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1 INTRODUCTION

Deciding whether a graph has a k-clique is one of the most basic computational problems on
graphs and has been extensively studied in computational complexity theory ever since it ap-
peared in Karp’s list of 21 NP-complete problems [26]. Not only is this problem widely believed
to be intractable to solve exactly (unless P = NP), there does not even exist any polynomial-time
algorithm for approximating the maximum size of a clique to within a factor n1−ϵ for any constant
ϵ > 0, where n is the number of vertices in the graph [24, 62]. Furthermore, the problem appears to
be hard not only in the worst case but also on average in the Erdős–Rényi random graph model—
we know of no efficient algorithms for finding cliques of maximum size asymptotically almost
surely on random graphs with appropriate edge densities [27, 48].

In terms of upper bounds, the k-clique problem can clearly be solved in time roughly nk simply

by checking if any of the
(
n
k

)
many sets of vertices of size k forms a clique. This takes polynomial

time if k is constant. This can be improved slightly to O(nωk/3), where ω ≤ 2.373 is the matrix
multiplication exponent, using algebraic techniques [39], although in practice such algebraic al-
gorithms are outperformed by combinatorial ones [60].

The motivating problem behind this work is to determine the exact time complexity of the clique
problem when k is given as a parameter. As noted above, all known algorithms require time nΩ(k ) .
It appears quite likely that some dependence on k is needed in the exponent, since otherwise
we have the parameterized complexity collapse FPT =W[1] [21]. Even more can be said if we are
willing to believe the Exponential Time Hypothesis [25]—then the exponent has to depend linearly
on k [15], so that the trivial upper bound is essentially tight.

Obtaining such a lower bound unconditionally would, in particular, imply P � NP, and so cur-
rently seems completely out of reach. But is it possible to provenΩ(k ) lower bounds in restricted but
nontrivial models of computation? For circuit complexity, this challenge has been met for circuits
that are of bounded depth [47] or are monotone [14, 49]. In this article, we focus on computational
models that are powerful enough to capture several algorithms that are used in practice.

When analysing such algorithms, it is convenient to view the execution trace as a proof estab-
lishing the maximum clique size for the input graph. In particular, if this graph does not have a
k-clique, then the trace provides an efficiently verifiable proof of the statement that the graph is
k-clique-free. If one can establish a lower bound on the length of such proofs, then this implies a
lower bound on the running time of the algorithm, and this lower bound holds even if the algo-
rithm is a non-deterministic heuristic that somehow magically gets to make all the right choices.
This brings us to the topic of proof complexity [16], which can be viewed as the study of upper and
lower bounds in restricted nondeterministic computational models.

Using a standard reduction from k-clique to SAT, we can translate the problem of k-cliques in
graphs to that of satisfiability of formulas in conjunctive normal form (CNF). If an algorithm
for finding k-cliques is run on a graph G that is k-clique-free, then we can extract a proof of the
unsatisfiability of the corresponding CNF formula—the k-clique formula onG—from the execution
trace of the algorithm. Is it possible to show any non-trivial lower bound on the length of such
proofs? Specifically, does the resolution proof system—the method of reasoning underlying state-
of-the-art SAT solvers [3, 36, 38]—require length nΩ(k ) , or at least nωk (1) (i.e., the exponent as a
function of k is not bounded by a constant), to prove the absence of k-cliques in a graph? This
question was asked in, e.g., [9] and remains open.

The hardness of k-clique formulas for resolution is also a problem of intrinsic interest in proof
complexity, since these formulas escape known methods of proving resolution lower bounds for a
range of interesting values of k including k = O(1). In particular, the interpolation technique [30,
45], the random restriction method [6], and the size-width lower bound [7] all seem to fail.
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To make this more precise, we should mention that some previous works do use the size-width
method, but only for very large k . It was shown in [5] that for n5/6 � k ≤ n/3 resolution requires

length exp
(
nΩ(1)

)
to certify that a dense enough Erdős–Rényi random graph is k-clique-free. The

constant hidden in the Ω(1) increases with the density of the graph and, in particular, for very
dense graphs and k = n/3 the length required is 2Ω(n) . Also, for a specially tailored CNF encoding,
where the ith member of the claimed k-clique is encoded in binary by logn variables, a lower
bound of nΩ(k ) for k ≤ logn can be extracted from a careful reading of [34]. However, in the more
natural unary encodings, where indicator variables specify whether a vertex is in the clique, the
size-width method cannot yield more than a 2Ω(k2/n) lower bound, since there are resolution proofs
of width O(k ). This bound becomes trivial when k ≤

√
n.

In the restricted subsystem of treelike resolution, optimal nΩ(k ) length lower bounds were estab-
lished in [8] for k-clique formulas on complete (k − 1)-partite as well as on average for Erdős–
Rényi random graphs of appropriate edge density. There is no hope to get hard instances for gen-
eral resolution from complete (k − 1)-partite graphs; however, in the same paper it was shown
that all instances from the more general class of (k − 1)-colourable graphs are easy for resolution.
A closer study of these resolution proofs reveals that they are regular, meaning that if the proof
is viewed as a directed acyclic graph (DAG), then no variable is eliminated more than once on
any source-to-sink path.

More generally, regular resolution is an interesting and non-trivial model to analyse for the k-
clique problem, since it captures the reasoning used in many state-of-the-art algorithms used in
practice (for a survey, see, e.g., [37, 44]). Nonetheless, it has remained consistent with state-of-
the-art knowledge that for k ≤ n5/6 regular resolution might be able to certify k-clique-freeness
in polynomial length independent of the value of k .

Our contributions. We prove optimal nΩ(k ) average-case lower bounds for regular resolution
proofs of unsatisfiability for k-clique formulas on Erdős–Rényi random graphs.

Theorem 1.1 (Informal). For any integer k � 4
√
n, given an n-vertex graph G sampled at ran-

dom from the Erdős–Rényi model with the appropriate edge density, regular resolution asymptotically
almost surely requires length nΩ(k ) to certify that G does not contain a k-clique.

At a high level, the proof is based on a bottleneck counting argument in the style of Refer-
ence [23] with a slight twist that was introduced in [46]. In its classical form, such a proof takes
four steps. First, one defines a distribution of random source-to-sink paths on the DAG represen-
tation of the proof. Second, a subset of the vertices of the DAG is identified —the set of bottleneck
nodes—such that any random path must necessarily pass through at least one such node. Third, for
any fixed bottleneck node, one shows that it is very unlikely that a random path passes through
this particular node. Given this, a final union bound argument yields the conclusion that the DAG
must have many bottleneck nodes, and so the resolution proof must be long.

The twist in our argument is that, instead of single bottleneck nodes, we need to define bottle-
neck pairs of nodes. We then argue that any random path passes through at least one such pair but
that few random paths pass through any fixed pair; the latter part is based on Markov chain-type
reasoning similar to [46, Theorems 3.2, 3.5]. Furthermore, it crucially relies on the graph satisfy-
ing a certain combinatorial property, which captures the idea that the common neighbourhood
of a small set of vertices is well distributed across the graph. Identifying this combinatorial prop-
erty is a key contribution of our work. In a separate argument (that, surprisingly, turned out to
be much more elaborate than most arguments of this kind) we then establish that Erdős–Rényi
random graphs of the appropriate edge density satisfy this property asymptotically almost surely.
Combining these two facts yields our average-case lower bound.
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The idea of counting bottlenecks of more than one node comes from [46] and was also used in
[4].

Another contribution of this article is a relatively simple observation that not only is regular
resolution powerful enough to distinguish graphs that contain k-cliques from (k − 1)-colourable
graphs [8], but it can also distinguish them from graphs that have a homomorphism to any fixed
graph H with no k-cliques.

Recent Developments. A preliminary version of this work appeared in the proceedings of
STOC’18 [2]. The techniques used there to prove the nΩ(k ) average-case lower bound for regu-
lar resolution were recently extended by Pang [42] to work for a proof system between regular

and general resolution. In the same paper, Pang also shows a 2Ω(k (1−ϵ ) ) resolution lower bound for
k-clique formulas on Erdős–Rényi random graphs, for k = nc , c < 1/3 and ϵ > 0.

Regarding the proof complexity of k-clique formulas for treelike resolution, the lower bounds
from [8] and [34] were simplified and unified in [33]. The resolution lower bound in [34] for
k-clique formulas on Erdős–Rényi random graphs under the binary encoding was recently
extended to an nΩ(k )/d (s ) lower bound for Res(s ), where s = o((log logn)1/3) and d (s ) is a doubly
exponential function [17].

Paper outline. The rest of this article is organized as follows. Section 2 presents some preliminar-
ies. We show that some nontrivial k-clique instances are easy for regular resolution in Section 3.
Section 4 contains the formal statement of the lower bounds we prove for Erdős–Rényi random
graphs. In Section 5, we define a combinatorial property of graphs and show that clique formulas
on such graphs are hard for regular resolution, and the proof that Erdős–Rényi random graphs sat-
isfy this property asymptotically almost surely is in Section 6. Section 7 explains why our results
imply lower bounds on the running time of state-of-the-art algorithms for k-clique. We conclude
in Section 8 with a discussion of open problems.

2 PRELIMINARIES

We writeG = (V ,E) to denote a graph with verticesV and edges E, whereG is always undirected,
without loops and multiple edges. Given a vertex v ∈ V , we write N (v ) to denote the set of neigh-

bours of v . For a set of vertices R ⊆ V , we write N̂ (R) =
⋂

v ∈R N (v ) to denote the set of common

neighbours of R. For two sets of vertices R ⊆ V andW ⊆ V , we write N̂W (R) = N̂ (R) ∩W to denote
the set of common neighbours of R insideW . For a setU ⊆ V , we denote byG[U ] the subgraph ofG
induced by the setU . For n ∈ N+, we write [n] = {1, . . . ,n}. We say thatV1

.
∪ V2

.
∪ · · ·

.
∪ Vk = V is

a balanced k-partition ofV if for all i, j ∈ [k] it holds that |Vi | ≤ |Vj | + 1. All logarithms are natural
(base e) if not specified otherwise.

Probability and Erdős–Rényi random graphs. We often denote random variables in bold and write
X ∼ D to denote thatX is sampled from the distribution D . A p-biased coin, or a Bernoulli variable,
is the outcome of a coin flip that yields 1 with probability p and 0 with probability 1 − p. We use
the special case of Markov’s inequality saying that if X is non-negative, then Pr[X ≥ 1] ≤ E[X ].
We also need the following special case of the multiplicative Chernoff bound: If X is a binomial
random variable (i.e., the sum of i.i.d. Bernoulli variables) with expectation μ = E[X ], then Pr[X ≤
μ/2] ≤ e−μ/8.

We consider the Erdős–Rényi distribution G (n,p) of random graphs on a fixed setV ofn vertices.
A random graph sampled from G (n,p) is produced by placing each potential edge {u,v} indepen-
dently with probability p, 0 ≤ p ≤ 1 (the edge probability p may be a function of n). A property of
graphs is said to hold asymptotically almost surely on G (n,p (n)) if it holds with probability that
approaches 1 as n approaches infinity.

For a positive integer k , let Xk be the random variable that counts the number of k-cliques in a
random graph from G (n,p). It follows from Markov’s inequality that asymptotically almost surely
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there are no k-cliques in G (n,p) whenever p and k are such that E[X k ] = p (k
2)

(
n
k

)
approaches 0 as

n approaches infinity. This is the case, for example, if p = n−2η/(k−1) for k ≥ 2 and η > 1. Actually,
the clique number, i.e., the size of the largest clique, ω (G ) for a graph G sampled from G (n,p) is a
well studied quantity and very strong concentrations bounds are known for it. For instance, one of
the first concentration results is that ω (G ) = (2 − o(1)) log 1

p
(n) with probability 1 as n → ∞ (see

for instance [10]).

CNF formulas and resolution. A literal over a Boolean variable x is either the variable x itself (a
positive literal) or its negation ¬x (a negative literal). A clause C = �1 ∨ · · · ∨ �w is a disjunction of
literals; we say that the width of C is w . The empty clause will be denoted by ⊥. A CNF formula
F = C1 ∧ · · · ∧Cm is a conjunction of clauses. We think of clauses as sets of literals and of CNF
formulas as sets of clauses, so that order is irrelevant and there are no repetitions. For a formula F
we denote by Vars(F ) the set of variables of F .

A resolution derivation from a CNF formula F is as an ordered sequence of clauses π =
(D1, . . . ,DL ) such that for each i ∈ [L] either Di is a clause in F or there exist j < i and k < i
such that Di is derived from D j and Dk by the resolution rule

B ∨ x C ∨ ¬x
B ∨C , (2.1)

Di = B ∨C, D j = B ∨ x , Dk = C ∨ ¬x . We refer to B ∨C as the resolvent of B ∨ x andC ∨ ¬x over
x , and to x as the resolved variable. The length (or size) of a resolution derivation π = (D1, . . . ,DL )
is L and it is denoted by |π |. A resolution refutation of F , or resolution proof for (the unsatisfiability
of) F , is a resolution derivation from F that ends in the empty clause ⊥.

A resolution derivation π = (D1, . . . ,DL ) can also be viewed as a labelled DAG with the set of
nodes {1, . . . ,L} and edges (j, i ), (k, i ) for each application of the resolution rule deriving Di from
D j and Dk . Each node i in this DAG is labelled by its associated clause Di , and each non-source
node is also labelled by the resolved variable in its associated derivation step in the refutation. A
resolution refutation is called regular if along any source-to-sink path in its associated DAG every
variable is resolved at most once.

For a partial assignment ρ we say that a clause C restricted by ρ, denoted C�ρ , is the trivial 1-
clause if any of the literals inC is satisfied by ρ or otherwise isC with all falsified literals removed.
We extend this definition to CNFs in the obvious way: (C1 ∧ · · · ∧Cm )�ρ = C1�ρ ∧ · · · ∧Cm�ρ . Ap-
plying a restriction preserves (regular) resolution derivations. To see this, observe that in every
application of the resolution rule, the restricted consequence either becomes identically 1, or it is
obtained, as before, by resolving the two restricted premises, or it is a weakening of one of them,
but weakenings can be removed at no cost. Thus, we have the following:

Fact 2.1. Let π be a (regular) resolution refutation of a CNF formula F . For any partial assignment
ρ to the variables of F there is an efficiently constructible (regular) resolution refutation π�ρ of the
CNF formula F�ρ , so that the length of π�ρ is at most the length of π .

Branching programs. A branching program on variables x1, . . . ,xn is a DAG that has one source
node and where every non-sink node is labelled by one of the variables x1, . . . ,xn and has exactly
two outgoing edges labelled 0 and 1. The size of a branching program is the total number of nodes
in the graph. In a read-once branching program it holds in addition that along every path every
variable appears as a node label at most once.

For each node a in a branching program, let X (a) denote the variable that labels a, and let a0

and a1 be the nodes that are reached from a through the edges labelled 0 and 1, respectively. A
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23:6 A. Atserias et al.

truth-value assignment σ : {x1, . . . ,xn } → {0, 1} determines a path in a branching program in the
following way. The path starts at the source node. At an internal node a, the path is extended
along the edge labelled σ (X (a)) so that the next node in the path is aσ (X (a)) . The path ends when
it reaches a sink. We write path(σ ) for the path determined by σ . When extending the path from
a node a to the node aσ (X (a)) , we say that the answer to the query X (a) at a is σ (X (a)) and that the
path sets the variableX (a) to the valueσ (X (a)). For a nodea of path(σ ), let β (σ ,a) be the restriction
ofσ to the variables that are queried in path(σ ) in the segment of the path that goes from the source
to a. For each node a of the branching program, let β (a) be the maximal partial assignment that is
contained in every β (σ ,a) for all σ such that path(σ ) passes through a. Equivalently, this is the set
of all those assignments xi �→ γ for which the query xi is made, and answered by γ , along every
consistent path from the source to a. If the program is read-once, then the consistency condition
becomes redundant.

The falsified clause search problem for an unsatisfiable CNF formula F is the task of finding a
clause C ∈ F that is falsified by a given truth value assignment σ . A branching program P on the
variables Vars(F ) solves the falsified clause search problem for F if each sink is labelled by a clause
of F such that for every assignment σ , the clause that labels the sink reached by path(σ ) is falsified
by σ . The minimal size of any regular resolution refutation of an unsatisfiable CNF formula F is
exactly the same as the minimal size of any read-once branching program solving the falsified
clause search problem for F . This can be seen by taking the refutation DAG and reversing the
edges to get a branching program or vice versa. For a formal proof see, e.g., [31, Theorem 4.3].

The k-clique formula. To analyse the complexity of resolution proofs that establish that a
given graph does not contain a k-clique we must formulate the problem as a propositional
formula in CNF. We consider two distinct encodings for the clique problem originally defined
in [5].

The first propositional encoding we present, Clique(G,k ), is based on mapping of vertices to
clique members. This formula is defined over variables xv,i (v ∈ V , i ∈ [k]) and consists of the
following set of clauses:

¬xu,i ∨ ¬xv, j i, j ∈ [k], i � j,u,v ∈ V , {u,v} � E, (2.2a)

∨
v ∈V

xv,i i ∈ [k], (2.2b)

¬xu,i ∨ ¬xv,i i ∈ [k],u,v ∈ V ,u � v, (2.2c)

We refer to clause (2.2a) as edge axioms , clause (2.2b) as clique axioms , and clause (2.2c) as func-
tionality axioms . Note that Clique(G,k ) is satisfiable if and only if G contains a k-clique, and that
this is true even if clauses (2.2c) are omitted—we write Clique∗ (G,k ) to denote this formula with
only clauses (2.2a) and (2.2b).

The second version of clique formulas that we consider is the block encoding Cliqueblock (G,k ).
This formula differs from the previous ones in that it requires a k-clique that has a certain “block-
respecting” structure. Let V1∪̇V2∪̇ · · · ∪̇Vk = V be a balanced k-partition of V , that is a partition
of V into k disjoint sets each of them of size at most one integer away from |V |

k
. The formula

Cliqueblock (G,k ), defined over variables xv , encodes the fact that the graph contains a transversal
k-clique, that is, a k-clique in which each clique member belongs to a different block. Formally,
for any positive k and any graph G, the formula Cliqueblock (G,k ) consists of the following set of
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clauses:

¬xu ∨ ¬xv u,v ∈ V ,u � v, {u,v} � E, (2.3a)

∨
v ∈Vi

xv i ∈ [k], (2.3b)

¬xu ∨ ¬xv i ∈ [k],u,v ∈ Vi ,u � v . (2.3c)

We refer to clause (2.3a) as edge axioms , clause (2.3b) as clique axioms , and clause (2.3c) as func-
tionality axioms .

Note that a graph can contain a k-clique but contain no transversal k-clique for a given partition.
Intuitively it is clear that proving that a graph does not contain a transversal k-clique should be
easier than proving it does not contain any k-clique, since any proof of the latter fact must in
particular establish the former. We make this intuition formal below.

Lemma 2.2 ([5]). For any graphG and any k ∈ N+, the size of a minimum regular resolution refu-
tation of Clique(G,k ) is bounded from below by the size of a minimum regular resolution refutation
of Cliqueblock (G,k ).

This lemma was proven in [5] for treelike and for general resolution via a restriction argument,
and it is straightforward to see that the same proof holds for regular resolution as well.

3 GRAPHS THAT ARE EASY FOR REGULAR RESOLUTION

Before proving our main nΩ(k ) lower bound, in this section we exhibit classes of graphs whose
clique formulas have regular resolution refutations of fixed-parameter tractable length, i.e., length
f (k ) · nO (1) for some function f . This illustrates the strength of regular resolution for the k-clique
problem. We note that the upper bounds claimed in this section hold not only for Clique(G,k ) but
even for the subformula Clique∗ (G,k ) that omits the functionality axioms (2.2c).

The first example is the class of (k − 1)-colourable graphs. Such graphs are hard for treelike res-
olution [8], and the known algorithms that distinguish them from graphs that containk-cliques are
highly non-trivial [28, 35]. The second example is the class of graphs that have a homomorphism
into a fixed k-clique free graph.

Recall that a homomorphism from a graph G = (V ,E) into a graph G ′ = (V ′,E ′) is a mapping
h : V → V ′ that maps edges {u,v} ∈ E into edges {h(u),h(v )} ∈ E ′. A graph is (k − 1)-colourable
if and only if it has a homomorphism into the (k − 1)-clique, which is of course k-clique free.
Therefore our second example is a generalization of the first one (but the function f (k ) becomes
larger).

Both upper bounds follows from a generic procedure, based on Algorithm 1, that builds read-
once branching programs for the falsified clause search problem for Clique∗ (G,k ).

Given a k-clique free graph G define

I (G ) = {G[N̂ (R)] : R is a clique in G}. (3.1)

Proposition 3.1. There is an efficiently constructible read-once branching program for the falsified
clause search problem on formula Clique∗ (G,k ) of size at most |I (G ) | · k2 · |V (G ) |2.

Proof. We build the branching program recursively, following the strategy laid out by Algo-
rithm 1. For the base case k = 1, G must be the graph with no vertices. The branching program is
a single sink node that outputs the clique axiom of index 1, i.e., the empty clause.

For k > 1, fix n = |V (G ) | and an ordering v1, . . . ,vn of the vertices in V (G ). We first build a
decision tree T by querying the variables xv1,k ,xv2,k , . . . in order, until we get an answer 1, or
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ALGORITHM 1: Read-once Branching Program for the Falsified Clause Search Problem on
Clique∗ (G,k )

Input: k ∈ N+, a k-clique free graph G, an assignmentα : {xv,i for v ∈ V (G ), i ∈ [k]} → {0, 1}
Output: A clause of Clique∗ (G,k ) falsified by α

1 Search(G,k,α ):begin

2 for v ∈ V (G ) do

3 if α (xv,k ) = 1 then

4 for w ∈ V (G ) \ N (v ) and i < k do

5 if α (xw,i ) = 1 then return edge axiom¬xv,k ∨ ¬xw,i (2.2a)

6 G ′ ← G[N (v )]

7 α ′ ← α restricted to variables xw, j for w ∈ V (G ′) and 1 ≤ j ≤ k − 1

8 return Search(G ′,k − 1,α ′)

9 return the kth clique axiom (2.2b)

until all variables with second index k have been queried. If xvj ,k = 0 for all j ∈ [n], then the kth
clique axiom (2.2b) is falsified by the assignment (see line 9). Otherwise, let v be the first vertex in
the order where xv,k = 1. The decision tree now queries xw,i for allw ∈ V (G ) \ N (v ) and all i < k
to check whether an edge axiom involving v is falsified (lines 4 and 5). If any of these variables is
set to 1, then the branching stops and the leaf node is labelled with the corresponding edge axiom
¬xv,k ∨ ¬xw,i . �

The decision tree T built so far has at most kn2 nodes, and we can identify n “open” leaf nodes
av1 ,av2 , . . . ,avn

, where avi
is the leaf node reached by the path that sets xvi ,k = 1 and that does

not yet determine the answer to the search problem. Let us focus on a specific node av for some
v ∈ V (G ). The partial assignment path(av ) sets v to be the kth member of the clique and every
vertex in V (G ) \ N (v ) to not be in the clique. Let Gv be the subgraph induced on G by N (v ), let
Sv be the set of variables xw,i for w ∈ N (v ) and i < k , and let ρv be the partial assignment setting
xw,i = 0 for w ∈ V (G ) \ N (v ) and i < k . Clearly ρv ⊆ path(av ).

By the inductive hypothesis there exists a branching program Bv that solves the search problem
on Clique∗ (Gv ,k − 1) querying only variables in Sv . This corresponds to the recursive call for the
subgraph Gv and k − 1 (lines 6–8). If we attach each Bv to av , then we get a complete branching
program for Clique∗ (G,k ). This is read-once, because Bv only queries variables in Sv and these
variables are not in path(av ).

To prove that the composed program is correct we consider an assignment σ to the variables
in Sv and show that the clause output by Bv on σ is also a valid output for the search problem
on Clique∗ (G,k ), i.e., it is falsified by the assignment path(av ) ∪ σ . Actually we show the stronger
claim that it is falsified by ρv ∪ σ , which is a subset of path(av ) ∪ σ . To this end, note that if the
output of Bv on σ is an edge axiom of Clique∗ (Gv ,k − 1), this must be some ¬xu,i ∨ ¬xw, j for
i, j < k , which is also an edge axiom of Clique∗ (G,k ) and is falsified by σ . Now if the output of
Bv on σ is the ith clique axiom of Clique∗ (Gv ,k − 1), then σ falsifies

∨
w ∈N (v ) xv,i , and therefore

ρv ∪ σ falsifies the ith clique axiom of Clique∗ (G,k ).
The construction so far is correct but produces a very large branching program (in particular

it has treelike structure on top). To create a smaller branching program, we observe that if u,v ∈
V (G ) are such that N (u) = N (w ) thenGu = Gw , Bu = Bw and ρu = ρw . This observation allows us
to merge together all nodes av that have the same value of N (v ) into a single node, and to identify
all the corresponding copies of the same branching program Bv . Now let us focus on some node a∗
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obtained by this merge process, and pick arbitrarily some av that was merged into it (the specific
choice is irrelevant). By construction ρv is consistent with all paths reaching a∗, but we can claim
further: ρv is consistent with all paths passing through a∗, because Bv only queries variables in Sv ,
which is disjoint from the domain of ρv . Because of this last fact all paths that pass through node
a∗ and reach an output node b∗ in the attached copy of Bv must contain the partial assignment
ρv ∪ σ , where σ is the common partial assignment consistent with all paths from the root of Bv

to b∗. If b∗ outputs an edge axiom, then this is already falsified by σ because of the correctness of
Bv . If b∗ outputs the ith clique axiom, then the correctness of Bv guarantees that σ falsifies the ith
axiom for Gv , and therefore ρv ∪ σ falsifies the ith clique axiom of G. Hence the new branching
program is correct.

This merge process leads to having only one subprogram for each distinct induced subgraph at
each level of the recursion. To bound the size of this program, we decompose it into k levels. The
source is at level zero and corresponds to the graphG. At level i there are nodes corresponding to
all subgraphs induced by the common neighbourhood of cliques of size i . Each node in the ith level
connects to the nodes of the (i + 1)th level by a branching program of size at most kn2. Notice that
an induced subgraph in I (G ) cannot occur twice in the same layers, so the total size of the final
branching program is at most |I (G ) | · k2n2 nodes.

We now proceed to prove the upper bounds mentioned previously. A graphG that has a homo-
morphism into a small k-clique free graphH may still have a large set I (G ), making Proposition 3.1
inefficient. The first key observation is that if G has a homomorphism into a graph H then it is
a subgraph of a blown up version of H , namely, of a graph obtained by transforming each vertex
of H into a “cloud” of vertices where a cloud does not contain any edge, two clouds corresponding
to two adjacent vertices in H have all possible edges between them, and two clouds corresponding
to two non-adjacent vertices in H have no edges between them. A second crucial point is that ifG ′

is a blown up version of H then it turns out that |I (G ′) | = |I (H ) |, making Proposition 3.1 effective
for G ′. The upper bound then follows from observing that the task of proving that G is k-clique
free should not be harder than the same task for a supergraph ofG. Indeed Fact 3.2 formalises this
intuition. It is interesting to observe that the constructions in Proposition 3.1 and in Fact 3.2 are
efficient. The non-constructive part is guessing the homomorphism to H .

Fact 3.2. Let G = (V ,E) and G ′ = (V ′,E ′) be graphs with no k-clique such that V ⊆ V ′ and E ⊆
E ′ ∩

(
V
2

)
. If Clique∗ (G ′,k ) has a (regular) refutation of length L, then Clique∗ (G,k ) has a (regular)

refutation of length at most L.

Proof. Consider the partial assignment ρ that sets xv,i = 0 for every v � V and i ∈ [k]. The
restricted formula Clique∗ (G ′,k )�ρ is isomorphic to Clique∗ (G̃,k ), where V (G̃ ) = V and E (G̃ ) =

E ′ ∩
(
V
2

)
, and thus, by Fact 2.1, has a (regular) refutation π of length at most L. Removing edges

from a graph only introduces additional edge axioms (2.2a) in the corresponding formula, therefore
Clique∗ (G̃,k ) ⊆ Clique∗ (G,k ) and π is a valid refutation of Clique∗ (G,k ) as well. �

It was shown in [8] that the k-clique formula of a complete (k − 1)-partite graph on n vertices
has a regular resolution refutation of length 2knO (1) , although the regularity is not stressed in that
paper. Since it is instructive to see how this refutation is constructed in this framework, we give a
self-contained proof.

Proposition 3.3 ([8, Proposition 5.3]). If G is a (k − 1)-colourable graph on n vertices, then
Clique∗ (G,k ) has a regular resolution refutation of length at most 2kk2n2.

Proof. Let V = V (G ) and let V1∪̇V2∪̇ · · · ∪̇V(k−1) be a partition of V into colour classes. Define
the graph G ′ = (V ,E ′) where the edge set E ′ has an edge between any pair of vertices belonging
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to two different colour classes. Clearly G is a subgraph of G ′. Observe that any clique R in G ′ has
at most one vertex in each colour class, and that the common neighbours of R are all the vertices
in the colour classes not touched by R.

Therefore, there is a one-to-one correspondence between the members of I (G ′) and the subsets
of [k − 1]. By Proposition 3.1 there is a read-once branching program for the falsified clause search
problem on formula Clique∗ (G ′,k ) of size at most 2kk2n2. This read-once branching program cor-
responds to a regular resolution refutation of Clique∗ (G ′,k ) of the same size. By Fact 3.2 there
must be a regular resolution refutation of size at most 2kk2n2 for Clique∗ (G,k ) as well. �

Next we generalize Proposition 3.3 to graphs G that have a homomorphism to a k-clique free
graph H .

Proposition 3.4. IfG is a graph on n vertices that has a homomorphism into a k-clique free graph
H onm vertices, then Clique∗ (G,k ) has a regular resolution refutation of length at mostmkk2n2.

Proof. Fix a homomorphism h :V (G ) → V (H ) and an ordering u1, · · · ,um of the vertices of H .
Let V1∪̇V2∪̇ . . . ∪̇Vm be the partition of V (G ) such that Vi is the set of vertices of G mapped to ui

by h. We define the graph G ′ = (V ,E ′), where

E ′ =
⋃

{ui ,uj }∈E (H )

Vi ×Vj , (3.2)

that is, G ′ is a blown up version of H that contains G as a subgraph. To prove our result we note
that, by Proposition 3.1, there is a read-once branching program for the falsified clause search
problem on Clique∗ (G ′,k )—and hence also a regular resolution refutations of the same formula—
of size at most |I (G ′) | · k2n2. This implies that, by Fact 3.2, there is a regular resolution refutation
of Clique∗ (G,k ) of at most the same size.

To conclude the proof it remains only to show that |I (G ′) | ≤ mk . By construction, h maps in-
jectively a clique R ⊆ V (G ′) into a clique RH ⊆ V (H ) of the same size. Moreover, note that if
U = N̂ (RH ), then N̂ (R) = ∪ui ∈UVi . Therefore, for any clique R′ ⊆ V (G ′) that is mapped by h to RH

it holds that N̂ (R) = N̂ (R′), i.e., N̂ (R′) is completely characterized by the clique in H it is mapped
to. Thus I (G ) has at most one element for each clique in H and we have that |I (G ′) | = |I (H ) |. Fi-
nally, note that |I (H ) | ≤ mk , since, being k-clique free, H cannot have more than

∑k−1
i=0 m

i ≤ mk

cliques. �

4 RANDOM GRAPHS ARE HARD FOR REGULAR RESOLUTION

The main result of this article is an average case lower bound of nΩ(k ) for regular resolution for the
k-clique problem. As we saw in Section 2, the k-clique problem can be encoded in different ways
and depending on the preferred formula the range of k for which we can obtain a lower bound
differs. In this section, we present a summary of our results for the different encodings.

Theorem 4.1. For any real constant ϵ > 0, any sufficiently large integer n, any positive integer k ≤
n1/4−ϵ , and any real ξ > 1, if G ∼ G (n,n−2ξ /(k−1) ) is an Erdős–Rényi random graph, then, with
probability at least 1 − exp(−

√
n), any regular resolution refutation of Cliqueblock (G,k ) has length at

least nΩ(k/ξ 2 ) .

The parameter ξ determines the density of the graph: The larger ξ the sparser the graph and
the problem of determining whether G contains a k-clique becomes easier. For constant ξ , the
edge probability implies the graphG has clique number concentrated around k/ξ and the theorem
yields a nΩ(k ) lower bound which is tight up to the multiplicative constant in the exponent. The
lower bound decreases smoothly with the edge density and is non-trivial for ξ = o(

√
k ).
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A problem that is closely related to the problem we consider is that of distinguishing a random
graph sampled from G (n,p) from a random graph from the same distribution with a planted k-
clique. The most studied setting is when p = 1/2. In this scenario, the problem can be solved in
polynomial time with high probability for k ≈

√
n [1, 32]. It is still an open problem whether there

exists a polynomial time algorithm solving this problem for logn � k �
√
n. For G ∼ G (n, 1/2),

setting ξ = k−1
2 log2 (n) , Theorem 4.1 implies that to refute Cliqueblock (G,k ) asymptotically almost

surely regular resolution requires nΩ(log2 (n)/k ) size; which is nΩ(log n) size for k = O (logn) and
super-polynomial size for k = o(log2 n). We note that, in the case k = O (logn), the lower bound
is tight. This follows from Proposition 3.1, since asymptotically almost surely there are at most
nO (log n) different cliques inG ∼ G (n, 1/2) (because asymptotically almost surely the largest clique
has size at most 2 logn) and, therefore, the set I (G ) in Proposition 3.1 has size at most nO (log n) .

An interesting question is whether Theorem 4.1 holds for larger values of k . We show that for
the formula Clique(G,k ) (recall that by Lemma 2.2 this encoding is easier for the purpose of lower
bounds) we can prove the lower bound for k ≤ n1/2−ϵ as long as the edge density of the graph is
close to the threshold for containing a k-clique.

Theorem 4.2. For any real constant ϵ > 0, any sufficiently large integer n, any positive integer k ,

and any real ξ > 1 such that k
√
ξ ≤ n1/2−ϵ , ifG ∼ G (n,n−2ξ /(k−1) ) is an Erdős–Rényi random graph,

then, with probability at least 1 − exp(−
√
n), any regular resolution refutation of Clique(G,k ) has

length at least nΩ(k/ξ 2 ) .

In this article, we prove Theorem 4.1 and we refer to the conference version of this article [2]
for the proof of Theorem 4.2. We note, however, that both proofs are very similar and having seen
one it is an easy exercise to obtain the other. The proof of Theorem 4.1 is deferred to Section 6 and
is based on a general lower bound technique we develop in Section 5.

5 CLIQUE-DENSENESS IMPLIES HARDNESS FOR REGULAR RESOLUTION

In this section, we define a combinatorial property of graphs, which we call clique-denseness , and
prove that if a k-clique-free graph G is clique-dense with the appropriate parameters, then this
implies a lower bound nΩ(k ) on the length of any regular resolution refutation of the k-clique
formula on G.

To argue that regular resolution has a hard time certifying the k-clique-freeness of a graph G,
one property that seems useful to have is that for every small enough clique in the graph there are
many ways of extending it to a larger clique. In other words, if R ⊆ V forms a clique and R is small,
then we would like the common neighbourhood N̂V (R) to be large. This motivates the following
definitions.

Definition 5.1 (Neighbour-dense set). GivenG = (V ,E) andq, r ∈ R+, a setW ⊆ V isq-neighbour-

dense for R ⊆ V if |N̂W (R) | ≥ q. We say thatW is (r ,q)-neighbour-dense if it is q-neighbour-dense
for every R ⊆ V of size |R | ≤ r .

IfW is an (r ,q)-neighbour-dense set, then we know that any clique of size r can be extended to
a clique of size r + 1 in at least q different ways by adding some vertex ofW . Note, however, that
the definition of (r ,q)-neighbour-dense is more general than this, since R is not required to be a
clique.

Next, we define a more robust notion of neighbour-denseness. For some settings of r and q of
interest to us it is too much to hope for a setW that is q-neighbour-dense for every R ⊆ V of size
at most r . In this case, we would still like to be able to find a “mostly neighbour-dense” setW in
the sense that we can “localize” bad (i.e., those for which W fails to be q-neighbour-dense) sets
R ⊆ V of size |R | ≤ r .
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Definition 5.2 (Mostly neighbour-dense set). Given G = (V ,E) and r ′, r ,q, s ∈ R+ with r ′ ≥ r , a
setW ⊆ V is (r ′, r ,q, s )-mostly neighbour-dense if there exists a set S ⊆ V of size |S | ≤ s such that
for every R ⊆ V with |R | ≤ r ′ for whichW is not q-neighbour-dense, it holds that |R ∩ S | ≥ r .

In what follows, it might be helpful for the reader to think of r ′ and r as linear in k , and q and s
as polynomial in n, where we also have s � q.

Now we are ready to define a property of graphs that makes it hard for regular resolution to
certify that graphs with this property are indeed k-clique-free.

Definition 5.3 (Clique-dense graph). Given k ∈ N+ and t , s, ε ∈ R+, 1 ≤ t ≤ k we say that a graph
G = (V ,E) with a k-partition V1 ∪ · · · ∪Vk = V is (k, t , s, ε )-clique-dense if there exist r ,q ∈ R+,
r ≥ 4k/t2, such that

(1) Vi is (tr , tq)-neighbour-dense for all i ∈ [k], and
(2) every (r ,q)-neighbour-dense set W ⊆ V is (tr , r ,q′, s )-mostly neighbour-dense for q′ =

εrs1+ε log s .

Remark (The complete (k − 1)-partite graph is not clique-dense). Since the property of clique-
denseness in Definition 5.3 is a sufficient condition for the lower bound, it is worth to pause and
observe that this property does not hold for examples such as (k − 1)-colourable graphs, which
have non-trivially short proofs.

Indeed, consider the (k − 1)-colourable graphG = (V ,E) with balanced colour classes and max-
imum edge set. Namely, V =

⋃
c Uc for c ∈ [k − 1] and |Uc | = n/(k − 1), and the edges of G are

all pairs {u,v} for u ∈ Uc and v ∈ Uc ′ with c � c ′. The graph G satisfies property (1) of clique-
denseness for any k-partition of V that splits each colour class roughly equally among parts, but
fails to satisfy property (2) in a rather extreme way. To see why, fix any integer r < k − 1 and letW
be the union of r + 1 arbitrarily chosen colour classes. The setW is (r ,q)-neighbour-dense for any
q up to n/(k − 1), because the common neighbourhood of any r vertices inV must contain one of
the colour classes Uc ⊆W .

Can W be (tr , r ,q′, s )-mostly neighbour-dense for some choice of parameters? First note that
tr ≥ r + 1 (since r ≤ k implies t ≥ 2) and that N̂W (R) = ∅ for any set R of size r + 1 that has one
vertex from each colour class in W . So in order for W to be (tr , r ,q′, s )-mostly neighbour-dense
there should be a set S of size s � q′ ≤ n/(k − 1) that has a large intersection with any such R.
This, however, is not possible, since S cannot completely cover any of the colour classes in W
(because s � n/(k − 1)) and thus, for any choice of S , there are sets R completely disjoint from S

for which N̂W (R) = ∅.

Theorem 5.1. Given k ∈ N+ and t , s, ε ∈ R+ if the graph G = (V ,E) with balanced k-partition
V1 ∪ · · · ∪Vk = V is (k, t , s, ε )-clique-dense, then every regular resolution refutation of the CNF for-

mula Cliqueblock (G,k ) has length at least Ω(sεk/t 2
).

The value of q′ in Definition 5.3 can be tailored to prove Theorem 4.1 for slightly larger values of
k . For example, settingq′ = 3εs1+ε log s and making the necessary modifications in the proof would
yield Theorem 4.1 for k � n1/3 but for a smaller range of edge densities. A similar adjustment was
done in the conference version of this article [2] to obtain Theorem 4.2 for k � n1/2.

We will spend the rest of this section establishing Theorem 5.1. Fix r ,q ∈ R+ witnessing that G
is (k, t , s, ε )-clique-dense as per Definition 5.3. We first note that we can assume that tr ≤ k , since
otherwise, by property 1 of Definition 5.3,G contains a block-respecting k-clique and the theorem
follows immediately.

By the discussion in Section 2, it is sufficient to consider read-once branching programs, since
they are equivalent to regular resolution refutations, and so in what follows this is the language in
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which we will phrase our lower bound. Thus, for the rest of this section let P be an arbitrary, fixed
read-once branching program that solves the falsified clause search problem for Cliqueblock (G,k ).
We will use the convention of referring to “vertices” of the graph G and “nodes” of the branching
program P to distinguish between the two. We sometime abuse notation and say that a vertex
v ∈ V is set to 0 or to 1 when we mean that the corresponding variable xv is set to 0 or to 1.

Recall that for a node a of P , β (a) denotes the maximal partial assignment that is contained in
every β (σ ,a) for all σ such that path(σ ) passes through a, where β (σ ,a) is the restriction of σ to
the variables that are queried in path(σ ) in the segment of the path that goes from the source to
a. For any partial assignment β we write β1 to denote the partial assignment that contains exactly
the variables that are set to 1 in β . Clearly, if β falsifies an edge axiom or a functionality axiom,
then so does β1. Furthermore, for any γ ⊇ β , if β falsifies an axiom so does γ . We will use this
monotonicity property of partial assignments throughout the proof.

For each node a of P and each index i ∈ [k] we define two sets of vertices

V 0
i (a) = {u ∈ Vi | β (a) sets xu to 0}, (5.1a)

V 1
i (a) = {u ∈ Vi | β (a) sets xu to 1}, (5.1b)

of G. Observe that for β = β (a) the set of vertices referenced by variables in β1 is
⋃

i V
1

i (a).
Intuitively, one can think of V 0

i (a) and V 1
i (a) as the only sets of vertices in Vi assigned 0 and 1,

respectively, that are “remembered” at the node a (in the language of resolution, they correspond
to negative and positive occurrences of variables in the clause Da associated with the node a).
Other assignments to vertices in Vi encountered along some path to a have been “forgotten” and
may not be queried any more on any path starting at a. Formally, we say that a vertexv is forgotten
at a if there is a path from the source of P to a passing through a node b where v is queried, but
v is not in V 0

i (a) nor in V 1
i (a). Furthermore, we say index i is forgotten at a if some vertex v ∈ Vi

is forgotten at a. Of utter importance is the fact that these notions are persistent: if a variable or
an index is forgotten at a node a, then it will also be the case for any node reachable from a by a
path. We say that a path in P ends in the ith clique axiom if the clause that labels its last node is
the clique axiom (2.3b) of Cliqueblock (G,k ) with index i . The above observation implies that the
index i cannot be forgotten at any node along such a path.

We establish our lower bound via a bottleneck counting argument for paths in P . To this end,
let us define a distribution D over paths in P by the following random process. The path starts at
the source and ends whenever it reaches a sink of P . At an internal node a with successor nodes
a0 and a1, reached by edges labelled 0 and 1 respectively, the process proceeds as follows:

(1) IfX (a) = xu foru ∈ Vi and i is forgotten at a, then the path proceeds via the edge labelled 0
to a0.

(2) If X (a) = xu and β (a) ∪ {xu = 1} falsifies an edge axiom (2.3a) or a functionality axiom
(2.3c), then the path proceeds to a0.

(3) Otherwise, an independent s−(1+ε )-biased coin is tossed with outcome γ ∈ {0, 1}, and the
random path proceeds to aγ .

We say that in cases 1 and 2 the answer to the query X (a) is forced. Note that any path α in the
support of D must end in a clique axiom, since α does not falsify any edge or functionality axiom
by item 2 in the construction. Moreover, a property that will be absolutely crucial is that only
answers 0 can be forced—answers 1 are always the result of a coin flip.

Claim 5.4. Every path in the support of D sets at most k variables to 1.

Proof. Let α be a path in the support of D . We argue that for each i ∈ [k] at most one vertex
u ∈ Vi is such that the variable xu is set to 1 on α . Let a and b be two nodes that appear in this
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order in α . If for some i ∈ [k], and for some u,v ∈ Vi , xu is set to 1 by α at node a and xv is queried
at b, then v � u by regularity and, by definition of D , the answer to query xv will be forced to 0,
either to avoid violating a functionality or an edge axiom, or because i is forgotten at b. �

Let us call a pair (a,b) of nodes of P useful if there exists an index i such that V 1
i (b) = ∅, i is

not forgotten at b, and the set V 0
i (b) \V 0

i (a) is (r ,q)-neighbour-dense. In particular, if a appears
before b in some path, then V 1

i (a) = ∅ and V 0
i (a) ⊆ V 0

i (b). For each useful pair (a,b), let i (a,b)
be an arbitrary but fixed index witnessing that (a,b) is useful. A path is said to usefully traverse
a useful pair (a,b) if it goes through a and b in that order and sets at most �k/t� variables to 1
between a and b (with a included and b excluded).

As already mentioned, the proof of Theorem 5.1 is based on a bottleneck counting argument
in the spirit of [23], with the twist that we consider pairs of bottleneck nodes. To establish the
theorem, we make use of the following two lemmas, which will be proven subsequently.

Lemma 5.5. Every path in the support of D usefully traverses a useful pair.

Lemma 5.6. For every useful pair (a,b), the probability that a random α chosen from D usefully
traverses (a,b) is at most 2s−εr /2.

Combining the above lemmas, it is immediate to prove Theorem 5.1. By Lemma 5.5 the probabil-
ity that a random path α sampled from D usefully traverses some useful pair is 1. By Lemma 5.6,
for any fixed useful pair (a,b), the probability that a random α usefully traverses (a,b) is at most
2s−εr /2. By a standard union bound argument, it follows that the number of useful pairs is at
least 1

2s
εr /2, so the number of nodes in P cannot be smaller than Ω(sεr /4) ≥ Ω(sεk/t 2

) (recall that
r ≥ 4k/t2 according to Definition 5.3).

To conclude the proof it remains only to establish Lemmas 5.5 and 5.6.

Proof of Lemma 5.5 Consider any path in the support of D . As we already remarked, this path
ends in the i∗th clique axiom for some i∗ ∈ [k], which in particular implies thatV 1

i∗ (b) = ∅ and that
i∗ is not forgotten at any b along this path. By Claim 5.4, the path sets at most k variables to 1
and hence we can split it into t pieces by nodes a0,a1, . . . ,at (a0 is the source, at the sink) so that
between aj and aj+1 at most �k/t� variables are set to 1. It remains to prove that for at least one
j ∈ [t] the set

Wj = V
0

i∗ (aj ) \V 0
i∗ (aj−1) (5.2)

is (r ,q)-neighbour-dense. Note that this will prove Lemma 5.5, since by construction (aj−1,aj ) is
then a pair that is usefully traversed by the path.

Toward contradiction, assume instead that noWj is (r ,q)-neighbour-dense, i.e., that for all j ∈ [t]

there exists a set of vertices R j ⊆ V with |R j | ≤ r such that |N̂Wj
(R j ) | ≤ q. Let R =

⋃
j ∈[t ] R j . Since

the path ends in the i∗th clique axiom we have V 0
i∗ (at ) = Vi∗ . It follows that the sets W1, . . . ,Wt

in (5.2) form a partition of Vi∗ , and therefore

|N̂Vi∗ (R) | =
∑
j ∈[t ]

|N̂Wj
(R) | ≤

∑
j ∈[t ]

|N̂Wj
(R j ) | ≤ tq. (5.3)

Since |R | ≤ ∑
j ∈[t ] |R j | ≤ tr this contradicts the assumption that Vi∗ is (tr , tq)-neighbour-dense.

Lemma 5.5 follows. �

Proof of Lemma 5.6 Fix a useful pair (a,b). Let E denote the event that a random path sampled
from D usefully traverses (a,b). Let i∗ = i (a,b), V 1(a) =

⋃
j ∈[k]V

1
j (a), and W = V 0i∗ (b) \V 0i∗ (a).

Notice that W is guaranteed to be (r ,q)-neighbour-dense by our definition of i (a,b). Since G is
(k, t , s, ε )-clique-dense by assumption, this implies thatW is (tr , r ,q′, s )-mostly neighbour-dense,
and we let S be the set that witnesses this as per Definition 5.2. We bound the probability of the
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event E by a case analysis based on the size of the set V 1 (a). We remark that all probabilities in
the calculations that follow are over the choice of α ∼ D .

Case 1 (|V 1 (a) | > r/2): In this case, we simply prove that already the probability of reaching
a is small. By definition of V 1 (a), we have that |β1 (a) | = |V 1 (a) |. Recall that every answer 1 is
necessarily the result of a s−(1+ε )-biased coin flip, and that all these decisions are irreversible. That
is, if a path ever decides to set a variable inV 1 (a) to 0, then its case is lost and it is guaranteed to miss
a. Thus we can upper bound the probability of the event E by the probability that a randomα passes
through a, and, in particular, by the probability of setting all variables in β1 (a) to 1 as follows:

Pr[E] ≤ Pr[α passes through a], (5.4)

≤
(
s−(1+ε )

) |β 1 (a) |
, (5.5)

≤ s−ε |V 1 (a) |, (5.6)

≤ 2s−εr /2. (5.7)

Case 2 (|V 1 (a) | ≤ r/2): For every path α , let R (α ) denote the set of vertices u set to 1 by the
path α at some node between a and b (with a included and b excluded); note that R (α ) = ∅ if α
does not go through a and b, and that |R (α ) | ≤ �k/t� for all paths α that satisfy the event E. For
the sets

R0 = {R : |R | ≤ �k/t� and |N̂W (R ∪V 1 (a)) | < q′}, (5.8a)

R1 = {R : |R | ≤ �k/t� and |N̂W (R ∪V 1 (a)) | ≥ q′}, (5.8b)

we have that
Pr[E] = Pr[E and R (α ) ∈ R0] + Pr[E and R (α ) ∈ R1]. (5.9)

The first term in Equation (5.9) is bounded from above by the probability ofR (α ) ∈ R0. Note that
|R | ≤ �k/t� ≤ 2k/t ≤ tr/2 (since r ≥ 4k/t2) for R ∈ R0. Hence we have |R ∪V 1 (a) | ≤ tr/2 + r/2 ≤
tr and therefore |(R ∪V 1 (a)) ∩ S | ≥ r by the choice of S . Thus, the probability of R (α ) ∈ R0 is
bounded by the probability that |R (α ) ∩ S | ≥ r/2, since |V 1 (a) | ≤ r/2. But since S is small, we can
now apply the union bound and conclude that

Pr[E and R (α ) ∈ R0] ≤ Pr[R (α ) ∈ R0], (5.10)

≤ Pr[|R (α ) ∩ S | ≥ r/2], (5.11)

≤
(
|S |
r/2

)
(s−(1+ε ) )r /2, (5.12)

≤ |S |r /2s−(1+ε )r /2, (5.13)

≤ s−εr /2, (5.14)

where for Equation (5.12) we used the same “irreversibility” argument as in Case 1.
We now bound the second term in Equation (5.9). First, note that, by definition ofW, if α is a path

that passes through a and b in this order, then allu ∈W must be set to 0 in α at some node between
a and b. For each path in the support of D that passes through a and b, some of the vertices inW
will be set to zero as a result of a coin flip and others will be forced choices.
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Fix a path α contributing to the second term in (5.9). We claim that along this path all the ≥ q′

variables in N̂W (R (α ) ∪V 1 (a)) are set to 0 as a result of a coin flip. Indeed, sinceV 1
i∗ (b) = ∅ and i∗

is not forgotten at b, by the monotonicity property the same holds for every node along α before b.
This implies that the answer to a query of the form xu (u ∈W ) made along α cannot be forced by
neither item 1 (forgetfulness) in the definition of D nor by a functionality axiom. Moreover, since
V 1 (c ) ⊆ R (α ) ∪V 1 (a) for any node c on the path α between a and b, it holds that all variables xu

with u ∈ N̂W (R (α ) ∪V 1 (a)) can not be forced to 0 by an edge axiom either.
The analysis of the second term in (5.9) is completed by the same type of argument as in Case

1, where we again use the fact that, due to the read-once property of the branching program, the
decisions that the random path makes are irreversible:

Pr[E and R (α ) ∈ R1] ≤ Pr[α flips ≥ q′ coins and gets 0-answers] (5.15)

≤ (1 − s−(1+ε ) )q′ (5.16)

≤ s−εr /2. (5.17)

Adding Equations (5.14) and (5.17), we obtain the lemma. �

6 RANDOM GRAPHS ARE ALMOST SURELY CLIQUE-DENSE

In this section, we show that asymptotically almost surely an Erdős–Rényi random graph G ∼
G (n,p) is (k, t , s, ε )-clique-dense for the right choice of parameters.

Theorem 6.1. For any real constant ε ∈ (0, 1/4), any sufficiently large integer n, any positive in-
teger k ≤ n1/4−ε , and any real ξ > 1, if G ∼ G (n,n−2ξ /(k−1) ) is an Erdős–Rényi random graph, then
with probability at least 1 − exp(−

√
n) it holds that G is (k, t , s, ε )-clique-dense with t = 32ξ/ε and

s =
√
n.

As a corollary of Theorem 5.1 and Theorem 6.1 we obtain Theorem 4.1, the main result of this
article.

Proof of Theorem 4.1 Clearly t ≥ 1 as required by Definition 5.3. We can also assume w.l.o.g.
that t ≤ k , since otherwise k/ξ 2 ≤ 32/(ξϵ ) ≤ O (1) and the bound becomes trivial. By plugging
in the parameters given by Theorem 6.1 to Theorem 5.1 we immediately get that any regular
refutation π of Cliqueblock (G,k ) has length

|π | ≥ Ω
(
sεk/t 2 ) ≥ nΩ(k/ξ 2 ), (6.1)

as stated. �

We will spend the rest of this section proving Theorem 6.1.
Let δ = 2ξ/(k − 1). We show that, with probability at least 1 − e−

√
n , the random graph G is

(k, t , s, ε )-clique-dense for parameters as in the statement of the theorem, r = 4k/t2 and q = n1−t δ r

4kt
.

Recall that q′ = εrs1+ε log s . Let us argue that the parameters we use satisfy constraints

tδr ≤ ε

2
, (6.2)

logk + tr logn ≤ n1−tδr

32k
· 2 logn

n1/2
, (6.3)

qn−tδr s

16tr
≥ n1+ε

256
, (6.4)
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q′ ≤ qn−tδr

4
· logn

nε/2
, (6.5)

tr ≤ q

2
, (6.6)

which will be used further on in the proof.
As a first step note that

tδr =
8ξk

t (k − 1)
≤ ε

2
, (6.7)

and hence Equation (6.2) holds. Equation (6.3) follows from the chain of inequalities

logk + tr logn ≤ 2tr logn =
8k logn

t
≤ k logn

16
≤ n1/2−2ε logn

16k
≤ n1−tδr

32k
· 2 logn

n1/2
. (6.8)

To obtain Equation (6.4), observe that

qn−tδr s

16tr
=
n1−2tδr+1/2

256k2
≥ n1−2tδr+2ε

256
≥ n1+ε

256
. (6.9)

To see that Equatoin (6.5) holds, note that

q′ =
2εkn(1+ε )/2 logn

t2
≤ k2n(1+ε )/2 logn

16kt
≤ n1−3ε/2 logn

16kt
≤ qn−tδr

4
· logn

nε/2
. (6.10)

Finally, for Equation (6.6), we just observe that

tr =
4k

t
≤ k3

8k2
≤ n1−tδr

8kt
=
q

2
, (6.11)

using the fact that k ≥ t and k3 ≤ n1−tδr .
We must now prove that asymptotically almost surelyG is (k, t , s, ε )-clique-dense for the chosen

parameters. All probabilities in this section are over the choice ofG, and all previously introduced
concepts like N̂W (R), neighbour-denseness, and so on, should be understood with respect to G as
well (so that they are actually random variables and events in this sample space). Let V = V (G )
and V1 ∪ · · · ∪Vk = V be a balanced k-partition of V .

The fact that asymptotically almost surely Vi is (tr , tq)-neighbour-dense for all i ∈ [k] is quite
immediate. First, for any i ∈ [k] and any R ⊆ V with |R | ≤ tr ,

E[|N̂Vi
(R) |] = |Vi \ R |n−δ |R | ≥

(n
k
− tr

)
n−δ tr ≥

(n
k
− q

2

)
n−δ tr ≥ n1−δ tr

2k
, (6.12)

where the second-to-last inequality follows from Equation (6.6) and the last inequality from the
trivial fact that q ≤ n

k
. Hence, we can bound the probability that there exists an i ∈ [k] such that

Vi is not (tr , tq)-neighbour-dense by

Pr
[
∃i ∈ [k] ∃R ⊆ V , |R | = �tr� ∧ |N̂Vi

(R) | ≤ tq
]
≤ k

(
n

tr

)
max
i,R

Pr
[
|N̂Vi

(R) | ≤ tq
]
, (6.13)

≤ kntr max
i,R

Pr

[
|N̂Vi

(R) | ≤ n1−tδr

4k

]
, (6.14)

≤ kntr exp

(
−n

1−tδr

16k

)
, (6.15)
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≤ exp

(
−n

1−tδr

32k
·
(
2 − 2

logn

n1/2

))
, (6.16)

≤ e−
√

n . (6.17)

We note that Equation (6.13) is a union bound, Equation (6.14) follows from the definition of q,
Equation (6.15) is the multiplicative form of Chernoff bound (note that the events v ∈ N̂Vi

(R) (v ∈
V \ R) are mutually independent), Equation (6.16) follows from Equation (6.3), and Equation (6.17)
holds for large enough n by Equation (6.2) and the fact that ε < 1/4 and k < n1/4.

All that is left to prove is that asymptotically almost surely G satisfies property 2 in Defi-
nition 5.3, that is that every (r ,q)-neighbour-dense set W ⊆ V is (tr , r ,q′, s )-mostly neighbour-
dense. For shortness let P be the event that G satisfies this property. We wish to show that
Pr[¬P] ≤ e−Ω(n) , and it turns out that due to our choice of parameters we can afford to use the
crude union bound over all 2n choices ofW .

To be more specific, letQ (W ) denote the event thatW is (r ,q)-neighbour-dense. Given an (r ,q)-
neighbour-dense set W ⊆ V we will define a set SW , which will be a “candidate witness” of the
fact thatW is (tr , r ,q′, s )-mostly neighbour-dense. First observe that, sinceW is (r ,q)-neighbour-
dense and q′ ≤ q by Equation (6.5), any set R ⊆ V with |R | ≤ tr and |N̂W (R) | ≤ q′ must be such
that |R | > r . We will use a sequence of such sets R and construct SW in a greedy fashion. To this
end, the following definition will be useful. A tuple of sets (R1, . . . ,Rm ) is said to be r -disjoint if
|Ri ∩ (

⋃
j<i R j ) | ≤ r for every i ∈ [m].

Fix an arbitrary ordering of the subsets of V . Define �RW = (R1, . . . ,Rm ) to be a maximally long
tuple such that, for every i = 1, . . . ,m, the set Ri is the first in the ordering such that |Ri | ≤ tr ,
|N̂W (Ri ) | ≤ q′ and |Ri ∩ (

⋃
j<i R j ) | ≤ r . Note that �RW is r -disjoint. Now let SW =

⋃
i≤m Ri .

Observe that, by maximality of �RW , any set R ⊆ V with |R | ≤ tr and |N̂W (R) | ≤ q′ must be such
that |R ∩ S | > r . This implies that if |SW | ≤ s , then SW witnesses the fact that W is (tr , r ,q′, s )-
mostly neighbour-dense. Therefore we have that

Pr[¬P] ≤ Pr[∃W ⊆ V , Q (W ) ∧ |SW | > s]. (6.18)

Moreover, let W be the collection of all pairs (W , �R) such that W ⊆ V , �R = (R1, . . . ,R� )

for � = �s/tr�, R j ⊆ V and 0 < |R j | ≤ tr for each j ∈ [�], and �R is r -disjoint. Notice that if

there exists an (r ,q)-neighbour-dense W such that �RW = (R1, . . . ,Rm ) and |SW | > s , then m ≥ �
and (W , (R1, . . . ,R� )) ∈ W . Furthermore, by definition of �RW , for every j ∈ [�] it holds that
|N̂W (R j ) | ≤ q′. Hence we can conclude that

Pr[¬P] ≤ Pr
[
∃(W , �R) ∈ W, Q (W ) ∧ ∀j ∈ [�], ���N̂W (R j )

��� ≤ q′
]
, (6.19)

≤ 2nntr � max
(W ,�R )∈W

Pr
[
Q (W ) ∧ ∀j ∈ [�], ���N̂W (R j )

��� ≤ q′
]
, (6.20)

≤ 2nns max
(W ,�R )∈W

Pr
[
Q (W ) ∧ ∀j ∈ [�], ���N̂W (R j )

��� ≤ q

4
n−tδr

]
, (6.21)

where Equation (6.21) follows for n large enough from the bound in Equation (6.5).
Now fix (W , �R) ∈ W and let Rd

j (respectively, Rc
j ) be the subset of R j disjoint from (respectively,

contained in)
⋃

j′<j R j′ . Since |Rc
j | ≤ r by definition, it holds that if W is (r ,q)-neighbour-dense,

then |N̂W (Rc
j ) | > q. Let F(j ) be the event that |N̂W (Rc

j ) | > q and |N̂W (R j ) | ≤ q

4n
−tδr . Note that

Journal of the ACM, Vol. 68, No. 4, Article 23. Publication date: May 2021.



Clique Is Hard on Average for Regular Resolution 23:19

Pr[Q (W ) ∧ ∀j ∈ [�], |N̂W (R j ) | ≤ q

4n
−tδr ] is at most Pr[∀j ∈ [�], F(j )]. Let F′(j ) be the event that

F(j ′) holds for all j ′ ∈ [j − 1]. We have that

Pr[∀j ∈ [�], F(j )] =
∏
j ∈[�]

Pr[F(j ) |. F′(j )]. (6.22)

We can consider the factors of the previous product separately and bound each one by

Pr
[
F(j ) ��� F′(j )

]
≤

∑
U ⊆W
|U | ≥q

Pr
[���N̂U (Rd

j )��� ≤ q

4
n−tδr ���� N̂W (Rc

j ) = U ∧ F′(j )
]
· Pr

[
N̂W (Rc

j ) = U ��� F′(j )
]
,

≤
∑

U ⊆W
|U | ≥q

Pr
[���N̂U (Rd

j )��� ≤ q

4
n−tδr

]
· Pr

[
N̂W (Rc

j ) = U ��� F′(j )
]
,

≤
∑

U ⊆W
|U | ≥q

exp

(
−qn

−tδr

16

)
· Pr

[
N̂W (Rc

j ) = U ��� F′(j )
]
,

= exp

(
−qn

−tδr

16

)
·

∑
U ⊆W
|U | ≥q

Pr
[
N̂W (Rc

j ) = U ��� F′(j )
]
,

≤ exp

(
−qn

−tδr

16

)
.

Equation (6.24) follows from the independence of any two events that involve disjoint sets of
potential edges and Equation (6.25) follows from the multiplicative Chernoff bound and the fact
that

E
[���N̂U

(
Rd

j

) ���] = ���U \ Rd
j
���n−δ |Rd

j | ≥ ( |U | − tr )n−δ tr ≥ q

2
n−δ tr . (6.28)

So, putting everything together, we have that

Pr[¬P] ≤ 2nns exp

(
−qn

−tδr �

16

)
≤ e(log 2)n+

√
n log n−(n1+ε )/256 ≤ e−Ω(n), (6.29)

where the last inequality holds for n large enough, and the second-to-last inequality follows im-
mediately from the bound in Equation (6.4). This concludes the proof of Theorem 6.1.

7 STATE-OF-THE-ART ALGORITHMS FOR CLIQUE

In this section, we describe state-of-the-art algorithms for maximum clique and explain how reg-
ular resolution proofs bound from below the running time of these algorithms.

At the heart of most (if not all) of the state-of-the-art algorithms for maximum clique is a back-
tracking search, which in its simplest form examines all maximal cliques by enlarging a set of
vertices that form a clique and backtracking when it certifies that the current set forms a maximal
clique. A classical example of such a backtracking search is the Bron–Kerbosch [11] algorithm
that enumerates all maximal cliques in a graph. This algorithm can be adapted to find a maximum
clique as done in [13] improving the running time considerably by using a branch and bound strat-
egy. At some point in the search tree it becomes clear that the current search-branch will not lead
to a clique larger than the largest one found so far—in such cases the algorithm cuts off the search
and backtracks immediately.
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ALGORITHM 2: Cliquer(G ) Algorithm

1 Cliquer(G ):

2 begin

3 G ← permute(G )

4 incumbent ← ∅
5 for i = n down to 1 do

6 found ← false

7 expand(G[Vi ∩ N (vi )], {vi })
8 bounds[i]← |incumbent |
9 return incumbent

10 expand(H , solution):

11 begin

12 while V (H ) � ∅ do

13 if |solution| + |V (H ) | ≤ |incumbent | then return

14 i ← min{j | vj ∈ V (H )}
15 if |solution| + bounds[i] ≤ |incumbent | then return

16 solution′ ← solution ∪ {vi }
17 V ′ ← V (H ) ∩ N (vi )

18 expand(H [V ′], solution′)
19 if found = true then return

20 H ← H \ {vi }
21 if |solution′| > |incumbent | then

22 incumbent ← solution′

23 found ← true

24 return

The most successful algorithms in practice are search trees with clever branch and bound strate-
gies. In this section we will discuss the algorithm by Östergård [41] using Russian doll search and
a collection of algorithms that use colour-based branch and bound strategies [22, 29, 50–54, 56–59,
61].

Östergård’s algorithm. Östergård’s algorithm [41] is a branch and bound algorithm that uses
Russian doll search as a pruning strategy: it considers smaller subinstances recursively and solves
them in ascending order using previous solutions as upper bounds. This algorithm, which is the
main component of the Cliquer software, is often used in practice and has been available online
since 2003 [40]. Cliquer is also the software of choice to compute maximum cliques in the open
source mathematical software SageMath [55].

The Cliquer(G ) algorithm described in Algorithm 2 is essentially the same as Algorithm 2
in [41]. The algorithm first permutes the vertices of G according to some criteria. Let v1, . . . ,vn

be the enumeration of V (G ) induced by said permutation, and Vi = {vi , . . . ,vn } for i ∈ [n]. In
practice this permutation has a large impact on the running time of the algorithm, but for our
analysis the knowledge of the specific order is irrelevant.

In the main loop (lines 5–8) subgraphs of G are considered and at each iteration the size of
a maximum clique containing only vertices of Vi is stored in bounds[i]. The algorithm keeps the
best solution (largest clique) found so far in the global variable incumbent, which is initially empty.
The array bounds and the flag found are global variables. The current growing clique is stored in
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solution and passed as an argument of the subroutine expand together with the current subgraph
H ⊆ G being considered.

The main subroutine expand recursively goes through all vertices of H from smallest to largest
index. First, note that if the size of the current growing clique plus |H | is not larger than the current
maximum clique (line 13), then this branch can be cut. Moreover, if vi is the smallest-index vertex
in H , thenV (H ) ⊆ Vi and bounds[i] is an upper bound on the size of a maximum clique in H . This
implies that this branch can be cut if the size of the current growing clique plus bounds[i] is not
larger than the current maximum clique (line 15). If it is larger, then the algorithm branches on
the vertex vi .

Firstvi is taken to be part of the solution: It is added to (a copy of) the current growing solution,
(a copy of) the graph is updated to contain only neighbours of vi and a recursive call is made
(lines 16–18). If the recursive call finds a clique larger than the current largest clique, then it sets
the flag found to true. This allows the algorithm can return to the main routine (line 8), since a
maximum clique containing only vertices of Vi can be at most one unit larger than a maximum
clique containing only vertices of Vi+1. If no larger clique was found, then the algorithm then
proceeds to the opposite branch choice, that is, taking vertex vi to not be in the solution (line 20)
and considering the next vertex in the ordering. If V (H ) is empty and a larger clique has been
found, then the best solution so far is updated and the flag found is set to true (lines 22 and 23).

We now argue that the running time of the Cliquer(G ) algorithm is bounded from below by the
size of a regular resolution refutation of Cliqueblock (G,k ) up to a constant factor. First, note that
a straightforward modification of the Cliquer(G ) algorithm gives an algorithm that determines
whether G contains a block-respecting k-clique.

Given a graphG that does not contain a block-respecting k-clique, the last call of the subroutine
expand in the main loop (lines 5–8, when i is set to 1) can be represented by an ordered decision
tree with labelled leafs. A decision tree is said to be ordered if there exists a linear ordering of
the variables such that if x is queried before y, then x ≺ y. In our setting, the order is determined
by the permutation of the vertices, and without loss of generality we assume vi ≺ vj if i < j. For
each leaf, if R is the set of vertices identified as clique members by the branch leading to this leaf,
then the leaf is labelled either by a pair (u,v ) such that u,v ∈ R and there is no edge between u
and v or by an index � ∈ [k] such that all vertices in the �th block are outside the clique, or by
a vertex vi such that i = min{j | vj ∈ N (R)} and the largest clique containing only vertices of Vi

has size at most k − |R | − 1. For each vertexvi that labels some leaf, we construct the decision tree
corresponding to the ith call of the subroutine expand.

To weave these decision trees into a read-once branching program, at each leaf labelled vi we
query all non yet queried verticesvj such that j < i andvj is in the same block asvi . Let Bi denote
the set of vertices. Observe that taking any vertex in Bi to be in the clique yields an immediate
contradiction, since Bi ∩ N (R) = ∅ by definition of i . Moreover, note that the branch leading to
the leaf where all of Bi is taken to be outside the clique does not contain any query to vertices
in Vi . We can therefore identify this leaf with the root of the decision tree corresponding to vi

and still maintain regularity. After repeating this procedure at every leaf labelled by some vertex,
only leafs labelled by indices � ∈ [k] and by pairs (u,v ) remain, which have a direct correspon-
dence to falsified clauses of Cliqueblock (G,k ). Therefore, the directed graph obtained by this process
corresponds to a read-once branching program that solves the falsified clause search problem on
Cliqueblock (G,k ) and the bound on the running time follows immediately.

Colour-based branch and bound algorithms. We consider a class of algorithms that are arguably
the most successful in practice. An extended survey together with a computational analysis of
algorithms published until 2012 can be found in [44] and an overview of algorithms reported since
then in [37]. These algorithms are branch and bound algorithms that use colouring as a bounding—
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ALGORITHM 3: MaxClique(G ) Algorithm

1 MaxClique(G ):

2 begin

3 global incumbent ← ∅
4 expand(G, ∅)
5 return incumbent

6 expand(H , solution):

7 begin

8 (order, bounds) ← colourOrder(H )

9 while V (H ) � ∅ do

10 i ← |V (H ) |
11 if |solution| + bounds[i] ≤ |incumbent | then return

12 v ← order[i]

13 solution′ ← solution ∪ {v}
14 V ′ ← V (H ) ∩ N (v )

15 expand(H [V ′], solution′)
16 H ← H \ {v}
17 if |solution′| > |incumbent | then incumbent ← solution′

18 return

and often also as a branching—strategy. The basic idea is that if a graph can be coloured with �
colours, then it does not contain a clique larger than �.

The MaxClique(G ) algorithm described in Algorithm 3, a generalized version of Algorithm 2.1
in [37], is a basic maximum clique algorithm that uses a colour-based branch and bound strategy.
The algorithm keeps the best solution (largest clique) found so far in the global variable incumbent,
which is initially empty. The current clique is stored in solution and passed as an argument of the
subroutine expand together with the current subgraph H ⊆ G being considered. The subroutine
colourOrder(H ) (line 8) returns an ordering of the vertices in H , say v1,v2, . . . ,vn , and for every
i ∈ [n] an upper bound on the number of colours needed to colour the graph induced by vertices
v1 to vi .

The vertices are then considered in reverse order. If the vertexv is being considered and the size
of the current growing clique plus the (upper bound on the) number of colours needed to colour
the remaining graph is not larger than the current maximum clique (line 11), then this branch can
be cut. If it is larger, then the algorithm branches on the vertex v . First, v is taken to be part of the
solution:v is added to (a copy of) the current growing solution, (a copy of) the graph is updated to
contain only neighbours of v and a recursive call is made (lines 13–15). If the recursive call finds a
clique larger than the current largest clique, then the best solution so far is updated (line 17). The
algorithm proceeds to the opposite branch choice, that is, considering vertex v not in the solution
(line 16). Returning to the loop the algorithm continues to consider the next vertex in the ordering.

It was reported in [12] that it is possible to capture the algorithms for solving the maximum
clique problem in [13, 22, 29, 56–58] in a same framework. The general algorithm they present
is an iterative version of the MaxClique(G ) algorithm. We observe that MaxClique(G ) captures
also the more recent algorithms in [50–54, 59]. The differences in these algorithms reside in the
colouring procedure and in how the graph operations are implemented (see [37, 44] for details). For
our purpose, that is, to show that the running time of these algorithms can be bounded from below
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by the length of the shortest regular resolution refutation of the k-clique formula, we assume that
the colouring algorithm and the graph operations take constant time and prove the lower bound
for this general framework. Moreover, we can assume that optimal colouring bounds and optimal
ordering of vertices are given.

We now argue that the running time of the MaxClique(G ) algorithm is bounded from below
by the size of a regular resolution refutation of Cliqueblock (G,k ) up to a multiplicative factor of
2knO(1) . We first note that a straightforward modification of the MaxClique(G ) algorithm gives
an algorithm, which we refer to as Clique(G,k ), that determines whether G contains a k-clique.
Given a graphG that does not contain a k-clique, an execution of Clique(G,k ) can be represented
by a search tree with leafs labelled by a subgraphH ⊆ G of potential clique-members and a number
q such that the branch leading to this leaf has identified k − q clique members, has not queried any
vertex ofH , andH is (q − 1)-colourable. Note that a read-once branching program can simulate this
search tree and, by Proposition 3.3 and the equivalence between read-once branching programs
and regular resolution, at each leaf establish that H does not contain a q-clique in size at most
2q · q2 · |V (H ) |2. The bound on the running time follows directly.

Observe that establishing that H does not contain a q-clique is done in a read-once fashion by
querying only vertices of H . Since the vertices of H were not queried earlier on this branch, the
whole branching program is read-once.

8 CONCLUDING REMARKS

In this article we prove optimal average-case lower bounds for regular resolution proofs certifying
k-clique-freeness of Erdős–Rényi graphs not containing k-cliques. These lower bounds are also
strong enough to apply for several state-of-the-art clique algorithms used in practice.

The most immediate and compelling question arising from this work is whether the lower
bounds for regular resolution can be strengthened to hold also for general resolution. A closer
study of our proof reveals that there are several steps that rely on regularity. However, there is no
connection per se between regular resolution and the abstract combinatorial property of graphs
that we show to be sufficient to imply regular resolution lower bounds. Thus, it is tempting to
speculate that this property, or perhaps some modification of it, might be sufficient to obtain lower
bounds also for general resolution. If so, then a natural next step would be to try to extend the lower
bound further to the polynomial calculus proof system capturing Gröbner basis calculations. It is
worth mentioning that proving a general resolution lower bound of nΩ(k ) for the k-clique formula
would have interesting consequences in parameterized proof complexity [20].

Another intriguing question is whether the lower bounds we obtain asymptotically almost
surely for random graphs can also be shown to hold deterministically under the weaker assumption
that the graph has certain pseudorandom properties. Specifically, is it possible to get an nΩ(log n)

length lower bound for the class of Ramsey graphs? A graph on n vertices is called Ramsey if it
has no set of �2 log2 n� vertices forming a clique or an independent set. It is known that for suffi-
ciently large n a random graph sampled from G (n, 1/2) is Ramsey with high probability. Is it true
that for a Ramsey graph G on n vertices the formula Clique(G, �2 log2 n�) requires (regular) res-
olution refutations of length nΩ(log n)? The main difficulty toward adapting our argument to this
setting is that Ramsey graphs are, in some sense, less well structured than random graphs. For
example, a random graph plus a constant number of isolated vertices is, with high probability, still
a Ramsey graph, but it no longer satisfies the first property of clique-denseness (Definition 5.3).
This particular problem can be circumvented using a result from [43, Theorem 1]—as was done
in [34] to obtain a lower bound for treelike resolution—but proving that a Ramsey graph satisfies
the second property of clique-denseness, or some suitable version of it, seems significantly more
challenging.
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