink node

is labelled by one of the variables x1, . . . ,xn and has exactly two

outgoing edges labelled 0 and 1. The size of a branching program

is the total number of nodes in the graph. In a read-once branching
program it holds in addition that along every path every variable

appears as a node label at most once.

For each node a in a branching program, let X (a) denote the

variable that labels a, and let a0 and a1 be the nodes that are reached
from a through the edges labelled 0 and 1, respectively. A truth-

value assignment σ : {x1, . . . ,xn } → {0, 1} determines a path in

a branching program in the following way. The path starts at the

source node. At an internal node a, the path is extended along the

edge labelled σ (X (a)) so that the next node in the path is aσ (X (a)).
The path ends when it reaches a sink. We write path(σ ) for the
path determined by σ . When extending the path from a node a to

the node aσ (X (a)), we say that the answer to the query X (a) at a is

σ (X (a)) and that the path sets the variableX (a) to the value σ (X (a)).
For each node a of the branching program, let β(a) be the maximal

partial assignment that is contained in any assignment σ such that

path(σ ) passes through a. Equivalently, this is the set of all those
σ (xi ) = γ for which the query xi is made, and answered by γ ,
along every consistent path from the source to a. If the program is

read-once, the consistency condition becomes redundant.

The falsified clause search problem for an unsatisfiable CNF for-

mula F is the task of finding a clause C ∈ F that is falsified by a

given truth value assignment σ . A branching program P on the

variables Vars(F ) solves the falsified clause search problem for F
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if each sink is labelled by a clause of F such that for every assign-

ment σ , the clause that labels the sink reached by path(σ ) is falsified
by σ . The minimal size of any regular resolution refutation of an

unsatisfiable CNF formula F is exactly the same as the minimal size

of any read-once branching program solving the falsified clause

search problem for F . This can be seen by taking the refutation

DAG and reversing the edges to get a branching program or vice

versa. For a formal proof see, e.g., [19, Theorem 4.3].

The k-clique formula. In order to analyse the complexity of res-

olution proofs that establish that a given graph does not contain

a k-clique we must formulate the problem as a propositional for-

mula in conjunctive normal form (CNF). We consider two distinct

encodings for the clique problem originally defined in [3].

The first propositional encoding we present, Clique(G,k), is
based on mapping of vertices to clique members. This formula

is defined over variables xv,i (v ∈ V , i ∈ [k]) and consists of the

following set of clauses:

¬xu,i ∨ ¬xv, j i, j ∈ [k], i , j,u,v ∈ V , {u,v} < E , (2a)∨
v ∈V

xv,i i ∈ [k] , (2b)

¬xu,i ∨ ¬xv,i i ∈ [k],u,v ∈ V ,u , v , (2c)

We refer to (2a) as edge axioms, (2b) as clique axioms and (2c) as

functionality axioms. Note thatClique(G,k) is satisfiable if and only
ifG contains a k-clique, and that this is true even if clauses (2c) are

omitted—we write Clique∗(G,k) to denote this formula with only

clauses (2a) and (2b).

The second version of clique formulas that we consider is the

block encodingClique
block
(G,k). This formula differs from the pre-

vious ones in that it requires a k-clique that has a certain “block-

respecting” structure. Let V1 Û∪V2 Û∪ . . . Û∪Vk = V be a balanced k-
partition ofV . This formula, defined over variables xv , encodes the
fact that the graph contains a transversal k-clique, that is, a k-clique
in which each clique member belongs to a different block. Formally,

for any positive k and n, the formula Clique
block
(G,k) consists of

the following set of clauses:

¬xu ∨ ¬xv u,v ∈ V ,u , v, {u,v} < E , (3a)∨
v ∈Vi

xv i ∈ [k] , (3b)

¬xu ∨ ¬xv i ∈ [k],u,v ∈ Vi ,u , v . (3c)

Note that a graph can contain a k-clique but contain no transver-

sal k-clique for a given partition. Intuitively it is clear that proving

that a graph does not contain a transversal k-clique should be easier
than proving it does not contain any k-clique, since any proof of

the latter fact must in particular establish the former. We make this

intuition formal below.

Lemma 2.2 ([3]). For any graph G and any k ∈ N+, the size of
a minimum regular resolution refutation of Clique(G,k) is bounded
from below by the size of a minimum regular resolution refutation of
Clique

block
(G,k).

This lemma was proven in [3] for tree-like and for general reso-

lution via a restriction argument, and it is straightforward to see

that the same proof holds for regular resolution.

3 EASY GRAPHS FOR REGULAR RESOLUTION
Before proving our main nΩ(k ) lower bound, in this section we

exhibit classes of graphs whose clique formulas have regular reso-

lution refutations of fixed-parameter tractable length, i.e., length

f (k) · nO (1) for some function f . This illustrates the strength of

regular resolution for the k-clique problem. We note that the upper

bounds claimed in this section hold not only for Clique(G,k) but
even for the subformula Clique∗(G,k) that omits the functionality

axioms (2c).

The first example is the class of (k − 1)-colourable graphs. Such
graphs are hard for tree-like resolution [6], and the known algo-

rithms that distinguish them from graphs that contain k-cliques
are highly non-trivial [17, 22]. The second example is the class of

graphs that have a homomorphism into a fixed k-clique free graph.
Recall that a homomorphism from a graph G = (V ,E) into a

graph G ′ = (V ′,E ′) is a mapping h : V → V ′ that maps edges

{u,v} ∈ E into edges {h(u),h(v)} ∈ E ′. A graph is (k−1)-colourable
if and only if it has a homomorphism into the (k − 1)-clique, which
is of course k-clique free. Therefore our second example is a gener-

alization of the first one (but the function f (k) becomes larger).

Both upper bounds follows from a generic procedure, based on

Algorithm 1, that builds read-once branching programs for the

falsified clause search problem for Clique∗(G,k).
Given a k-clique free graph G define

I (G) =
{
G

[
N̂ (R)

]
: R is a clique in G

}
. (4)

Proposition 3.1. There is an efficiently constructible read-once
branching program for the falsified clause search problem on formula
Clique∗(G,k) of size at most |I (G)| · k2 · |V (G)|2.

Proof. We build the branching program recursively, following

the strategy laid out by Algorithm 1. For the base case k = 1, G
must be the graph with no vertices. The branching program is a

single sink node that outputs the clique axiom of index 1, i.e., the

empty clause.

For k > 1, fix n = |V (G)| and an ordering v1, . . . ,vn of the

vertices in V (G). We first build a decision tree T by querying the

variables xv1,k ,xv2,k , . . . in order, until we get an answer 1, or until

all variables with second index k have been queried. If xvj ,k = 0

for all j ∈ [n] then the kth clique axiom (2b) is falsified by the

assignment (see line 14). Otherwise, let v be the first vertex in

the order where xv,k = 1. The decision tree now queries xw,i
for all w < N (v) and all i < k to check whether an edge axiom

involving v is falsified (lines 4–6). If any of these variables is set

to 1 the branching stops and the leaf node is labelled with the

corresponding edge axiom ¬xv,k ∨ ¬xw,i .

The decision tree T built so far has at most kn2 nodes, and we

can identify n “open” leaf nodes av1
,av2
, . . . ,avn , where avi is the

leaf node reached by the path that sets xvi ,k = 1 and that does

yet determine the answer to the search problem. Let us focus on

a specific node av for some v ∈ V (G). The partial assignment

path(av ) sets v to be the kth member of the clique and no vertex

in V (G) \ N (v) to be in the clique. Let Gv be the subgraph induced
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Algorithm 1 Read-once branching program for the falsified clause

search problem on Clique∗(G,k).

Input k ∈ N+, a k-clique free graph G, an assignment

α : {xv,i for v ∈ V (G), i ∈ [k]} → {0, 1}
Output A clause of Clique∗(G,k) falsified by α

1: procedure Search(G,k,α )
2: for v ∈ V (G) do
3: if α(xv,k ) = 1 then
4: forw < N (v) and i < k do
5: if α(xw,i ) = 1 then
6: return edge axiom ¬xv,k ∨ ¬xw,i (2a).

7: end if
8: end for
9: G ′ ← G[N (v)]
10: α ′ ← α restricted to variables xw, j for w ∈ V (G

′)

and 1 ≤ j ≤ k − 1
11: return Search(G ′,k − 1,α ′)
12: end if
13: end for
14: return the kth clique axiom (2b).

15: end procedure

on G by N (v), let Sv be the set of variables xw,i forw ∈ N (v) and
i < k , and let ρv be the partial assignment setting xw,i = 0 for

w < N (v) and i < k . Clearly ρv ⊆ path(av ).
By the inductive hypothesis there exists a branching program Bv

that solves the search problem on Clique∗(Gv ,k − 1) querying

only variables in Sv . This corresponds to the recursive call for the

subgraph Gv and k − 1 (lines 9–11). If we attach each Bv to av we

get a complete branching program for Clique∗(G,k). This is read-
once because Bv only queries variables in Sv and these variables

are not in path(av ).
To prove that the composed program is correct we consider

an assignment σ to the variables in Sv and show that the clause

output by Bv on σ is also a valid output for the search problem

on Clique∗(G,k), i.e., it is falsified by the assignment path(av ) ∪ σ .
Actually we show the stronger claim that it is falsified by ρv ∪ σ ,
which is a subset of path(av )∪σ . To this end, note that if the output
of Bv on σ is an edge axiom of Clique∗(Gv ,k − 1), this must be

some ¬xu,i ∨ ¬xw, j for i, j < k , which is also an edge axiom of

Clique∗(G,k) and is falsified by σ ⊆ ρv ∪ σ . Now if the output

of Bv on σ is the ith clique axiom of Clique∗(Gv ,k − 1), then σ
falsifies

∨
w ∈N (v) xv,i , and therefore ρv ∪ σ falsifies the ith clique

axiom in formula Clique∗(G,k).
The construction so far is correct but produces a very large

branching program (in particular, a tree-like one). In order to create

a smaller branching program, we observe that if u,v ∈ V (G) are
such that N (u) = N (w) then Gu = Gw , Bu = Bw and ρu = ρw . In
this case, we can identify nodes au and aw , resulting in a node we

denote a∗, and identify the branching programs Bu and Bw . The
correctness of this new program is due to the fact that even after

the identification of vertices ρu ⊆ path(a∗) and ρw ⊆ path(a∗).
This process leads to having only one subprogram for each distinct

induced subgraph at each level of the recursion.

In order to bound the size of this program, we decompose it

into k levels. The source is at level zero and corresponds to the

graphG. At level i there are nodes corresponding to all subgraphs

induced by the common neighbourhood of cliques of size i . Each
node in the ith level connects to the nodes of the (i + 1)th level by

a branching program of size at most kn2. Notice that an induced

subgraph in I (G) cannot occur twice in the same layers, so the

total size of the final branching program is at most |I (G)| · k2n2

nodes. □

We now proceed to prove the upper bounds mentioned previ-

ously. A graph G that has a homomorphism into a small k-clique
free graph H may still have a large set I (G), making Proposition 3.1

inefficient. The first key observation is that if G has a homomor-

phism into a graph H then it is a subgraph of a blown up version

of H , namely, of a graph obtained by transforming each vertex of H
into a “cloud” of vertices where a cloud does not contain any edge,

two clouds corresponding to two adjacent vertices in H have all

possible edges between them, and two clouds corresponding to two

non-adjacent vertices in H have no edges between them. A second

crucial point is that ifG ′ is a blown up version ofH then it turns out

that |I (G ′)| = |I (H )|, making Proposition 3.1 effective for G ′. The
upper bound then follows from observing that the task of proving

that G is k-clique free should not be harder than the same task for

a supergraph of G. Indeed Fact 3.2 formalises this intuition. It is

interesting to observe that the constructions in Proposition 3.1 and

in Fact 3.2 are efficient. The non-constructive part is guessing the

homomorphism to H .

Fact 3.2. Let G = (V ,E) and G ′ = (V ′,E ′) be graphs with no
k-clique such that V ⊆ V ′ and E ⊆ E ′ ∩

(V
2

)
. If Clique∗(G ′,k) has a

(regular) refutation of length L, thenClique∗(G,k) also has a (regular)
refutation of length L.

Proof. Consider the partial assignment ρ that sets xv,i = 0 for

every v < V and i ∈ [k]. The restricted formula Clique∗(G ′,k)↾ρ is

isomorphic toClique∗(G̃,k), whereV (G̃) = V and E(G̃) = E ′ ∩
(V
2

)
,

and thus, by Fact 2.1, has a (regular) refutation π of length at most L.
Removing edges from a graph only introduces additional edge

axioms (2a) in the corresponding formula, thereforeClique∗(G̃,k) ⊆
Clique∗(G,k) and π is a valid refutation ofClique∗(G,k) aswell. □

It was shown in [6] that thek-clique formula of a complete (k−1)-
partite graph on n vertices has a regular resolution refutation of

length 2
knO (1), although the regularity is not stressed in that paper.

Since it is instructive to see how this refutation is constructed in

this framework, we give a self-contained proof.

Proposition 3.3 ([6, Proposition 5.3]). IfG is a (k−1)-colourable
graph on n vertices, then Clique∗(G,k) has a regular resolution refu-
tation of length at most 2kk2n2.

Proof. Let V = V (G) and let V1 Û∪V2 Û∪ . . . Û∪V(k−1) be a partition
of V into colour classes. Define the graph G ′ = (V ,E ′) where the
edge set E ′ has an edge between any pair of vertices belonging to

two different colour classes. ClearlyG is a subgraph ofG ′. Observe
that any clique R in G ′ has at most one vertex in each colour class,

and that the common neighbours of R are all the vertices in the

colour classes not touched by R.
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Therefore, there is a one-to-one correspondence between the

members of I (G ′) and the subsets of [k − 1]. By Proposition 3.1

there is a read-once branching program for the falsified clause

search problem on formula Clique∗(G ′,k) of size at most 2
kk2n2.

This read-once branching program corresponds to a regular resolu-

tion refutation of Clique∗(G ′,k) of the same size. By Fact 3.2 there

must be a regular resolution refutation of size at most 2
kk2n2 for

Clique∗(G,k) as well. □

Next we generalize Proposition 3.3 to graphs G that have a ho-

momorphism to a k-clique free graph H .

Proposition 3.4. IfG is a graph onn vertices that has a homomor-
phism into a k-clique free graph H onm vertices, then Clique∗(G,k)
has a regular resolution refutation of length at mostmkk2n2.

Proof. Fix a homomorphism h :V (G) → V (H ) and an ordering

u1, . . . ,um of the vertices ofH . LetV1 Û∪V2 Û∪ . . . Û∪Vm be the partition

of V (G) such that Vi is the set of vertices of G mapped to ui by h.
We define the graph G ′ = (V ,E ′) where

E ′ =
⋃

{ui ,uj }∈E(H )

Vi ×Vj , (5)

that is,G ′ is a blown up version of H that containsG as a subgraph.

To prove our result we note that, by Proposition 3.1, there is a read-

once branching program for the falsified clause search problem on

Clique∗(G ′,k)—and hence also a regular resolution refutations of

the same formula—of size at most |I (G ′)| · k2n2. This implies that,

by Fact 3.2, there is a regular resolution refutation of Clique∗(G,k)
of at most the same size.

To conclude the proof it remains only to show that |I (G ′)| ≤ mk
.

By construction, h maps injectively a clique R ⊆ V (G ′) into a clique

RH ⊆ V (H ) of the same size. Moreover, note that if U = N̂ (RH ),

then N̂ (R) = ∪ui ∈UVi . Therfore, for any clique R′ ⊆ V (G ′) that

is mapped by h to RH it holds that N̂ (R) = N̂ (R′), i.e., N̂ (R′) is
completely characterized by the clique in H it is mapped to. Thus

I (G) has at most one element for each clique in H and we have that

|I (G ′)| = |I (H )|. Finally, note that |I (H )| ≤ mk
since, being k-clique

free, H cannot have more thanmk
cliques. □

4 RANDOM GRAPHS ARE HARD
The main result of this paper is an average case lower bound of

nΩ(k ) for regular resolution for the k-clique problem. As we saw in

Section 2, the k-clique problem can be encoded in different ways

and depending on the preferred formula the range of k for which

we can obtain a lower bound differs. In this section we present a

summary of our results for the different encodings.

Theorem 4.1. For any real constant ϵ > 0, any sufficiently large
integer n, any positive integer k ≤ n1/4−ϵ , and any real ξ > 1, if
G ∼ G (n,n−2ξ /(k−1)) is an Erdős-Rényi random graph, then, with
probability at least 1 − exp(−

√
n), any regular resolution refutation

of Clique
block
(G,k) has length at least nΩ(k/ξ

2).

The parameter ξ determines the density of the graph: the larger ξ
the sparser the graph and the problem of determining whetherG
contains a k-clique becomes easier. For constant ξ , where the edge
probability is somewhat close to the threshold for containing a

k-clique, the theorem yields a nΩ(k ) lower bound which is tight up

to the multiplicative constant in the exponent. The lower bound

decreases smoothly with the edge density and is non-trivial for

ξ = o(
√
k).

A problem which is closely related to the problem we consider is

that of distinguishing a random graph sampled from G (n,p) from
a random graph from the same distribution with a planted k-clique.
The most studied setting is when p = 1/2. In this scenario the

problem can be solved in polynomial time with high probability

for k ≈
√
n [1, 20]. It is still an open problem whether there exists

a polynomial time algorithm solving this problem for logn ≪
k ≪

√
n. For G ∼ G (n, 1/2), Theorem 4.1 implies that to refute

Clique
block
(G,k) asymptotically almost surely regular resolution

requires nΩ(logn) size for k = O(logn) and super-polynomial size

for k = o(log2 n).
An interesting question is whether Theorem 4.1 holds for larger

values of k . We show that for the formula Clique(G,k) (recall that
by Lemma 2.2 this encoding is easier for the purpose of lower

bounds) we can prove the lower bound for k ≤ n1/2−ϵ as long as

the edge density of the graph is close to the threshold for containing

a k-clique.

Theorem 4.2. For any real constant ϵ > 0, any sufficiently large
integer n, any positive integer k , and any real ξ > 1 such that k

√
ξ ≤

n1/2−ϵ , if G ∼ G (n,n−2ξ /(k−1)) is an Erdős-Rényi random graph,
then, with probability at least 1 − exp(−

√
n), any regular resolution

refutation of Clique(G,k) has length at least nΩ(k/ξ
2).

In this extended abstract we prove Theorem 4.2 and we refer to

the upcomming full-length version of this paper for the proof of

Theorem 4.1. We note, however, that both proofs are very similar

and having seen one it is an easy exercise to obtain the other. The

proof of Theorem 4.2 is deferred to Section 6 and is based on a

general lower bound technique we develop in Section 5.

5 CLIQUE-DENSENESS IMPLIES HARDNESS
In this section we define a combinatorial property of graphs, which

we call clique-denseness, and prove that if a k-clique-free graphG is

clique-dense with the appropriate parameters, then this implies a

lower boundnΩ(k ) on the length of any regular resolution refutation
of the k-clique formula on G.

In order to argue that regular resolution has a hard time certi-

fying the k-clique-freeness of a graph G, one property that seems

useful to have is that for every small enough clique in the graph

there are many ways of extending it to a larger clique. In other

words, if R ⊆ V forms a clique and R is small, we would like the

common neighbourhood N̂V (R) to be large. This motivates the

following definitions.

Definition 5.1 (Neighbour-dense set). Given a graph G = (V ,E)
and q, r ∈ R+, a set W ⊆ V is q-neighbour-dense for R ⊆ V if��N̂W (R)�� ≥ q. We say thatW is (r ,q)-neighbour-dense if it is q-neigh-
bour-dense for every R ⊆ V of size |R | ≤ r .

IfW is an (r ,q)-neighbour-dense set, then we know that any

clique of size r can be extended to a clique of size r + 1 in at least q
different ways by adding some vertex ofW . Note, however, that
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the definition of (r ,q)-neighbour-dense is more general than this

since R is not required to be a clique.

We next define a more robust notion of neighbour-denseness.

For some settings of r and q of interest to us it is too much to

hope for a setW which is q-neighbour-dense for every R ⊆ V of

size at most r . In this case we would still like to be able to find a

“mostly neighbour-dense” setW in the sense that we can “localize”

bad sets R ⊆ V of size |R | ≤ r , i.e., those for whichW fails to be

q-neighbour-dense.

Definition 5.2 (Mostly neighbour-dense set). Given G = (V ,E)
and r ′, r ,q′, s ∈ R+ with r ′ ≥ r , a setW ⊆ V is (r ′, r ,q′, s)-mostly
neighbour-dense if there exists a set S ⊆ V of size |S | ≤ s such that

for every R ⊆ V with |R | ≤ r ′ for whichW is not q′-neighbour-
dense, it holds that |R ∩ S | ≥ r .

In what follows, it might be helpful for the reader to think of r ′

and r as linear in k and q and s as polynomial in n, where we also
have that s ≪ q.

Now we are ready to define a property of graphs that makes it

hard for regular resolution to certify that graphs with this property,

but without k-cliques, are indeed k-clique-free.

Definition 5.3 (Clique-dense graph). Givenk ∈ N+ and t , s, ε ∈ R+,
1 ≤ t ≤ k , we say that a graphG = (V ,E) is (k, t , s, ε)-clique-dense
if there exist r ,q ∈ R+, r ≥ 4k/t2, such that

(1) V is (tr , tq)-neighbour-dense, and
(2) every (r ,q)-neighbour-dense setW ⊆ V is (tr , r ,q′, s)-mostly

neighbour-dense for q′ = 3εks1+ε log s .

Theorem 5.4. Given k ∈ N+ and t , s, ε ∈ R+ if the graph G is
(k, t , s, ε)-clique-dense, then every regular resolution refutation of the
CNF formula Clique(G,k) has length at least 1√

2

sεk/t
2

.

The value of q′ in Definition 5.3 is tailored so that Theorem 4.2

holds for k ≪ n1/2 on graphs with edge density close to the thresh-

old for having a k-clique. Setting q′ = εrs1+ε log s and making the

necessary modifications in the proof would yield Theorem 4.2 for a

larger range of edge densities but only for k ≪ n2/5.
We will spend the rest of this section establishing Theorem 5.4.

Fix r ,q ∈ R+ witnessing that G is (k, t , s, ε)-clique-dense as per

Definition 5.3. We first note that we can assume that tr ≤ k since

otherwise, by property 1 of Definition 5.3, G contains a k-clique
and the theorem follows immediately.

By the discussion in Section 2 it is sufficient to consider read-once

branching programs, since they are equivalent to regular resolution

refutations, and so in what follows this is the language in which

we will phrase our lower bound. Thus, for the rest of this section

let P be an arbitrary, fixed read-once branching program that solves

the falsified clause search problem forClique(G,k). We will use the

convention of referring to “vertices” of the graph G and “nodes” of

the branching program P to distinguish between the two.

Recall that for a node a of P , β(a) denotes the maximal partial

assignment that is contained in any assignment σ such that the path

path(σ ) passes through a. For any partial assignment β we write β1

to denote the partial assignment that contains exactly the variables

that are set to 1 in β . Clearly, if β falsifies an edge axiom or a func-

tionality axiom, then so does β1. Furthermore, for any β ′ ⊆ β1, if β ′

falsifies an edge axiom or a functionality axiom, so does β1. We will

use this monotonicity property of partial assignments throughout

the proof.

For each node a of P and each index i ∈ [k] we define two sets

of vertices

V 0

i (a) = {v ∈ V | β(a) sets xv,i to 0} (6a)

V 1

i (a) = {v ∈ V | β(a) sets xv,i to 1} (6b)

of G. Observe that for β = β(a) the set of vertices referenced by

variables in β1 is
⋃
i V

1

i (a).

Intuitively, one can think ofV 0

i (a) andV
1

i (a) as the sets of vertices
v for which the variable xv,i is assigned 0 and 1, respectively, that

are guaranteed to be “remembered” at the node a (in the language

of resolution, they correspond to negative and positive occurrences

of variables in the clause Da associated with the node a). Other
assignments to variables xu,i for u < V

0

i (a) ∪ V
1

i (a) encountered
along some path to a have been “forgotten” and may not be queried

any more on any path starting at a. Formally, we say that a vari-

able xv,i is forgotten at a if there is a path from the source of P
to a passing through a node b where xv,i is queried, but v is not

in V 0

i (a) nor in V
1

i (a). Furthermore, we say index i is forgotten at a
if for some vertex v the variable xv,i is forgotten at a. Of utter
importance is the fact that these notions are persistent: if a variable

or an index is forgotten at a node a, then it will also be the case

for any node reachable from a by a path. We say that a path in P
ends in the ith clique axiom if the clause that labels its last node

is the clique axiom (2b) of Clique(G,k) with index i . The above

observation implies that the index i cannot be forgotten at any

node along such a path.

We establish our lower bound via a bottleneck counting argu-

ment for paths in P . To this end, let us define a distribution D over

paths in P by the following random process. The path starts at the

source and ends whenever it reaches a sink of P . At an internal

node a with successor nodes a0 and a1, reached by edges labelled 0

and 1 respectively, the process proceeds as follows.

(1) If X (a) = xu,i and i is forgotten at a then the path proceeds

via the edge labelled 0 to a0.
(2) If X (a) = xu,i and β(a) ∪ {xu,i = 1} falsifies an edge ax-

iom (2a) or a functionality axiom (2c), then the path proceeds

to a0.
(3) Otherwise, an independent (rs−(1+ε )/2ek)-biased coin is tossed

with outcomeγ ∈ {0, 1} and the random path proceeds to aγ .

We say that in cases (1) and (2) the answer to the query X (a) is
forced. Note that any path α in the support ofD must end in a clique

axiom since α does not falsify any edge or functionality axiom by

construction. Moreover, a property that will be absolutely crucial is

that only answers 0 can be forced—answers 1 are always the result

of a coin flip.

Claim 5.5. Every path in the support of D sets at most k variables
to 1.

Proof. Let α be a path in the support of D . We argue that for

each i ∈ [k] at most one variable with second index i is set to 1

on α . Let a and b be two nodes that appear in this order in α . If for
some i ∈ [k], and for some u,v ∈ V , xu,i is set to 1 by α at node a
and xv,i is queried at b, then v , u by regularity and, by definition

of D , the answer to query xv,i will be forced to 0, either to avoid
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violating a functionality or an edge axiom, or because i is forgotten
at b. □

Let us call a pair (a,b) of nodes of P useful if there exists an

index i such that V 1

i (b) = ∅, i is not forgotten at b, and the set

V 0

i (b) \V
0

i (a) is (r ,q)-neighbour-dense. For each useful pair (a,b),
let i(a,b) be an arbitrary but fixed index witnessing that (a,b) is
useful. A path is said to usefully traverse a useful pair (a,b) if it
goes through a and b in that order and sets at most ⌈k/t⌉ variables
to 1 between a and b (with a included and b excluded).

As already mentioned, the proof of Theorem 5.4 is based on a

bottleneck counting argument in the spirit of [12], with the twist

that we consider pairs of bottleneck nodes. To establish the theorem

we make use of the following two lemmas which will be proven

subsequently.

Lemma 5.6. Every path in the support of D usefully traverses a
useful pair.

Lemma 5.7. For every useful pair (a,b), the probability that a
random α chosen from D usefully traverses (a,b) is at most 2s−εr/2.

Combining the above lemmas, it is immediate to prove Theo-

rem 5.4. By Lemma 5.6 the probability that a random path α sam-

pled from D usefully traverses some useful pair is 1. By Lemma 5.7,

for any fixed useful pair (a,b), the probability that a random α
usefully traverses (a,b) is at most 2s−εr/2. By a standard union

bound argument, it follows that the number of useful pairs is

at least
1

2
sεr/2, so the number of nodes in P cannot be smaller

than
1√
2

sεr/4 ≥ 1√
2

sεk/t
2

.

To conclude the proof it remains only to establish Lemmas 5.6

and 5.7.

Proof of Lemma 5.6. Consider any path in the support of D .

By the definition of our random process this path ends in the i∗th
clique axiom for some i∗ ∈ [k]. By Claim 5.5, the path sets at most k
variables to 1 and hence we can split it into t pieces by nodes

a0,a1, . . . ,at (a0 is the source, at the sink) so that between aj
and aj+1 at most ⌈k/t⌉ variables are set to 1. It remains to prove

that for at least one j ∈ [t] the set

Wj = V
0

i∗ (aj ) \V
0

i∗ (aj−1) (7)

is (r ,q)-neighbour-dense. Note that this will prove Lemma 5.6 since

by construction (aj−1,aj ) is then a pair that is usefully traversed

by the path.

Towards contradiction, assume instead that noWj is (r ,q)-neigh-
bour-dense, i.e., that for all j ∈ [t] there exists a set of vertices

Rj ⊆ V with |Rj | ≤ r such that

��N̂Wj (Rj )
�� ≤ q. Let R =

⋃
j ∈[t ] Rj .

Since the path ends in the i∗th clique axiom we have V 0

i∗ (at ) = V ,

and since i∗ is not forgotten along the path, it holds thatV 0

i∗ (aj−1) ⊆

V 0

i∗ (aj ) for each j ∈ [t]. It follows that the setsW1, . . . ,Wt in (7)

form a partition of V , and therefore��N̂V (R)�� = ∑
j ∈[t ]

��N̂Wj (R)
�� ≤ ∑

j ∈[t ]

��N̂Wj (Rj )
�� ≤ tq . (8)

Since |R | ≤
∑
j ∈[t ] |Rj | ≤ tr this contradicts the assumption that V

is (tr , tq)-neighbour-dense. Lemma 5.6 follows. □

Proof of Lemma 5.7. Fix a useful pair (a,b). Let E denote the

event that a random path sampled from D usefully traverses (a,b).
Let i∗ = i(a,b), V 1(a) =

⋃
j ∈[k ]V

1

j (a), andW = V 0

i∗ (b) \ V
0

i∗ (a).

Notice thatW is guaranteed to be (r ,q)-neighbour-dense by our

definition of i(a,b). SinceG is (k, t , s, ε)-clique-dense by assumption,

this implies thatW is (tr , r ,q′, s)-mostly neighbour-dense, and we

let S be the set that witnesses this as per Definition 5.2. We bound

the probability of the event E by a case analysis based on the size

of the setV 1(a). We remark that all probabilities in the calculations

that follow are over the choice of α ∼ D .

Case 1 (|V 1(a)| > r/2): In this case, we simply prove that already

the probability of reaching a is small. By definition of |V 1(a)|, we
have that |β1(a)| = |V 1(a)|. Recall that every answer 1 is necessarily

the result of a (rs−(1+ε )/2ek)-biased coin flip, and that all these

decisions are irreversible. That is, if a path ever decides to set a

variable in V 1(a) to 0, then its case is lost and it is guaranteed to

miss a. Thus we can upper bound the probability of the event E by

the probability that a randomα passes through a, and, in particular,

by the probability of setting all variables in β1(a) to 1 as follows:

Pr[E] ≤ Pr[α passes through a] (9)

≤
(
rs−(1+ε )/2ek

) |β 1(a) |
(10)

≤ s−ε |β
1(a) |

(11)

= s−ε |V
1(a) |

(12)

≤ 2s−εr/2 , (13)

where for (11) we use the fact that r ≤ k , which follows from tr ≤ k
and t ≥ 1.

Case 2 (|V 1(a)| ≤ r/2): For every path α , let R(α) denote the
set of vertices u for which the path α sets some variable xu,i to 1
at some node between a and b (with a included and b excluded);

note that R(α) = ∅ if α does not go through a and b, and that

|R(α)| ≤ ⌈k/t⌉ for all paths α that satisfy the event E. For the sets

R0 = {R : |R | ≤ ⌈k/t⌉ and
��N̂W (R ∪V 1(a))

�� < q′} (14a)

R1 = {R : |R | ≤ ⌈k/t⌉ and
��N̂W (R ∪V 1(a))

�� ≥ q′} (14b)

we have that

Pr[E] = Pr[E and R(α ) ∈ R0] + Pr[E and R(α ) ∈ R1] . (15)

The first term in (15) is bounded from above by the probability of

R(α ) ∈ R0. Note that |R | ≤ ⌈k/t⌉ ≤ 2k/t ≤ rt/2 (since r ≥ 4k/t2)
for R ∈ R0. Hence we have |R ∪V

1(a)| ≤ rt/2+ r/2 ≤ rt and there-
fore |(R ∪V 1(a)) ∩ S | ≥ r by the choice of S . Thus, the probability
of R(α ) ∈ R0 is bounded by the probability that |R(α ) ∩ S | ≥ r/2
since |V 1(a)| ≤ r/2. But since S is small, we can now apply the

873



Clique Is Hard on Average for Regular Resolution STOC’18, June 25–29, 2018, Los Angeles, CA, USA

union bound and conclude that

Pr[E and R(α ) ∈ R0] ≤ Pr[R(α ) ∈ R0] (16)

≤ Pr[|R(α ) ∩ S | ≥ r/2] (17)

≤

(
|S |k

r/2

) (
rs−(1+ε )

2ek

)r/2
(18)

≤

(
2e|S |k

r

)r/2 (
rs−(1+ε )

2ek

)r/2
(19)

≤ s−εr/2 . (20)

We now bound the second term in (15). First note that, by defini-

tion ofW, if α is a path that passes through a and b in this order,

then all variables xu,i∗ with u ∈W must be set to 0 in α at some

node between a and b. For each path in the support ofD that passes

through a and b, some of the variables xu,i∗ with u ∈W will be set

to zero as a result of a coin flip and others will be forced choices.

Fix a path α contributing to the second term in (15). We claim

that along this path at least q′ variables xu,i∗ (u ∈W ) are set to 0
as a result of a coin flip.

Indeed, sinceV 1

i∗ (b) = ∅ and i
∗
is not forgotten at b, by the mono-

tonicity property the same holds for every node along α before b.
This implies that the answer to a query of the form xu,i∗ (u ∈W )
made along α cannot be forced by neither item (1) (forgetfulness)

in the definition of D nor by a functionality axiom. Moreover, since

V 1(c) ⊆ R(α)∪V 1(a) for any node c on the path α between a and b,

it holds that all variables xu,i∗ with u ∈ N̂W (R(α) ∪V
1(a)) can not

be forced to 0 by an edge axiom either. Since there are at least q′ of
them, this proves the claim.

Now the analysis of the second term in (15) is completed by

the same Markov chain argument as in Case 1 above (noting that

irreversibility of decisions still takes place):

Pr[E and R(α ) ∈ R1]

≤ Pr[α flips ≥ q′ coins and gets all 0s] (21)

≤
(
1 − rs−(1+ε )/2ek

)q′
(22)

≤ s−εr/2 . (23)

Adding (20) and (23) we obtain the lemma. □

6 RANDOM GRAPHS ARE CLIQUE-DENSE
In this section we show that asymptotically almost surely an Erdős-

Rényi random graphG ∼ G (n,p) is (k, t , s, ε)-clique-dense for the
right choice of parameters.

Theorem 6.1. For any real constant ε ∈ (0, 1/2), any sufficiently
large integer n, any positive integer k and any real ξ > 1 such that
k
√
ξ ≤ n1/2−ε , if G ∼ G (n,n−2ξ /(k−1)) is an Erdős-Rényi random

graph then with probability at least 1 − exp(−
√
n) it holds thatG is

(k, t , s, ε)-clique-dense with t = 64ξ/ε and s = (n/ξ )1/2.

As a corollary of Theorem 5.4 and Theorem 6.1 we obtain Theo-

rem 4.2, the main result of this paper.

Proof of Theorem 4.2. Clearly t ≥ 128 ≥ 1 as required by Def-

inition 5.3. We can also assume w.l.o.g. that t ≤ k since otherwise

k/ξ 2 ≤ 64/(ξϵ) ≤ O(1) and the bound becomes trivial. By plugging

in the parameters given by Theorem 6.1 to Theorem 5.4 we imme-

diately get the stated lower bound on the length of any regular

refutation π of Clique(G,k)

|π | ≥
1

√
2

sεk/t
2

≥ nΩ(k/ξ
2) , (24)

for which we have to note that s ≥ n1/4 since ξ ≤ t ≤ k ≤ n1/2. □

We will spend the rest of this section proving Theorem 6.1. Let

δ = 2ξ/(k − 1). We show that, with probability at least 1 − e−
√
n
,

the random graphG is (k, t , s, ε)-clique-dense for parameters as in

the statement of the theorem, r = 4k/t2 and q = n1−tδ r

4t .

Recall that q′ = 3εks1+ε log s . Let us argue that these parameters

satisfy constraints

tδr ≤
ε

6

, (25)

tr logn ≤
n1−tδr

32

·
logn

n1/2
, (26)

qn−tδr s

16tr
≥

n1+2ε/3

2
8

, (27)

q′ ≤
qn−tδr

4

·
3 · 29 logn

nε/6
, (28)

tr ≤
q

2

, (29)

which will be used further on in the proof.

As a first step note that for k ≥ 4

tδr =
8ξk

t(k − 1)
≤

ε

6

, (30)

and hence (25) holds. Equation (26) follows from the chain of in-

equalities

tr logn =
4k logn

t
≤

n1/2−ε logn

32

≤
n1−tδr

32

·
logn

n1/2
. (31)

To obtain (27) observe that

qn−tδr s

16tr
=

n1−2tδr+1/2

2
8kξ 1/2

≥
n1−2tδr+ε

2
8

≥
n1+2ε/3

2
8

. (32)

To see that (28) holds, note that

q′ = 3εks1+ε log s (33)

≤
3εkn(1+ε )/2 logn

2ξ 1/2
(34)

=
3 · 25 · kξ 1/2n(1+ε )/2 logn

t
(35)

≤
3 · 29 · n1−ε/2 logn

16t
(36)

≤
qn−tδr

4

·
3 · 29 logn

nε/6
. (37)

Finally, for (29), we just observe that

tr =
4k

t
≤

4k2

t2
≤

n1−2ε

16t
≤

q

2

, (38)

where we use that k ≥ t and t ≥ 64.
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We must now prove that asymptotically almost surely G is

(k, t , s, ε)-clique-dense for the chosen parameters; all probabilities

in this section are over the choice ofG. Let V = V (G).
The fact that asymptotically almost surely V is (tr , tq)-neigh-

bour-dense is quite immediate. First, for any R ⊆ V with |R | ≤ tr ,

E
[��N̂ (R)��] = |V \ R |n−δ |R | (39)

≥ (n − tr )n−δtr (40)

≥

(
n −

q

2

)
n−δtr (41)

≥
n1−δtr

2

, (42)

where (42) follows from (29) and the trivial fact that q ≤ n. Hence,
we can bound the probability thatV is not (tr , tq)-neighbour-dense
by

Pr

[
∃R ⊆ V , |R | ≤ tr ∧

��N̂ (R)�� ≤ tq
]

≤

tr∑
j=1

(
n

j

)
max

R
Pr

[��N̂ (R)�� ≤ tq
]

(43)

≤ ntr max

R
Pr

[��N̂ (R)�� ≤ n1−tδr

4

]
(44)

≤ ntr exp

(
−
n1−tδr

16

)
(45)

≤ exp

(
−
n1−tδr

32

·

(
2 −

logn

n1/2

))
(46)

≤ e
−
√
n . (47)

We note that (43) is a union bound, (44) follows from the definition

of q, (45) is the multiplicative form of Chernoff bound (note that

the events v ∈ N̂ (R) (v ∈ V \ R) are mutually independent), (46)

follows from (26), and (47) holds for large enough n by (25) and the

fact that ε < 1/2.

All that is left to prove is that asymptotically almost surely G
satisfies property 2 in Definition 5.3, that is that every (r ,q)-neigh-
bour-dense setW ⊆ V is (tr , r ,q′, s)-mostly neighbour-dense. For

shortness let P be the event thatG satisfies this property. We wish

to show that Pr[¬P] ≤ e
−Ω(n)

.

Given an (r ,q)-neighbour-dense setW ⊆ V we will define a

set SW which will be a “candidate witness” of the fact thatW is

(tr , r ,q′, s)-mostly neighbour-dense. First observe that, sinceW is

(r ,q)-neighbour-dense and q′ ≤ q by (28), any set R ⊆ V with

|R | ≤ tr and
��N̂W (R)�� ≤ q′ must be such that |R | > r . We will use a

sequence of such sets R and construct SW in a somewhat greedy

fashion. To this end, the following definition will be useful. A tuple

of sets (R1, . . . ,Rm ) is said to be r -disjoint if
��Ri ∩ ( ⋃

j<i Rj
) �� ≤ r

for every i ∈ [m].

Fix an arbitrary ordering of the subsets of V . Define ®RW =

(R1, . . . ,Rm ) to be a maximally long tuple such that, for every

i = 1, . . . ,m, the setRi is the first in the ordering such that |Ri | ≤ tr ,��N̂W (Ri )�� ≤ q′ and
��Ri ∩ ( ⋃

j<i Rj
) �� ≤ r . Note that ®RW is r -disjoint.

Now let SW =
⋃
i≤m Ri .

Observe that, by maximality of ®RW , any set R ⊆ V with |R | ≤ tr

and

��N̂W (R)�� ≤ q′ must be such that |R ∩ S | > r . This implies that

if |SW | ≤ s then SW witnesses the fact thatW is (tr , r ,q′, s)-mostly

neighbour-dense. Therefore we have that

Pr[¬P] ≤ Pr[∃(r ,q)-neighbour-denseW ⊆ V with |SW | > s] . (48)

Let Q(W ) denote the event that W is (r ,q)-neighbour-dense.

Moreover, letW be the collection of all pairs (W , ®R) such that

W ⊆ V , ®R = (R1, . . . ,Rℓ) for ℓ = ⌈s/tr⌉, Rj ⊆ V and 0 < |Rj | ≤ tr

for each j ∈ [ℓ], and ®R is r -disjoint. Notice that if there exists

an (r ,q)-neighbour-dense W such that ®RW = (R1, . . . ,Rm ) and
|SW | > s , then m ≥ ℓ and (W , (R1, . . . ,Rℓ)) ∈ W. Furthermore,

by definition of ®RW , for every j ∈ [ℓ] it holds that
��N̂W (Rj )�� ≤ q′.

Hence we can conclude that

Pr[¬P]

≤ Pr

[∃(W , ®R) ∈ W Q(W ) ∧ ∀j ∈ [ℓ], ��N̂W (Rj )�� ≤ q′
]

(49)

≤ 2
nntr ℓ max

(W , ®R)∈W
Pr

[
Q(W ) ∧ ∀j ∈ [ℓ], ��N̂W (Rj )�� ≤ q′

]
(50)

≤ 2
nns max

(W , ®R)∈W
Pr

[
Q(W ) ∧ ∀j ∈ [ℓ], ��N̂W (Rj )�� ≤ q

4

n−tδr
]
, (51)

where (51) follows for n large enough from the bound in (28).

Now fix (W , ®R) ∈ W and let Rdj (resp. Rcj ) be the subset of Rj
disjoint from (resp. contained in)

⋃
j′<j Rj′ . Since |R

c
j | ≤ r by defini-

tion, it holds that ifW is (r ,q)-neighbour-dense then
��N̂W (Rcj )�� > q.

Let F(j) be the event that
��N̂W (Rcj )�� > q and

��N̂W (Rj )�� ≤ q
4
n−tδr .

Note that Pr

[
Q(W ) ∧ ∀j ∈ [ℓ], ��N̂W (Rj )�� ≤ q

4
n−tδr

]
is at most

Pr

[∀j ∈ [ℓ], F(j)] . Let F′(j) be the event that F(j ′) holds for all
j ′ ∈ [j − 1]. We have that

Pr

[∀j ∈ [ℓ], F(j)] = ∏
j ∈[ℓ]

Pr

[
F(j)

�� F′(j)] . (52)

We can consider the factors of the previous product separately and

bound each one by

Pr

[
F(j)

�� F′(j)]
≤

∑
U ⊆W
|U | ≥q

Pr

[��N̂U (Rdj )�� ≤ q

4

n−tδr
��� N̂W (R

c
j ) = U ∧ F

′(j)
]
·

· Pr

[
N̂W (R

c
j ) = U

��� F′(j)
]

(53)

≤
∑

U ⊆W
|U | ≥q

Pr

[��N̂U (Rdj )�� ≤ q

4

n−tδr
]
· Pr

[
N̂W (R

c
j ) = U

��� F′(j)
]

(54)

≤
∑

U ⊆W
|U | ≥q

exp

(
−
qn−tδr

16

)
· Pr

[
N̂W (R

c
j ) = U

��� F′(j)
]

(55)

= exp

(
−
qn−tδr

16

)
·
∑

U ⊆W
|U | ≥q

Pr

[
N̂W (R

c
j ) = U

��� F′(j)
]

(56)

≤ exp

(
−
qn−tδr

16

)
. (57)
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Equation (54) follows from the independence of any two events

that involve disjoint sets of potential edges and (55) follows from

the multiplicative Chernoff bound and the fact that

E
[��N̂U (Rdj )��] = |U \ Rdj |n−δ |Rdj | (58)

≥ (|U | − tr )n−δtr (59)

≥
q

2

n−δtr . (60)

So, putting everything together, we have that

Pr[¬P] ≤ 2
nns exp

(
−
qn−tδr ℓ

16

)
(61)

≤ e
(log 2)n+

√
n logn−(n1+2ε/3)/28

(62)

≤ e
−Ω(n) , (63)

where the last inequality holds for n large enough, and the second

to last inequality follows immediately from the bound in (27). This

concludes the proof of Theorem 6.1.

7 CONCLUDING REMARKS
In this paper we prove optimal average-case lower bounds for reg-

ular resolution proofs certifying k-clique-freeness of Erdős-Rényi
graphs not containingk-cliques. These lower bounds are also strong
enough to apply for several state-of-the-art clique algorithms used

in practice.

The most immediate and compelling question arising from this

work is whether the lower bounds for regular resolution can be

strengthened to hold also for general resolution. A closer study of

our proof reveals that there are several steps that rely on regularity.

However, there is no connection per se between regular resolution

and the abstract combinatorial property of graphs that we show

to be sufficient to imply regular resolution lower bounds. Thus,

it is tempting to speculate that this property, or perhaps some

modification of it, might be sufficient to obtain lower bounds also

for general resolution. If so, a natural next step would be to try to

extend the lower bound further to the polynomial calculus proof

system capturing Gröbner basis calculations.

Another interesting question is whether the lower bounds we

obtain asymptotically almost surely for random graphs can also

be shown to hold deterministically under the weaker assumption

that the graph has certain pseudorandom properties. Specifically,

is it possible to get an nΩ(logn) length lower bound for the class of

Ramsey graphs? A graph on n vertices is called Ramsey if it has

no set of ⌈2 log
2
n⌉ vertices forming a clique or independent set.

It is known that for sufficiently large n a random graph sampled

from G (n, 1/2) is Ramsey with high probability. Is it true that for

a Ramsey graph G on n vertices the formula Clique(G, ⌈2 log
2
n⌉)

requires (regular) resolution refutations of length nΩ(logn)? Such
a lower bound is known for tree-like resolution [21] and proving

it for general resolution would have interesting consequences in

other areas of proof complexity [10].
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