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ABSTRACT
We characterize the strength of the algebraic proof systems

Sherali-Adams (SA) and Nullstellensatz (NS) in terms of

Frege-style proof systems. Unlike bounded-depth Frege, SA
has polynomial-size proofs of the pigeonhole principle (PHP).
A natural question is whether adding PHP to bounded-depth

Frege is enough to simulate SA.
We show that SA, with unary integer coefficients, lies

strictly between tree-like depth-1 Frege + PHP and tree-like

Resolution. We introduce a weighted version of PHP (𝑤PHP)
and we show that SA with integer coefficients lies strictly

between tree-like depth-1 Frege +𝑤PHP and Resolution.

Analogous results are shown forNS using the bijective (i.e.

onto and functional) pigeonhole principle and a weighted

version of it.
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1 INTRODUCTION
This paper connects logic based proof systems with alge-

braic ones. While logic based proof systems work directly

with propositional formulas, the algebraic ones work with

polynomials, including polynomial translations of Boolean

formulas.
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For instance, in the Nullstellensatz proof system (NS) [5],
a CNF formula is shown unsatisfiable by first translating

it into a set of polynomial equations, and a proof of the

unsatisfiability is a sum of multiples of those equations that,

after simplifications, reduces to the trivial contradiction 1 = 0

(Definition 2.5).NS with coefficients over Z2 was first studied

in connection with a major (and yet open) problem in proof

complexity: the problem of proving super-polynomial size

lower bounds for bounded-depth Frege systems with parity

gates ([4, 6, 11] among others). Moreover, lower bounds in

NS can be lifted to lower bounds for stronger proof systems

[26–28].

Sherali-Adams (SA) [29] is similar to NS but instead of

equations we first produce polynomial inequalities and a

proof of unsatisfiability is a sum of positive multiples of the

inequalities together with sums of positive monomials. In

this case the trivial contradiction is −1 ≥ 0 (Definition 2.6).

The interest in studying SA relies primarily on its connec-

tions to approximation algorithms for important NP-hard
optimization problems, see for instance the survey [16].

Frege is the standard textbook logic proof system. Restrict-

ing the depth of the formulas in Frege, we obtain proof sys-

tems like Resolution or bounded-depth Frege. SA is known to

simulate Resolution, and it is stronger, since SA can prove the

pigeonhole principle efficiently, unlike Resolution or even

bounded-depth Frege [21, 25]. Hence, natural questions are

the following.

“Which axioms do we need to add to constant-depth Frege to
simulate SA or NS?”

“What is the minimal depth of constant-depth Frege (plus the
extra axiom) needed to simulate SA or NS?”

The axioms we want to add should be “natural”, in the

sense that they should have some clear combinatorial mean-

ing. For instance, constant-depth Frege with counting𝑀𝑂𝐷2

axioms simulates NS with coefficients over Z2 [19].

The pigeonhole principle (PHP, Definition 4.1) is a natural

combinatorial principle, which informally says that 𝑛 + 1

pigeons cannot all fly to 𝑛 holes without any two of them

sharing a hole. The bijective pigeonhole principle, i.e. onto
and functional, is denoted by ofPHP (Definition 4.1). In this

work we use propositional encodings of these principles.
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Weuse principles generalizing PHP and ofPHP. Theweight-
ed pigeonhole principles 𝑤PHP and 𝑤ofPHP (Definition 5.1)

informally capture similar combinatorial principles, where

the pigeons have some “mass” and the holes have some

“capacity”. The mass of the 𝑖th pigeon is the same as the

capacity of the 𝑖th hole, but there is an extra pigeon with

positive mass. Each pigeon can fly once with the whole mass

or twice with half mass. Each hole can accept either one

pigeon filling the full capacity or two pigeons filling half

capacity each. SA efficiently proves𝑤PHP but the proof seems

to require coefficients encoded in binary (Theorem 5.2).

In this article we answer the questions above for NS and

SA with coefficients in Z. A bit unexpectedly, their strength

seems to depend on whether the coefficients of the polyno-

mials are encoded in unary or binary. Unary NS and unary

SA refer to having coefficients encoded in unary.

Before we answer the questions, let us mention that, infor-

mally, bounded-depth Frege + principle means that the prin-

ciple is given as an extra tautology. Also, a tree-like proof
system means that each Boolean formula can only be used

once.

We visually summarize our results, although the formal

statements of the cited theorems are slightly stronger than

what is shown in the figures, since they also take into account

the degree of the polynomials.

As you can see in Fig. 1.1, tree-like depth-1 Frege +𝑤PHP
is strictly stronger than SA and SA is strictly stronger than

Resolution. On the other hand, tree-like depth-1 Frege + PHP
is strictly stronger than unary SA and unary SA is strictly

stronger than tree-like Resolution.

Prior to our work, it was not clear at all if SA was able to

prove efficiently any combinatorial principle significantly

different from PHP (in addition to what Resolution can prove).

This work shows this is not the case. At best, SA can prove

just principles easily reducible to𝑤PHP (in addition to what

Resolution can prove).

Fig. 1.1 also states some equivalences between SA and

unary SA and other proof systems based on Boolean formu-

las, in particular weighted Resolution ([10, 23, 24], Definition

3.1) and circular Resolution [2].

Informally, weighted Resolution is a proof system where

clauses have weights that can be positive or negative. The

positive weight of a clause is the number of times we are

allowed to use it as a premise of some inference, while the

negative weight is the number of times we used it as an

assumption and hence are required to justify it by deriving it.

Clauses with positive weights might appear out of nothing as

long as the same clauses appears also with negative weights.

A proof starts with the initial clauses with some chosen

positive weights and produces, using a small modification of

the rules of Resolution, an empty clause with positive weight

and all the clauses with negative weights have been justified.

SA ≡
weighted Resolution ≡

circular Resolution [2, 10]

unary SA ≡
unary weighted Resolution

(Thm. 3.6)
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Figure 1.1: The p-simulations for SA. The notation 𝑃 → 𝑄 means
that the proof system 𝑃 p-simulates the proof system 𝑄 . The p-
simulations are annotated with “.” if the p-simulation is known
to be strict, or with “≡?” whenever it is an open question if the p-
simulation is strict or not. An arrow→means the p-simulation is
trivial. The color • is used to visually differentiate the results for the
proof systems with unary weights/coefficients.

NS ≡
weighted Resolution with

soundness-NS (Thm. 3.6)

unary NS ≡
unary weighted Resolution

with soundness-NS (Thm. 3.6)
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Figure 1.2: The p-simulations for NS.

As you can see in Fig. 1.2, tree-like depth-1 Frege+𝑤ofPHP
is stronger than NS. On the other hand, tree-like depth-1

Frege + ofPHP is stronger than unary NS and unary NS is

strictly stronger than tree-like Resolution. We also show that
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NS and unary NS are p-equivalent to other proof systems

based on Boolean formulas (Theorem 3.6).

The notion of weighted Resolution can be extended nat-

urally to formulas of higher depth producing the system

weighted depth-𝑑 Frege (see Definition 3.1). As weighted

Resolution corresponds to SA, weighted depth-𝑑 Frege cor-

responds to a generalization of SA handling algebraic expres-

sions of higher depth.
1
Fig. 1.3 shows the results we have

for weighted depth-𝑑 Frege. Basically the same results as in

Fig. 1.1 but lifted from formulas of depth 0, i.e. clauses, to

formulas of depth 𝑑 . Tree-like depth-(𝑑 + 1) Frege +𝑤PHP is

strictly stronger than weighted depth-𝑑 Frege and weighted

depth-𝑑 Frege is strictly stronger than depth-𝑑 Frege. On the

other hand, tree-like depth-(𝑑 + 1) Frege + PHP is strictly

stronger than unary weighted depth-𝑑 Frege and unary

weighted depth-𝑑 Frege is strictly stronger than tree-like

depth-𝑑 Frege.
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Figure 1.3: The p-simulations for weighted depth-𝑑 Frege.

The PHP is the most studied principle in proof complex-

ity and, for instance, we know that depth-𝑑 Frege + PHP is

strictly weaker than Frege, at least for 𝑑 = 𝑜

(
log log𝑛

log log log𝑛

)
[6],

hence unary weighted depth-𝑑 Frege is also strictly weaker

than Frege for the same 𝑑 (Corollary 4.7). To the best of our

knowledge, the weighted pigeonhole principle 𝑤PHP is a

1
We leave the formal definition of SA on algebraic expressions of higher

depth, and the connections with circular depth-𝑑 Frege and weighted

depth-𝑑 Frege, to a full version of this work.

completely new generalization of PHP. This naturally leaves

several open questions about it. Including the obvious one

of proving that depth-𝑑 Frege +𝑤PHP is strictly weaker than

Frege (see Section 6 for a list of open problems).

1.1 Connections with previous work
This article originated in the context of proof systems for

MaxSAT extendingMaxSAT Resolution, such as, for instance,

DRMaxSAT [8]. Such systems, when seen as usual propo-

sitional proof systems, are stronger than Resolution, since

they able to prove some versions of PHP. We were interested

to see if they could also prove some different natural com-

binatorial principles. These proof systems are simulated by

weighted Resolution (previously called MaxSAT Resolution
with Extension in [23, 24]).

Since SA andweighted Resolution are equivalent, the ques-

tion about MaxSAT proof systems morphed into asking

whether SA was actually able to prove something signifi-

cantly different from PHP (in addition to what Resolution

can prove).

In this article, we give a first answer to the questions of the

strength of SA andNS. SA can, at best, prove principles easily

reducible to𝑤PHP (in addition to what Resolution can prove).

Similarly, NS can, at best, prove principles easily reducible

to𝑤ofPHP, in addition to what Resolution can prove (with a

small increase in depth).

The starting point of our work is [8], where the authors

prove that DRMaxSAT is simulated by bounded-depth Frege +

PHP. The simulations upper-bounding the strength of SA,NS
and weighted depth-𝑑 Frege in this article widely generalize

the simulation in [8].

This was possible via the language of weighted Resolution

and weighted depth-𝑑 Frege, a new way of looking at SA and

NS (and other semi-algebraic proof systems).

1.2 Organization of the paper
Section 2 contains all the basic definitions: the notion of

depth-𝑑 Frege, depth-𝑑 Frege + 𝝓, and the semi-algebraic

proof systems NS and SA.
Section 3 introduces the proof system weighted depth-𝑑

Frege with two soundness conditions, proves some basic

facts about them, and the connection to semi-algebraic proof

systems.

Section 4 contains the definition of the pigeonhole princi-

ple PHP and the simulation of unary SA (resp. unary NS) by
depth-1 Frege + PHP (resp. depth-1 Frege + ofPHP).

Section 5, builds on the previous section and introduces a

weighted version of the pigeonhole principle𝑤PHP. We show

how to refute it in SA and how to simulate SA by depth-1

Frege +𝑤PHP.
3
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Section 6 briefly recaps some aspects of this article and

suggests some open problems.

2 PRELIMINARIES
For 𝑛 ∈ N, let [𝑛] = {1, . . . , 𝑛}. A propositional proof system
is a polynomial time function 𝑃 : {0, 1}∗ → {0, 1}∗ whose
range is exactly the set TAUT of propositional tautologies in

the DeMorgan language [12]. The notion we use to compare

the strength of two propositional proof systems is the notion

of p-simulation. Given two propositional proof systems 𝑃,𝑄

we say that 𝑃 p-simulates 𝑄 if there exist a polynomial time

function 𝑓 : {0, 1}∗ → {0, 1}∗ such that for all strings 𝑥 ,

𝑄 (𝑥) = 𝑃 (𝑓 (𝑥)). If 𝑃 p-simulates 𝑄 and 𝑄 p-simulates 𝑃 we

say that 𝑃 and 𝑄 are p-equivalent. If 𝑃 p-simulates 𝑄 and

they are not p-equivalent we say that the p-simulation is

strict.

2.1 Constant depth Frege systems
We follow the notation and definitions of [7] with minor

changes. Propositional formulas are constructed from liter-
als, i.e. Boolean variables 𝑥𝑖 or negated variables ¬𝑥𝑖 , and
unbounded fan-in conjunctions

∧
and disjunctions

∨
.

All formulas are either literals,

∨
-formulas or

∧
-formulas.

They are defined inductively:

• If Φ is a finite set of literals and

∨
-formulas, then

∧
Φ

is a

∧
-formula.

• If Φ is a finite set of literals and

∧
-formulas, then

∨
Φ

is a

∨
-formula.

The point of this definition is that an

∧
-formula cannot be

the argument of an

∧
, hence intuitively, adjacent

∧
(resp.∨

) must be collapsed.

Definition 2.1 (depth-𝑑 formulas). Let 𝑑 ∈ N. The classes of
formulas Θ𝑑 over a set of variables 𝑋 are defined inductively

as follows:

(1) 𝜙 ∈ Θ0 iff 𝜙 is a literal, i.e. either 𝑥 or the negation ¬𝑥
of some variable 𝑥 ∈ 𝑋 .

(2) 𝜙 ∈ Θ𝑑+1 iff 𝜙 ∈ Θ𝑑 or 𝜙 =
∧

Ψ or 𝜙 =
∨

Ψ, where Ψ
is a finite subset of Θ𝑑 .

We refer to 𝜙 ∈ Θ𝑑 as 𝜙 being of depth 𝑑 .

For 𝜙 ∈ Θ𝑑 we denote by ¬𝜙 the formula in Θ𝑑 obtained

from 𝜙 by interchanging

∨
and

∧
and interchanging vari-

ables and their negations.

A Θ𝑑 -cedent is a finite multiset of formulas of depth 𝑑 . A

Θ0-cedent is a clause. The intended meaning of a cedent Γ is∨
Γ. A CNF formula 𝐹 is a set of clauses. The intended mean-

ing of 𝐹 is the conjunction of its members. We sometimes

abuse notation by writing a cedent Γ ∪ Φ simply as Γ,Φ.

Definition 2.2 (depth-𝑑 Frege). Let F be a set Θ𝑑 -cedents.

A depth-𝑑 Frege derivation of a Θ𝑑 -cedent Γ is a tree 𝑇 in

which each node is labelled with a Θ𝑑 -cedent, the root has

label Γ, each leaf has label either the empty cedent or a

cedent from F , and for each node in the tree the label it gets

is a consequence of the labels of its parents via one of the

following inference rules

Γ, 𝜙, 𝜙

Γ, 𝜙
(contraction)

𝜙,¬𝜙 (excluded middle)

Γ, 𝜙 for 𝜙 ∈ Φ

Γ,
∧

Φ
(

∧
-introduction)

Γ,¬𝜙 Γ, 𝜙

Γ
(symmetric cut)

Γ

Γ, Γ′
(weakening)

Γ,Φ

Γ,
∨

Φ
(

∨
-introduction)

Γ,
∨

Φ

Γ,Φ
(

∨
-elimination)

where the cedents Γ, Γ′,Φ areΘ𝑑 -cedents and
∨

Φ,
∧

Φ, 𝜙,¬𝜙
are formulas of depth 𝑑 . The size of 𝑇 is the number of sym-

bols of distinct cedents in the derivation. If we count the

number of symbols in all occurrences of cedents we use

the adjective tree-like. A depth-𝑑 Frege refutation of F is a

derivation of the empty cedent.

The definition of depth-𝑑 Frege in [7] is essentially the

one given above with the contraction rule given implicitly,

since their cedents are sets. For us, it is more convenient to

consider multisets and to have the rule given explicitly. The

propositional proof system Resolution is depth-0 Frege. In

this system, the

∧
and

∨
rules cannot be applied.

Given 𝝓 = (𝜙𝑛)𝑛∈N a family of unsatisfiable cedents, for

instance 𝜙𝑛 being the pigeonhole principle PHP𝑛+1

𝑛 (see Sec-

tion 4 for the definition of PHP𝑛+1

𝑛 ), the notion of depth-𝑑

Frege + 𝝓 has been considered for instance in [1, 6], and it is

also very common in the context of bounded arithmetic (see

for instance [20]).

Informally, depth-𝑑 Frege + 𝝓 is depth-𝑑 Frege where we

have the extra power to reduce the formula we want to refute

to a substitution instance of some 𝜙𝑛 , and 𝜙𝑛 is given for

free in the sense that we already know it is unsatisfiable. In

some sense, in the system depth-𝑑 Frege + 𝝓 we allow the

formulas 𝜙𝑛 to be used only once. Formally, the definition is

the following.

Definition 2.3 (depth-𝑑 Frege + 𝝓). Let 𝝓 = (𝜙𝑛)𝑛∈N, where
𝜙𝑛 is a set of 𝑠 many Θ𝑑 -cedents in 𝑛 variables. A refutation

of a set of Θ𝑑 -cedents 𝐹 in depth-𝑑 Frege + 𝝓 is a set of

depth-𝑑 Frege derivations Γ1, . . . , Γ𝑠 of 𝐺1, . . . ,𝐺𝑠 such that:

either (1) 𝐺1 = ∅, i.e. Γ1 is a refutation of 𝐹 and 𝑠 = 1, or (2)

there is a 𝑛 ∈ N such that the set of cedents {𝐺1, . . . ,𝐺𝑠 } is a
substitution instance of 𝜙𝑛 .

2
The height of the refutation is

the maximum height of Γ1, . . . , Γ𝑠 . The size of the refutation
is the sum of the sizes of Γ1, . . . , Γ𝑠 .

2
Let𝜓𝑛 be in the variables 𝑥1, . . . , 𝑥𝑛 . The cedent {𝐺1, . . . ,𝐺𝑠 } is a substi-
tution instance of 𝜙𝑛 if there are depth-𝑑 formulas𝜓1, . . . ,𝜓𝑛 s.t. once we

substitute in 𝜙𝑛 all the 𝑥𝑖 s with the𝜓𝑖 s we get exactly {𝐺1, . . . ,𝐺𝑠 }.
4
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Even though we know that tree-like depth-(𝑑 + 1) Frege
is equivalent to depth-𝑑 Frege [20], tree-like depth-(𝑑 + 1)
Frege + 𝜙 is not the same as depth-𝑑 Frege + 𝜙 , since in the

first system we allow to derive substitution instances of 𝜙

that are formulas of depth 𝑑 + 1.

Definition 2.4 (Res(𝑘)). Let 𝑑, 𝑘 ∈ N. The system Res(𝑘) is

the restriction of depth-1 Frege where the

∧
-introduction

rule in Definition 2.2 is limited to Θ0-cedents (i.e. sets of

clauses) Φ of size at most 𝑘 . Let 𝝓 = (𝜙𝑛)𝑛∈N, where 𝜙𝑛
is a set of 𝑠 many Θ0-cedents in 𝑛 variables. Res(𝑘) + 𝝓 is

then defined in an analogous way as depth-𝑑 Frege + 𝝓 in

Definition 2.3.

2.2 Algebraic and semi-algebraic proof
systems

In this section, we define formally the proof systems Null-

stellensatz [5] and Sherali-Adams [29]. Let 𝑋 be the set of

variables 𝑥1, . . . , 𝑥𝑛, 𝑥1, . . . , 𝑥𝑛 . Given the ordered ring of the

integers Z, by Z[𝑋 ] we denote the set of polynomials in the

variables 𝑋 and coefficients in Z.

Definition 2.5 (Nullstellensatz, NS). Given polynomials

𝑝0, . . . , 𝑝ℓ ∈ Z[𝑋 ], a Nullstellensatz proof over Z (NSZ) of
the equality 𝑝0 = 0 from the equalities 𝑝1 = 0, . . . , 𝑝ℓ = 0 is a

polynomial identity of the form

𝑝0 =

ℓ∑︁
𝑖=1

𝑞𝑖𝑝𝑖 +
𝑛∑︁
𝑗=1

𝑟 𝑗 (𝑥2

𝑗 − 𝑥 𝑗 ) +
𝑛∑︁
𝑗=1

𝑟 ′𝑗 (𝑥 𝑗 + 𝑥 𝑗 − 1) , (1)

where 𝑞𝑖 , 𝑟 𝑗 , 𝑟
′
𝑗 are polynomials in Z[𝑋 ]. A refutation of 𝑝1 =

0, . . . , 𝑝ℓ = 0 is a derivation of the equality 𝑐 = 0where 𝑐 ∈ Z\
{0}. The size of the polynomial identity in (1) is the length of

a bit-string representing the polynomials 𝑞𝑖 , 𝑟 𝑗 , 𝑟
′
𝑗 , including

the coefficients. The degree of the polynomial identity in (1)

is the maximum degree of the polynomials 𝑞𝑖 , 𝑟 𝑗 , 𝑟
′
𝑗 .

Definition 2.6 (Sherali-Adams, SA). Given a set of polyno-

mials 𝑝0, . . . , 𝑝ℓ ∈ Z[𝑋 ], a Sherali-Adams proof over Z (SAZ)
of 𝑝0 ≥ 0 from 𝑝1 ≥ 0, . . . , 𝑝ℓ ≥ 0 is a polynomial identity of

the form

𝑝0 =

ℓ∑︁
𝑖=1

𝑞𝑖𝑝𝑖 +
𝑛∑︁
𝑗=1

𝑟 𝑗 (𝑥2

𝑗 − 𝑥 𝑗 ) +
𝑛∑︁
𝑗=1

𝑟 ′𝑗 (𝑥 𝑗 + 𝑥 𝑗 − 1) +𝑞0 , (2)

where 𝑟 𝑗 , 𝑟
′
𝑗 are polynomials in Z[𝑋 ] and the 𝑞𝑖s are poly-

nomials with positive coefficients. A refutation of a set of

polynomial inequalities 𝑝1 ≥ 0, . . . , 𝑝ℓ ≥ 0 is a derivation of

𝑐 ≥ 0 where 𝑐 ∈ Z and negative. The size of the polynomial

identity in (2) is the length of a bit-string representing the

polynomials 𝑞𝑖 , 𝑟 𝑗 , 𝑟
′
𝑗 , including the coefficients. The degree

of the polynomial identity in (2) is the maximum degree of

the polynomials 𝑞𝑖 , 𝑟 𝑗 , 𝑟
′
𝑗 .

In the Definitions 2.5 and 2.6, if we don’t allow the vari-

ables 𝑥1, . . . , 𝑥𝑛 , and hence the polynomials 𝑟 ′𝑗 are identi-

cally 0, the resulting systems are known to be exponentially

weaker [14], with respect to size. The degree of the two

versions of the systems is obviously the same.

In this paper, we consider only Nullstellenstatz and Sherali-

Adams over the ring Z, resp. NSZ and SAZ, hence from now

we refer to them simply as NS and SA omitting the reference

to Z. When we restrict all the polynomials appearing in NS
and SA derivations to have coefficients ±1, we refer to those

systems as unary NS and unary SA.

Theorem 2.7 (Normal form for NS/SA proofs). Given
a (unary) NS derivation 𝜋 of 𝑝0 as in eq. (1), there is a (unary)
NS derivation of 𝑝0 of the form

𝑝0 =

ℓ∑︁
𝑖=1

𝑐𝑝𝑖+
𝑛∑︁
𝑗=1

𝑟 𝑗 (𝑥2

𝑗−𝑥 𝑗 )+
𝑛∑︁
𝑗=1

𝑟 ′′𝑗 (𝑥 𝑗+𝑥 𝑗−1)−
ℓ∑︁

𝑖=1

𝑞′𝑖𝑝𝑖 (3)

with size only polynomially larger than 𝜋 , a constant 𝑐 > 0 and
all polynomials 𝑞′𝑖 with positive coefficients. Similarly, given a
(unary) SA derivation 𝜋 of 𝑝0 as in eq. (2), if all the 𝑝𝑖s have
negative coefficients, there is a (unary) SA derivation of 𝑝0 of
the form

𝑝0 =

ℓ∑︁
𝑖=1

𝑐𝑝𝑖+
𝑛∑︁
𝑗=1

𝑟 𝑗 (𝑥2

𝑗 −𝑥 𝑗 )+
𝑛∑︁
𝑗=1

𝑟 ′′𝑗 (𝑥 𝑗 +𝑥 𝑗−1)+𝑞0−
ℓ∑︁

𝑖=1

𝑞′𝑖𝑝𝑖

(4)

with size only polynomially larger than 𝜋 , a constant 𝑐 > 0

and all polynomials 𝑞′𝑖 with positive coefficients.

An analogous result appeared in [15, Theorem 1.5].

Proof. Let 𝑎𝑥 𝑗𝑚 be a monomial in 𝑞𝑖 . If 𝑎 < 0 consider

this monomial to be part of 𝑞′𝑖 (this case can only happen in

NS). If 𝑎 > 0 then we can rewrite 𝑎𝑚𝑥 𝑗𝑝𝑖 as

𝑎𝑚𝑥 𝑗𝑝𝑖 = 𝑎𝑚𝑝𝑖 (𝑥 𝑗 + 𝑥 𝑗 − 1) − 𝑎𝑚𝑥 𝑗𝑝𝑖 + 𝑎𝑚𝑝𝑖 ,

where the polynomial 𝑎𝑚𝑝𝑖 is going to be part of 𝑟 ′′𝑗 and the

polynomial 𝑎𝑚𝑥 𝑗 is going to be part of 𝑞′𝑖 . We then rewrite

𝑎𝑚𝑝𝑖 in an analogous way, variable by variable. We repeat

this for all the monomials in all the 𝑞𝑖s. This way the sum∑
𝑖∈[ℓ ] 𝑞𝑖𝑝𝑖 is rewritten as

∑
𝑖∈[𝑚] 𝑐𝑖𝑝𝑖 for some constants

𝑐𝑖 > 0 at the cost of adding monomials to the 𝑟 ′′𝑗 s and 𝑞′𝑖 s.
Let 𝑐 = max𝑖∈[ℓ ] 𝑐𝑖 . We can then further rewrite

∑
𝑖∈[ℓ ] 𝑐𝑖𝑝𝑖

as ∑︁
𝑖∈[ℓ ]

𝑐𝑖𝑝𝑖 =
∑︁
𝑖∈[ℓ ]

𝑐𝑝𝑖 −
∑︁
𝑖∈[ℓ ]

(𝑐 − 𝑐𝑖 )𝑝𝑖 .

To conclude, we just consider all monomials in (𝑐 − 𝑐𝑖 )𝑝𝑖 as
part of 𝑞′𝑖 . □

Notice that, if all the coefficients in 𝑝1, . . . , 𝑝ℓ are negative,

then the Normal Form for SA in the theorem above (i.e. eq.
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(4)) gets further simplified to

𝑝0 =

𝑚∑︁
𝑖=1

𝑐𝑝𝑖 +
𝑛∑︁
𝑗=1

𝑟 𝑗 (𝑥2

𝑗 − 𝑥 𝑗 ) +
𝑛∑︁
𝑗=1

𝑟 ′′𝑗 (𝑥 𝑗 + 𝑥 𝑗 − 1) + 𝑞′
0
,

for some polynomial 𝑞′
0
with positive coefficients, since all

monomials in −∑ℓ
𝑖=1

𝑞′𝑖𝑝𝑖 have positive coefficients.

This is exactly what happens for the natural encoding

of sets of clauses in the context of (semi-)algebraic proof

systems. A clause 𝐶 = {𝑥𝑖 ,¬𝑥 𝑗 : 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 } is represented
as the monomial −∏

𝑖∈𝐼 𝑥𝑖
∏

𝑗∈ 𝐽 𝑥 𝑗 , intended to be = 0 in

NS, and ≥ 0 in SA. In the algebraic context, we follow the

common convention that a variable being 0 means it is true.

In the propositional context it is the opposite, 0 means false

and 1 means true. A set of clauses is then represented by the

set of the (in)equalities corresponding to its clauses.

Under this natural representation it is well-known that SA
p-simulates Resolution (see for instance [3, Lemma 3.5]) and

NS with unary coefficients p-simulates tree-like Resolution.

Moreover, both p-simulations are known to be strict.

3 WEIGHTED DEPTH-𝑑 FREGE AND
(SEMI)-ALGEBRAIC PROOF SYSTEMS

A weighted Θ𝑑 -cedent over Z is a pair [Γ;𝑤] where Γ is a Θ𝑑 -

cedent and𝑤 ∈ Z. Given two weighted cedents [Γ;𝑤] and
[Δ; 𝑧] we say that [Γ;𝑤] is a weakening of [Δ; 𝑧] if Γ ⊇ Δ.
In this paper we only consider proof systems handling

weighted depth-𝑑 formulas over Z, although the definitions

can be extended easily to weighted polynomials, linear in-

equalities, etc.

[Γ, 𝜙, 𝜙 ;𝑤]
[Γ, 𝜙 ;𝑤] (contraction) [𝜙,¬𝜙 ;𝑤] (excluded middle)

[Γ, 𝜙1;𝑤] [Γ, 𝜙2;𝑤]
[Γ, 𝜙1 ∧ 𝜙2;𝑤], [Γ, 𝜙1, 𝜙2;𝑤] (

∧
-introduction)

[Γ,¬𝜙 ;𝑤], [Γ, 𝜙 ;𝑤]
[Γ;𝑤] (symmetric cut)

[Γ;𝑢], [Γ;𝑤]
[Γ;𝑢 +𝑤] (fold)

[Γ;𝑤]
[Γ,¬𝜙 ;𝑤], [Γ, 𝜙 ;𝑤] (split)

[Γ;𝑢 +𝑤]
[Γ;𝑢], [Γ;𝑤] (unfold)

[Γ,Φ;𝑤]
[Γ,∨Φ;𝑤] (

∨
-introduction) [Γ;𝑢], [Γ;−𝑢] (introduction)

[Γ,∨Φ;𝑤]
[Γ,Φ;𝑤] (

∨
-elimination)

[Γ;𝑢], [Γ;−𝑢]
(removal)

Figure 3.1: Inference rules of weighted depth-𝑑 Frege. The cedents
Γ,Φ,

∨
Φ,

∧
Φ, 𝜙,¬𝜙 all are Θ𝑑 -cedents, 𝑢, 𝑤 ∈ Z.

Definition 3.1 (weighted depth-𝑑 Frege). A weighted depth-
𝑑 Frege derivation (over Z) of a Θ𝑑 -cedent Γ from a set of

Θ𝑑 -cedents F = {Γ1, . . . , Γ𝑚} is a sequence L1, . . . ,L𝑠 of

multisets of weighted Θ𝑑 -cedents over Z such that:

(1) L1 = {[Γ1;𝑤], . . . [Γ𝑚 ;𝑤]} where𝑤 ∈ N,
(2) [Γ; 𝑧] ∈ L𝑠 for some 𝑧 > 0,

(3) all cedents in L𝑠 \ {[Γ; 𝑧]} have positive weights.
(4) each L𝑖 is obtained from L𝑖−1 by applying one of the

inference rules in Fig. 3.1 as substitution rules, i.e. re-

moving the premises from L𝑖−1 and adding the con-

clusions.

A weighted depth-𝑑 Frege refutation of F is a weighted

depth-𝑑 Frege derivation of the empty cedent. The size of
a weighted depth-𝑑 Frege derivation L1, . . . ,L𝑠 is the total

number of occurrences of symbols in L1, . . . ,L𝑠 including

the weights. Unless explicitly stated, the weights are assumed

to be encoded in binary. If the weights are restricted to −1, 1

then we call the system unary weighted depth-𝑑 Frege. In

the system with weights in unary there are no applications

of the fold/unfold rules and the weighted cedents in L1

are given as a multiset, instead of [Γ𝑖 ;𝑤] we have a multiset

consisting in𝑤 many copies of [Γ𝑖 ; 1] if𝑤 > 0 or a multiset

consisting in −𝑤 many copies of [Γ𝑖 ;−1] if𝑤 < 0.

The systemweighted Resolution is weighted depth-0 Frege.
It comes essentially from [10, 24].

Definition 3.2 (weighted depth-𝑑 Frege with soundness-NS).
A weighted depth-𝑑 Frege with soundness-NS derivation

(over Z) of a Θ𝑑 -cedent Γ from a set of Θ𝑑 -cedents F =

{Γ1, . . . , Γ𝑚} is a sequenceL1, . . . ,L𝑠 ofmultisets of weighted

Θ𝑑 -cedents over Z with the same requirement as in Defini-

tion 3.1 with the condition (3) substituted by the condition

(3
′
) all cedents in L𝑠 \ {[Γ; 𝑧]} have positive weights and,
moreover, they are also weakenings of cedents in F
(soundness-NS condition).

The intuition, behind the definition of weighted proof

systems, is that we are allowed to make assumptions (via the

introduction rule) and the weights are a way to have some

control over them. If we need to use an assumption 𝑘 times,

we also need to justify it with weight 𝑘 . At some point, the

assumptions must end-up being justified, via the removal

rule. The system then needs to keep track of the weights in

a consistent way, and this is done using inference rules as

substitution rules.

Notice that the rules in Fig. 3.1 are weighted versions

of the inference rules of depth-𝑑 Frege (see Definition 2.2)

with two exceptions: the split and the

∧
-introduction.

Those rules are defined in this way to have the property

that, for any assignment 𝛼 , the total weight of the falsified

premises equals the total weight of the falsified conclusions.

This property is true for all the inference rules in Fig. 3.1,

and it is essentially what is used to prove the soundness of

weighted depth-𝑑 Frege. The simple proof will appear in the

full version of this paper.
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Lemma 3.3. For every 𝑑 ∈ N, the proof system weighted
depth-𝑑 Frege is sound. The same is true for weighted depth-𝑑
Frege with the soundness-NS condition.

Notice that the rules in Fig. 3.1 are redundant, e.g. the

split rule can be simulated using the others. Moreover, only

one among fold/unfold is enough. We don’t use a minimal

set of rules just to highlight the natural symmetry among

the rules and to have more freedom to write down weighted

Resolution proofs.

Remark 3.1. Restricting weighted depth-𝑑 Frege to have neg-

ative weights only in the intro./removal rules results in a

system p-equivalent to weighted depth-𝑑 Frege. Moreover,

weighted depth-𝑑 Frege is also p-equivalent to weighted

depth-𝑑 Frege with all weights restricted to be powers of 2.

Remark 3.2. In the definition of weighted depth-𝑑 Frege

(with the soundness-NS/SA condition) the first property

required is that L1 = {[Γ1;𝑤], . . . [Γ𝑚 ;𝑤]} where 𝑤 ∈ N.
We could have required instead

(1) L1 = {[Γ1;𝑤1], . . . [Γ𝑚 ;𝑤𝑚]} where 𝑤1, . . . ,𝑤𝑚 ∈ N or

even

(2) L1 = {[Δ1;𝑤1], . . . [Δ𝑚 ;𝑤𝑚]} with 𝑤1, . . . ,𝑤𝑚 ∈ N and

for all 𝑖 ∈ [𝑚], [Δ𝑖 ;𝑤𝑖 ] weakening of [Γ𝑖 ;𝑤𝑖 ].
All the three possibilities above would have resulted in

p-equivalent systems. The reason is that, in the first case,

we can always take 𝑤 = max𝑖∈[𝑚] 𝑤𝑖 . In the second case,

given cedents Γ𝑖 ,Δ
′
𝑖 , it is immediate to see that it is possible

to infer in depth-𝑑 Frege from the weighted cedent [Γ𝑖 ;𝑤𝑖 ] a
set 𝑆 of weighted cedents containing [Γ𝑖 ,Δ′

𝑖 ;𝑤𝑖 ]. Moreover,

all cedents in 𝑆 are weakening of [Γ𝑖 ;𝑤𝑖 ]. This proof is just
a sequence of |Δ′

𝑖 | applications of the split rule.

We now prove the p-equivalences and some p-simulations

summarized in Fig. 1.1, 1.2 and 1.3. The following is a gener-

alization of SA p-simulates Resolution.

Theorem 3.4. For every 𝑑 ∈ N, weighted depth-𝑑 Frege
p-simulates depth-𝑑 Frege.

Proof. (sketch) The inference rules of weighted depth-𝑑

Frege (if we forget for a moment about the weights) produce

the same consequences as the rules of depth-𝑑 Frege (and

possibly some extra cedents). Since the rules of weighted

depth-𝑑 Frege are substitution rules, to p-simulate depth-𝑑

Frege we take into account the number of times the premises

are used, to assign the proper weights to the initial cedents.

To assign weights to Θ𝑑 -cedents, the idea is to set [∅; 1]
and then proceed bottom-up in 𝜋 setting the weight of any

Θ𝑑 -cedent Γ looking at all the times it is used and summing

the weights of those weighted cedents (similarly as in [9,

Lemma 31], for instance). □

Theorem 3.5. For all 𝑑 ∈ N, unary weighted depth-𝑑 Frege,
with the soundness-NS condition, p-simulates tree-like depth-
𝑑 Frege.

This result is a generalization of the proof that NS p-

simulates tree-like Resolution. In particular, since tree-like

depth-1 Frege p-simulates Resolution [20, Lemma 3.4.2], the

theorem implies that unary weighted depth-1 Frege with the

soundness-NS condition p-simulates Resolution. The proof

of Theorem 3.5 will appear in the full version of this paper.

One of the reasons we introduced weighted proofs is that,

varying the soundness condition, it gives a characterization

of distinct (semi)-algebraic proof systems in a more logic

language.

Theorem 3.6. (1) (Unary) SA is p-equivalent to (unary)
weighted Resolution.

(2) (Unary) NS is p-equivalent to (unary) weighted Resolu-
tion, with the soundness-NS condition.

Moreover, degree-𝑑 proofs in SA/NS correspond to width-𝑑
weighted proofs, where the width of a proof is the maximum
number of literals in a clause of the proof.

The part of this theorem for SA is already known:weighted

Resolution is p-equivalent to circular Resolution [10] and

circular Resolution is p-equivalent to SA [2]. As far as we

know, there is no natural restriction of circular Resolution

characterizing unary SA nor (unary) NS. Refutations in the

systems NS/SA and refutations in weighted Resolution (with

the appropriate soundness condition) are two different ways

of looking at the same thing. The multisets L1, . . . ,L𝑠 in a

weighted Resolution refutation are in a correspondence with

partial sums of SA/NS refutations. The binomials𝑚(𝑥2

𝑗 −𝑥 𝑗 )
correspond to applications of the contraction rule, and

the trinomials𝑚(𝑥 𝑗 + 𝑥 𝑗 − 1) correspond to applications of

the split/symm. cut rules. The proof uses these intuitions,

together with the Normal Form Theorem for SA/NS refuta-

tions (Theorem 2.7). The proof of Theorem 3.6 will appear

in the full version of this paper.

4 THE PIGEONHOLE PRINCIPLE AND
UNARY NS/SA

In this section we prove the p-simulations relative to the

unary parts of Fig. 1.1, 1.2 and 1.3.

Definition 4.1 (pigeonhole principle). Let 𝑚,𝑛 ∈ N with

𝑚 > 𝑛 and let 𝑝𝑖, 𝑗 be Boolean variables with 𝑖 ∈ [𝑚] and
𝑗 ∈ [𝑛]. The pigeonhole principle is the set of clauses
PHP𝑚𝑛 = {{𝑝𝑖,1, . . . , 𝑝𝑖,𝑛} : 𝑖 ∈ [𝑚]}

∪ {{¬𝑝𝑖, 𝑗 ,¬𝑝𝑖′, 𝑗 } : 𝑖, 𝑖′ ∈ [𝑚] distinct, 𝑗 ∈ [𝑛]} .
The onto-functional pigeonhole principle ofPHP𝑚𝑛 is the for-

mula PHP𝑚𝑛 together with the set of cedents

{{¬𝑝𝑖, 𝑗 ,¬𝑝𝑖, 𝑗 ′ } : 𝑖 ∈ [𝑚] 𝑗, 𝑗 ′ ∈ [𝑛] distinct} , (5)
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the functionality axioms, and the set

{{𝑝𝑖, 𝑗 : 𝑖 ∈ [𝑚]} : 𝑗 ∈ [𝑛]} , (6)

the onto axioms. Given a bipartite graph 𝐺 = (𝑃 ∪ 𝐻, 𝐸)
with |𝑃 | = 𝑚 and |𝐻 | = 𝑛, the graph pigeonhole principle

PHP𝑚𝑛 (𝐺) is the formula PHP𝑚𝑛 restricted by a partial assign-

ment mapping 𝑝𝑖, 𝑗 = ⊥ for all (𝑖, 𝑗) ∉ 𝐸, i.e. we remove

the literal 𝑝𝑖, 𝑗 from every clause of PHP𝑚𝑛 where it appears

and remove all clauses of PHP𝑚𝑛 containing ¬𝑝𝑖, 𝑗 . The onto-
functional graph pigeonhole principle ofPHP𝑚𝑛 (𝐺) is defined
in the same way.

It is well-known that PHP𝑛+1

𝑛 has polynomial size unary

SA refutations and ofPHP𝑛+1

𝑛 has polynomial size unary NS
refutations. Let’s recall briefly the argument. To refute PHP𝑛+1

𝑛

in SA first derive∑︁
𝑗∈[𝑛+1]

∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗 − (𝑛 + 1) ≥ 0 (7)

𝑛 −
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛+1]

𝑝𝑖, 𝑗 ≥ 0 . (8)

Then, sum the two inequalities to get −1 ≥ 0. The same

argument can be easily adapted to show the results for unary

NS. Moreover, for a bipartite graph 𝐺 with maximum de-

gree 𝑑 , PHP𝑛+1

𝑛 (𝐺) has degree-𝑑 unary SA refutations and

ofPHP𝑛+1

𝑛 (𝐺) has degree-𝑑 unary NS refutations.

We now show some sort of converse of the previous results:

depth-1 Frege+PHP𝑛+1

𝑛 (𝐺) p-simulates unary SA and depth-1

Frege + ofPHP𝑚𝑛 (𝐺) p-simulates unary NS.

Theorem 4.2. For every 𝑑 , tree-like Res(𝑑) + PHP𝑛+1

𝑛 (𝐺)
p-simulates degree-𝑑 unary SA, where𝐺 is restricted to bipar-
tite graphs of degree at most 3 and the height of the tree-like
Res(𝑑) + PHP𝑛+1

𝑛 (𝐺) derivations is 5.

Notice that tree-like Res(𝑛) is tree-like depth-1 Frege. The
proof of this result is loosely inspired by the proof of [8,

Theorem 4].

Proof. We use the characterization of SA given by Theo-

rem 3.6. Let (L1, . . . ,L𝑠 ) be a weighted Resolution refutation
of some set of clauses 𝐹 = {𝐶1, . . . ,𝐶𝑚}. Since the weights
are in unary, all the weights in 𝜋 are just ±1. In this proof,

there will be no application of the fold/unfold rules. With-

out loss of generality, we can assume that all the weights in

the contraction/symm.cut/split/excl. middle rules are

+1 (see Remark 3.1).

Let L𝑠+1 = {[∅; 1]} and let 𝑃 be the multiset given by

the disjoint union of the multisets L1, . . . ,L𝑠+1 and 𝐻 be

the multiset given by the disjoint union of the multisets

L1, . . . ,L𝑠 . In particular, |𝑃 | = |𝐻 | + 1. The multiset 𝑃 will

represent the pigeons and 𝐻 the holes.

Now for each 𝛼 ∈ 𝑃 and each 𝛽 ∈ 𝐻 we want to define

𝑝𝛼,𝛽 as conjunctions of a set of at most 𝑑 literals, such that

we have small tree-like Res(𝑑) derivations of the cedents

{𝑝𝛼,𝛽 : 𝛽 ∈ 𝐻 } for all 𝛼 ∈ 𝑃 , and {¬𝑝𝛼,𝛽 ,¬𝑝𝛼 ′,𝛽 } for all

𝛽 ∈ 𝐻 , and distinct 𝛼, 𝛼 ′ ∈ 𝑃 . We also want that 𝑝𝛼,𝛽 ≠ ⊥ for

at most 3 values of 𝛽 and 𝑝𝛼,𝛽 ≠ ⊥ for at most 3 values of 𝛼 .

Given 𝛼 ∈ 𝑃 , let 𝛼 = [𝐶𝛼 ;𝑤𝛼 ] and let 𝑖𝛼 be the index of the

level to which 𝛼 belongs, i.e. the unique 𝑖𝛼 such that 𝛼 ∈ L𝑖𝛼 ;

similarly for 𝛽 ∈ 𝐻 . Given 𝛼, 𝛽 as above, we say that 𝛽 is a

contraction/symm.cut/split-premise of 𝛼 if 𝑖𝛼 = 𝑖𝛽 + 1 and

between the layers L𝑖𝛽 and L𝑖𝛼 there is an application of the

contraction/symm.cut/split rule of weighted Resolution

with 𝛽 one of the premises and 𝛼 one of the conclusions.

There are no applications of the fold/unfold rules, so the

only rule having two premises is the symmetric cut. We say

that 𝛼 is a copy of 𝛽 if 𝑖𝛼 = 𝑖𝛽 + 1 and between the layers L𝑖𝛼

and L𝑖𝛽 , the inference rule applied does not involve 𝛼 or 𝛽 .

In particular, [∅; 1] in L𝑠+1 is a copy of some element in L𝑠 .

Moreover, if 𝛼 is a copy of 𝛽 , then 𝐶𝛼 = 𝐶𝛽 and𝑤𝛼 = 𝑤𝛽 . If

𝑤𝛼 = 1 we say that 𝛼 is a positive-copy of 𝛽 , if 𝑤𝛼 = −1 we

say that 𝛼 is a negative-copy of 𝛽 . Finally, we say that 𝛼, 𝛽

are appearing (resp. disappearing) siblings if 𝑖𝛼 = 𝑖𝛽 and 𝛼

and 𝛽 are the result of an introduction rule on the layer

L𝑖𝛼 (resp. 𝛼 and 𝛽 are used as premises of a removal rule

on the layer L𝑖𝛼+1).

Informally, we want the formulas 𝑝𝛼,𝛼 to express that if

the clause 𝐶𝛼 is true, then 𝛼 flies to itself (as a hole). That

is, we set 𝑝𝛼,𝛼 to be the formula

∨
𝐶𝛼 (see (10) below). The

notion of a clause being true or false is under a hypothetical

assignment satisfying all the initial clauses.

If 𝐶𝛼 is an initial clause 𝛼 always flies to itself. So we set

𝑝𝛼,𝛼 = 𝑥 ∨ ¬𝑥 (see (9)).

If𝐶𝛼 is false and its weight is +1, it flies to the false premise

𝐶𝛽 used to derive it or to its appearing sibling. The way to say

that𝐶𝛼 and𝐶𝛽 are false is to use the formula¬∨
𝐶𝛼∧¬

∨
𝐶𝛽 ,

but this is redundant, since it is always the case that either

𝐶𝛼 contains 𝐶𝛽 (see (13)) or the opposite (see (11)).

If 𝐶𝛼 is false and the weight of 𝐶𝛼 is −1 then 𝛼 flies to its

copy 𝐶𝛽 in the direction of the proof, or to its disappearing

sibling (see (12)). The way to define 𝑝𝛼,𝛽 is analogous as

before.

Formally, 𝑝𝛼,𝛽 is the formula

𝑥 ∨ ¬𝑥 if 𝛼 = 𝛽 and 𝛼 ∈ L1 , (9)∨
𝐶𝛼 if 𝛼 = 𝛽 and 𝛼 ∉ L1 , (10)

¬
∨

𝐶𝛽 if


𝛽 is a symm.cut-premise of 𝛼

𝛽 is a contraction-premise of 𝛼

𝛼, 𝛽 appearing siblings,𝑤𝛼 = 1

𝛼 is a positive-copy of 𝛽

(11)

¬
∨

𝐶𝛽 if

{
𝛼, 𝛽 disappearing siblings,𝑤𝛼 = −1

𝛽 is a negative-copy of 𝛼
(12)

8
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¬
∨

𝐶𝛼 if 𝛽 is a split-premise of 𝛼 , (13)

⊥ otherwise .

The totality axioms {𝑝𝛼,𝛽 : 𝛽 ∈ 𝐻 } are easily derivable in

tree-like Res(𝑑) from the initial clauses 𝐶1, . . . ,𝐶𝑚 . We need

to check several cases.

If𝐶𝛼 is one of the initial clauses𝐶1, . . . ,𝐶𝑚 or an instance

of the excluded middle rule, in both cases {𝑝𝛼,𝛽 : 𝛽 ∈ 𝐻 } =
{𝑝𝛼,𝛼 }. The cedent {𝑝𝛼,𝛼 } can be obtained by the excluded

middle rule and

∨
-introduction rule.

If 𝐶𝛼 is the result of the application of a contraction

rule on 𝐶𝛽

{𝑝𝛼,𝛾 : 𝛾 ∈ 𝐻 } = {
∨

𝐶𝛼 ,¬
∨

𝐶𝛽 } .

If𝐶𝛼 is the result of the application of a split rule on𝐶𝛽 or

𝛼 is a copy of 𝛽 or 𝛼, 𝛽 are appearing/disappearing siblings

then

{𝑝𝛼,𝛾 : 𝛾 ∈ 𝐻 } = {
∨

𝐶𝛼 , ¬
∨

𝐶𝛼 }

is an instance of the excluded middle rule of Res(𝑑), the

height to derive it is 1.

The only remaining case is when 𝛼 is the conclusion of a

symmetric cut with premises 𝛽 , 𝛽 ′. Then,
∨
𝐶𝛽 =

∨
𝐶𝛼 ∨ 𝑥

and

∨
𝐶𝛽 ′ =

∨
𝐶𝛼∨¬𝑥 , and the totality axiom for the pigeon

𝛼 is

{𝑝𝛼,𝛾 : 𝛾 ∈ 𝐻 } = {
∨

𝐶𝛼 , ¬
∨

𝐶𝛼 ∧ ¬𝑥, ¬
∨

𝐶𝛼 ∧ 𝑥} .

This formula can be derived by first deriving by excluded

middle

{
∨

𝐶𝛼∨𝑥, ¬
∨

𝐶𝛼∧¬𝑥} and {
∨

𝐶𝛼∨¬𝑥, ¬
∨

𝐶𝛼∧𝑥} ,

then by symmetric cut on weakening of the previous two

cedents we derive

{
∨

𝐶𝛼 , ¬
∨

𝐶𝛼 ∧ ¬𝑥, ¬
∨

𝐶𝛼 ∧ 𝑥} .

This derivation has height 5.

The injectivity axioms {¬𝑝𝛼,𝛽 , ¬𝑝𝛼 ′,𝛽 } are also easily deriv-
able from the initial clauses 𝐶1, . . . ,𝐶𝑚 . As before, we have

several cases.

Case 𝛼 ′ = 𝛽 .

• If 𝛽 ∉ L1, then {¬𝑝𝛼,𝛽 , ¬𝑝𝛽,𝛽 } is either {
∨
𝐶𝛽 ,¬

∨
𝐶𝛽 }

or {∨𝐶𝛼 ,¬
∨
𝐶𝛽 } if 𝛽 is a split-premise of 𝛼 . In both

cases, these are easy tautologies derivable in small

height.

• If 𝛽 ∈ L1, then {¬𝑝𝛼,𝛽 , ¬𝑝𝛽,𝛽 } is either {
∨
𝐶𝛽 , ¬(𝑥 ∨

¬𝑥)} or {∨𝐶𝛼 , ¬(𝑥 ∨¬𝑥)} if 𝛽 is a split-premise of 𝛼 .

In both cases they are derivable from 𝐶𝛽 , a clause that

is a weakening of an initial clause from 𝐶1, . . . ,𝐶𝑚 , in

small height.

Case 𝛼, 𝛼 ′ ≠ 𝛽 .

• If 𝑤𝛽 = −1, then there are no axioms of the form

{¬𝑝𝛼,𝛽 , ¬𝑝𝛼 ′,𝛽 } since in 𝛽 can only fly two pigeons, 𝛽

itself and the copy of 𝛽 from the previous layer (or its

disappearing sibling).

• If𝑤𝛽 = 1, having the variables 𝑝𝛼,𝛽 and 𝑝𝛼 ′,𝛽 distinct

from ⊥ means in particular that 𝑖𝛼 = 𝑖𝛼 ′ = 𝑖𝛽 + 1

and 𝛽 is a premise of both 𝛼 and 𝛼 ′
. That is, at level

L𝑖𝛽 we applied a split rule on 𝛽 obtaining 𝛼, 𝛼 ′
. I.e.∨

𝐶𝛼 =
∨
𝐶𝛽 ∨ 𝑥 and

∨
𝐶𝛼 ′ =

∨
𝐶𝛽 ∨ ¬𝑥 for some

variable 𝑥 . Hence,

{¬𝑝𝛼,𝛽 , ¬𝑝𝛼 ′,𝛽 } = {¬(¬
∨

𝐶𝛽 ∧ ¬𝑥), ¬(¬
∨

𝐶𝛽 ∧ 𝑥)}

= {
∨

𝐶𝛽 ∨ 𝑥,
∨

𝐶𝛽 ∨ ¬𝑥} ,

which is a tautology derivable in small height in Res(𝑑)

being a weakening of 𝑥 ∨ ¬𝑥 .
We showed that from the clauses 𝐶1, . . . ,𝐶𝑚 in tree-like

Res(𝑑) it is possible to derive all the clauses of the formula

PHP𝑛+1

𝑛 (𝑝𝛼,𝛽 ), which is a PHP𝑛+1

𝑛 (𝐺) for some graph 𝐺 of de-

gree at most 3. This concludes the refutation in tree-like

Res(𝑑) + PHP𝑛+1

𝑛 (𝐺). It is a refutation of height 5. □

The construction of the formulas 𝑝𝛼,𝛽 in the previous proof

does not satisfy the onto axioms but it clearly satisfies the

functionality axioms of ofPHP𝑛+1

𝑛 (𝐺), which means that the

substitution instance of the functionality axioms is a tau-

tology easily derivable. The reason the construction does

not satisfy the onto axioms is the following. The last layer

L𝑠 might contain arbitrary weighted clauses [𝐶𝛽 ;𝑤𝛽 ] that,
if true, are mapped to themselves. Therefore, they receive

a pigeon. If they are false, they are mapped to some hole

in L𝑠−1, and hence they, as a hole, don’t receive a pigeon.

Therefore, we have no guarantee that the holes in L𝑠 receive

some pigeon. If L𝑠 satisfies the soundness-NS condition we

can adapt the definition of 𝑝𝛼,𝛽 in the proof of Theorem 4.2

to satisfy the onto axioms of the pigeonhole principle.

Theorem 4.3. For every 𝑑 , tree-like Res(𝑑) + ofPHP𝑚𝑛 (𝐺)
p-simulates degree-𝑑 unary NS, where𝐺 is restricted to bipar-
tite graphs of degree at most 3 and the height of the tree-like
Res(𝑑) + ofPHP𝑚𝑛 (𝐺) derivations is 5.

Proof. (sketch) We use the characterization of unary NS
given by Theorem 3.6, and we argue basically as in Theorem

4.2. We know that the problematic clauses in L𝑠 are weaken-

ing of initial axioms or several copies of [∅; 1]. We can define

the formula 𝑝𝛼,𝛽 as in Theorem 4.2. Now, the onto axioms for

the holes in L𝑠 become weakening of initial clauses, except

for the holes corresponding to the copies of [∅; 1]. Those,
as in the case of SA, are copied in the layer L𝑠+1. With the

exception that for the argument in SA we only needed to

copy one of the [∅; 1], here we need to copy all of them.

Hence instead of PHP𝑛+1

𝑛 (𝐺) we use ofPHP𝑚𝑛 (𝐺). □
9
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The proof of Theorem 4.2 will generalize, almost without

changes, if instead of clauses we consider Θ𝑑 -cedents. This

will appear in the full version of this paper.

Theorem 4.4. For every 𝑑 ∈ N, tree-like depth-(𝑑 + 1)
Frege + PHP𝑛+1

𝑛 (𝐺) p-simulates unary weighted depth-𝑑 Frege,
where 𝐺 is restricted to bipartite graphs of degree at most 3.

We conclude this section with a couple of separations and

lower-bounds.

Proposition 4.5. For every 𝑑 = 𝑜

(
log log𝑛

log log log𝑛

)
, depth-𝑑

Frege does not p-simulate unary weighted depth-𝑑 Frege.

Proof. Any refutation of PHP𝑛+1

𝑛 in depth-𝑑 Frege must

have size at least 2
𝑛 (1/6)𝑑

(see for instance [30]). PHP𝑛+1

𝑛 has

polynomial size unary SA refutations, and hence it has poly-

nomial size refutations in unaryweighted depth-𝑑 Frege. □

Definition 4.6 (𝑀𝑂𝐷2 principle). Given 𝑛 ∈ N, the𝑀𝑂𝐷2-
principle is the set of cedents in the variables 𝑥𝑖, 𝑗 for 𝑖 ≠ 𝑗 ∈ 𝑆

MOD𝑛
2
= {{𝑥𝑖,1, . . . , 𝑥𝑖,𝑖−1, 𝑥𝑖,𝑖+1, . . . , 𝑥𝑖,2𝑛+1} : 𝑖 ∈ [2𝑛 + 1]}

∪ {{¬𝑥𝑖, 𝑗 ,¬𝑥𝑖′, 𝑗 } : 𝑖, 𝑖′ ∈ [2𝑛 + 1] distinct, 𝑗 ∈ [2𝑛 + 1]} .

Corollary 4.7. Given 𝑛 ∈ N and 𝑑 = 𝑜

(
log log𝑛

log log log𝑛

)
, MOD𝑛

2

has no polynomial-size unary weighted depth-𝑑 Frege refuta-
tions.

Proof. Any refutation of MOD𝑛
2
in depth-𝑑 Frege + PHP

must require size at least exp(𝑛Ω(1/𝑑4
𝑑) ) [6, Theorem 4]. By

Theorem 4.4 depth-(𝑑 + 1) Frege + PHP p-simulates unary

weighted depth-𝑑 Frege. The lower bound follows: the for-

mula MOD𝑛
2
requires unary weighted depth-𝑑 Frege refuta-

tions of size exp(𝑛Ω(1/(𝑑+1)4𝑑) ). □

Definition 4.8 (bit-pigeonhole principle, [13] for instance).
Let 𝑛 = 2

𝑘
. The formula bit-PHP𝑛 has variables 𝑏𝑖ℓ for each

𝑖 ∈ [𝑛 + 1] and ℓ ∈ [𝑘]. The variables 𝑏𝑖1, . . . , 𝑏𝑖𝑘 repre-

sent the binary expansion of a hole, the hole 𝑖 is mapped to.

Then bit-PHP𝑛 only needs to enforce injectivity. The formula

bit-PHP𝑛 is{
{𝑏1−ℎ1

𝑖1
, . . . , 𝑏

1−ℎ𝑘
𝑖𝑘

, 𝑏
1−ℎ1

𝑖′1 , . . . , 𝑏
1−ℎ𝑘
𝑖′𝑘 } :

𝑖 ≠ 𝑖′ ∈ [𝑛 + 1]
ℎ ∈ [𝑛]

}
,

where ℎ1, . . . , ℎ𝑘 is the binary expansion of the hole ℎ and

𝑏
ℎ 𝑗

𝑖 𝑗
= 𝑏𝑖 𝑗 if ℎ 𝑗 = 1 and 𝑏

ℎ 𝑗

𝑖 𝑗
= ¬𝑏𝑖 𝑗 if ℎ 𝑗 = 0.

Corollary 4.9. SA does not p-simulate tree-like depth-1
Frege + PHP𝑛+1

𝑛 .

Proof. bit-PHP𝑛 does not have polynomial-size SA refu-

tations [13]. To prove bit-PHP𝑛 in tree-like depth-1 Frege +
PHP𝑛+1

𝑛 , we use the substitution 𝑝𝑖 𝑗 = 𝑏
𝑗1
𝑖1
∧ · · · ∧ 𝑏

𝑗𝑘
𝑖𝑘

where

𝑗 = ( 𝑗1, . . . , 𝑗𝑘 )2. For 𝑖 ≠ 𝑖′ ∈ [𝑛+1] and 𝑗 ∈ [𝑛], {¬𝑝𝑖 𝑗 ,¬𝑝𝑖′ 𝑗 }

is immediately derivable from the axioms of bit-PHP𝑛 by

∨
-

introduction. For every 𝑖 ∈ [𝑛+1], the cedent {𝑝𝑖1, . . . , 𝑝𝑖𝑛}
is tautological, and it has 𝑘 = log𝑛 variables. By excluded

middle, derive all the {𝑝𝑖 𝑗 ,¬𝑝𝑖 𝑗 } and then with weaken-

ing and 2
𝑘
applications of symm. cut it is easy to obtain

{𝑝𝑖1, . . . , 𝑝𝑖𝑛}. □

5 THE WEIGHTED PIGEONHOLE
PRINCIPLE AND SHERALI-ADAMS

In this section, we generalize the constructions given for

unary SA/NS and unary weighted depth-𝑑 Frege to systems

with binary weights/coefficients. We prove all remaining

p-simulations in Fig. 1.1, 1.2 and 1.3.

The starting point of this section is that, it is not clear at

all whether it is possible to adapt Theorem 4.4 to show that

tree-like depth-1 Frege+PHP𝑛+1

𝑛 (𝐺) p-simulates SA. It seems

we need a stronger version of the pigeonhole principle. For

this reason, we introduce a new combinatorial principle, the

weighted PHP.
The weighted pigeonhole principle maps 𝑛2 + 1 pigeons

into 𝑛2
holes. First, we partition both sets of pigeons and

holes into 𝑛 parts. The partition of the holes consists of 𝑛

sets 𝐻1, . . . , 𝐻𝑛 given by 𝐻ℓ = {(ℓ − 1)𝑛 + 1, . . . , ℓ𝑛}. Let
𝐻0 = 𝐻𝑛+1 = ∅. For the partition of the pigeons we set, for

some 𝑗 ∈ [𝑛], 𝑃 𝑗 = 𝐻 𝑗 ∪ {𝑛2 + 1} and for the remaining

ℓ ∈ [𝑛] \ { 𝑗}, 𝑃ℓ = 𝐻ℓ . Let 𝑃0 = 𝑃𝑛+1 = ∅.

Definition 5.1 (weighted pigeonhole principle,𝑤PHP). The
weighted pigeonhole principle has variables 𝑥𝑖 𝑗 for each 𝑖 ∈
[𝑛2 + 1] and each 𝑗 ∈ [𝑛2]. The formula 𝑤PHP𝑛

2+1

𝑛2
has the

following clauses. For every ℓ ∈ [𝑛], every pigeon 𝑝 ∈ 𝑃ℓ we

have clauses

{𝑥𝑝1, . . . , 𝑥𝑝𝑛2 } , (14)

{¬𝑥𝑝 𝑗 } for all 𝑗 ∉ 𝐻ℓ−1 ∪ 𝐻ℓ ∪ 𝐻ℓ+1 , (15)

{¬𝑥𝑝 𝑗 , 𝑥𝑝 𝑗 ′ : 𝑗 ′ ∈ 𝐻ℓ−1 \ { 𝑗}} for all 𝑗 ∈ 𝐻ℓ−1 , (16)

{¬𝑥𝑝 𝑗1 , ¬𝑥𝑝 𝑗2 , ¬𝑥𝑝 𝑗3 } for all distinct 𝑗1, 𝑗2, 𝑗3 ∈ 𝐻ℓ−1 (17)

and every hole ℎ ∈ 𝐻ℓ , we have clauses

{¬𝑥𝑖ℎ, ¬𝑥𝑖′ℎ} for all distinct 𝑖 ∈ 𝑃ℓ ∪ 𝑃ℓ+1

and 𝑖′ ∈ [𝑛2 + 1] , (18)

{¬𝑥𝑖1ℎ, ¬𝑥𝑖2ℎ, ¬𝑥𝑖3ℎ} for all distinct 𝑖1, 𝑖2, 𝑖3 ∈ 𝑃ℓ−1 .

(19)

Intuitively, 𝑝 ∈ 𝑃ℓ means that 𝑝 has mass 2
ℓ
, and ℎ ∈ 𝐻ℓ

means ℎ has capacity 2
ℓ
, see Fig. 5.1. The pigeon 𝑝 ∈ 𝑃ℓ has

to fly somewhere (eq. (14)) and moreover, it can only fly to

holes in 𝐻ℓ−1 or 𝐻ℓ or 𝐻ℓ+1 (eq. (15)). The pigeon has to fly

with either full or half-mass. If 𝑝 ∈ 𝑃ℓ flies to 𝐻ℓ−1, it flies

with half-mass and hence it should fly to two distinct holes

in 𝐻ℓ−1 (eq. (16)) but not to three holes in 𝐻ℓ−1 (eq. (17)). If

10
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𝑃ℓ

𝐻ℓ−1

𝐻ℓ

𝐻ℓ+1

2
ℓ−1

2
ℓ−1

2
ℓ

2
ℓ

2
ℓ

Figure 5.1: Possible ways pigeons in 𝑃ℓ can fly.

𝑝 ∈ 𝑃ℓ flies to 𝐻ℓ , we assume it flies with full mass, hence

completely filling the capacity of a hole in 𝐻ℓ (eq. (18)). If

𝑝 ∈ 𝑃ℓ flies to 𝐻ℓ+1, we also assume it flies with full mass,

but now it only fills half of the capacity of a hole in 𝐻ℓ+1.

Therefore, to fill the capacity of a hole ℎ ∈ 𝐻ℓ+1 we will need

another pigeon from 𝑃ℓ flying to ℎ but not two more (eq.

(19)).

The intended meaning of the variable 𝑥𝑖 𝑗 for 𝑖 ∈ 𝑃ℓ is: for

𝑗 ∈ 𝐻ℓ ∪𝐻ℓ+1, 𝑥𝑖 𝑗 = 1 means “the pigeon 𝑖 flies to 𝑗 with mass
2
ℓ
”; for 𝑗 ∈ 𝐻ℓ−1, 𝑥𝑖 𝑗 = 1 means “𝑖 flies to 𝑗 with mass 2

ℓ−1
”.

If 𝑗 ∉ 𝐻ℓ−1 ∪ 𝐻ℓ ∪ 𝐻ℓ+1 then 𝑥𝑖 𝑗 = ⊥.
Similar to the PHP case, given a bipartite graph𝐺 = (𝑃 ¤∪𝐻, 𝐸)
with |𝑃 | = 𝑛2+1 and |𝐻 | = 𝑛2

, the graphweighted pigeonhole
principle 𝑤PHP𝑛

2+1

𝑛2
(𝐺) is the formula𝑤PHP𝑛

2+1

𝑛2
↾𝛼 where 𝛼

is a partial restriction mapping 𝑥𝑖, 𝑗 = ⊥ for all (𝑖, 𝑗) ∉ 𝐸.

If we add to 𝑤PHP𝑛
2+1

𝑛2
the following onto-functional ax-

ioms, we obtain the formula𝑤ofPHP𝑛
2+1

𝑛2
. The axioms we add

are: for every ℓ ∈ [𝑛] and every pigeon 𝑝 ∈ 𝑃ℓ the clauses

{¬𝑥𝑝 𝑗 , ¬𝑥𝑝 𝑗 ′ } for all distinct 𝑗 ∈ 𝐻ℓ ∪ 𝐻ℓ+1

and 𝑗 ′ ∈ [𝑛2] ,

and every hole ℎ ∈ 𝐻ℓ the clauses

{𝑥1ℎ, . . . , 𝑥𝑛2+1,ℎ} ,
{¬𝑥𝑖ℎ, 𝑥𝑖′ℎ : 𝑖′ ∈ 𝑃ℓ−1 \ {𝑖}} for all 𝑖 ∈ 𝑃ℓ−1 .

The clauses in eq. (17) are not needed to have an unsatis-

fiable formula but they are useful to have a short proof in

SA. When considering𝑤PHP𝑛
2+1

𝑛2
(𝐺), the graphs 𝐺 we need

to consider, turn out to always have at most 2 edges of the

form (𝑝, 𝑗), (𝑝, 𝑗 ′) with 𝑝 ∈ 𝑃ℓ and 𝑗, 𝑗 ′ ∈ 𝐻ℓ−1. Hence, for

those graphs 𝐺 , the axioms in eq. (17) are always satisfied:

one of the variables 𝑥𝑝 𝑗1 , 𝑥𝑝 𝑗2 , 𝑥𝑝 𝑗3 is always set to ⊥.

Remark 5.1. We defined𝑤PHP𝑛
2+1

𝑛2
(𝐺) for a very specific fixed

partitions 𝐻1, . . . 𝐻𝑛 , and 𝑃1, . . . , 𝑃𝑛 , all of size 𝑛 except for

one 𝑃 𝑗 of size 𝑛 + 1. We could also allow 𝑃1, 𝑃2, . . . , 𝑃𝑛 to be

disjoint sets of size possibly smaller than 𝑛 (at most 𝑛 + 1

for one 𝑃 𝑗 ). This would not give a more general definition

of𝑤PHP𝑛
2+1

𝑛2
, as long as for every ℓ ∈ [𝑛], 𝐻ℓ = 𝑃ℓ \ {𝑛2 + 1}.

Basically, we could add some padding to all 𝑃 𝑗 s and𝐻 𝑗 s, until

they have size 𝑛 and change𝐺 to a graph that forces the new

vertices in each part 𝑃 𝑗 to be mapped to the corresponding

new vertex in 𝐻 𝑗 . In Theorem 5.3 we will use the𝑤PHP𝑛
2+1

𝑛2

with partition sets possibly smaller than 𝑛 and we will not

use the padding.

It may be not immediately clear why 𝑤PHP𝑛
2+1

𝑛2
is unsat-

isfiable. Informally, a way to see this is to notice that for

every pigeon 𝑝 (say 𝑝 ∈ 𝑃ℓ ) the axioms of 𝑤PHP𝑛
2+1

𝑛2
can be

interpreted to state that the weight flying away from 𝑝 is

at least 2
ℓ
and, for every hole ℎ (say ℎ ∈ 𝐻ℓ ), the weight it

can accommodate is at most 2
ℓ
. So the holes can, in total,

accommodate a total weight of at most

∑
ℓ∈[𝑛] 𝑛2

ℓ
which is

strictly smaller than the total weight of the pigeons flying,

that is 2
𝑗 + ∑

ℓ∈[𝑛] 𝑛2
ℓ
for some 𝑗 ∈ [𝑛].

Next, we formalize this argument in SA.

Theorem 5.2. The formula𝑤PHP𝑛
2+1

𝑛2
has polynomial-size

SA refutations. Also, for every bipartite graph 𝐺 = (𝑃 ¤∪𝐻, 𝐸)
with |𝑃 | = 𝑛2 + 1, |𝐻 | = 𝑛2 and degree 𝑑 , 𝑤PHP𝑛

2+1

𝑛2
(𝐺) has

SA-refutations of degree 𝑑 .

Proof. (sketch) First observe that the axioms imply, for

every 𝑖 ∈ [𝑛2 + 1] with 𝑖 ∈ 𝑃ℓ , the inequality

2

∑︁
𝑗∈𝐻ℓ∪𝐻ℓ+1

𝑥𝑖 𝑗 +
∑︁

𝑗∈𝐻ℓ−1

𝑥𝑖 𝑗 − 2 ≥ 0 , (20)

and, for each 𝑗 ∈ [𝑛2] with 𝑗 ∈ 𝐻ℓ , the inequality

2 − 2

∑︁
𝑖∈𝑃ℓ∪𝑃ℓ+1

𝑥𝑖 𝑗 −
∑︁

𝑖∈𝑃ℓ−1

𝑥𝑖 𝑗 ≥ 0 . (21)

Eq. (20) says that the pigeon 𝑖 must fly at least once into

the set 𝐻ℓ ∪ 𝐻ℓ+1 or at least twice into the set 𝐻ℓ−1.

Eq. (21) says that the hole 𝑗 can receive at most one pigeon

from the set 𝑃ℓ ∪ 𝑃ℓ+1, or at most two pigeons from 𝑃ℓ−1.

The proof of the two inequalities will appear in the full

version of this paper. To conclude, we want to sum appro-

priate multiples of eq. (20) and eq. (21), in a way that all

variables from (20) cancel with variables in (21), and after all

11
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the cancellations we just get some negative constant:∑︁
ℓ∈[𝑛]
𝑖∈𝑃ℓ

2
ℓ

(
2

∑︁
𝑗∈𝐻ℓ∪𝐻ℓ+1

𝑥𝑖 𝑗 +
∑︁

𝑗∈𝑃ℓ−1

𝑥𝑖 𝑗 − 2

)

+
∑︁
ℓ∈[𝑛]
𝑗∈𝐻ℓ

2
ℓ

(
2 − 2

∑︁
𝑖∈𝑃ℓ∪𝑃ℓ+1

𝑥𝑖 𝑗 −
∑︁

𝑖∈𝑃ℓ−1

𝑥𝑖 𝑗

)
≥ 0 . (22)

Consider a variable 𝑥𝑖 𝑗 in (22), with 𝑖 ∈ 𝑃ℓ .

If 𝑗 ∈ 𝐻ℓ , the coefficient of 𝑥𝑖 𝑗 is 2
ℓ · 2 − 2

ℓ · 2 = 0.

If 𝑗 ∈ 𝐻ℓ+1, the coefficient of 𝑥𝑖 𝑗 is 2
ℓ · 2 − 2

ℓ+1 = 0.

If 𝑗 ∈ 𝐻ℓ−1, the coefficient of 𝑥𝑖 𝑗 is 2
ℓ − 2 · 2

ℓ−1 = 0.

That is, all the variables 𝑥𝑖 𝑗 cancel out in (22). The con-

stants in (22) sum to

−2

∑︁
ℓ∈[𝑛]
𝑖∈𝑃ℓ

2
ℓ + 2

∑︁
ℓ∈[𝑛]
𝑗∈𝐻ℓ

2
ℓ = −2

𝑗+1
,

if the pigeon 𝑛2 + 1 was in the set 𝑃 𝑗 , since |𝑃ℓ | = |𝐻ℓ | for
all ℓ except for 𝑗 where |𝑃 𝑗 | = |𝐻 𝑗 | + 1. That is, the sum in

(22), after cancellations, reduces to the trivial contradiction

−2
𝑗+1 ≥ 0. □

Via a similar argument, it is easy to see that𝑤ofPHP𝑛
2+1

𝑛2

has polynomial-size NS refutations.

Remark 5.2. Notice that there is also a different way to infer

a contradiction from (20) and (21). This results in a system of

polynomial inequalities that does not have polynomial-size

unary SA refutations, and hence separating SA and unary SA.
This can be seen by a minor modification of the techniques

in [18]. Recently, a preprint was submitted to ArXiv showing

that unary SA does not p-simulate Resolution [17]. As a corol-

lary, they show that SA and unary SA are not p-equivalent

using polynomials encoding propositional formulas.

It is easy to see that depth-1 Frege +𝑤PHP proves PHP in

polynomial size. We don’t know whether the opposite is true,

but we suspect it is not (see Section 6), even using higher

constant depth. This would imply not only that 𝑤PHP𝑛
2+1

𝑛2

is hard to refute in unary SA, via Theorem 4.2, but even in

unary weighted depth-𝑑 Frege, via Theorem 4.4.

We now prove the remaining p-simulations from Fig. 1.1,

Fig. 1.2, and Fig. 1.3.

Theorem 5.3. For every 𝑑 ∈ N, the proof system tree-like
Res(𝑑) + 𝑤PHP𝑛

2+1

𝑛2
(𝐺) p-simulates degree-𝑑 SA, where 𝐺 is

restricted to bipartite graphs of degree at most 3 and the tree-
like Res(𝑑) +𝑤PHP𝑛

2+1

𝑛2
(𝐺) derivations have height 5.

Proof. The structure of the proof is similar to the proof of

Theorem 4.2. By Theorem 3.6 it is enough to prove the result

for weighted Resolution. Let 𝜋 = L1, . . . ,L𝑠 be a weighted

Resolution refutation of a set of clauses {𝐶1, . . . ,𝐶𝑚}. W.l.o.g.

we can assume that noweighted cedent in 𝜋 has weight 0 and,

by Remark 3.1, we can assume that all the weights appearing

in 𝜋 are powers of 2, and all the rules have positive weights,

except for introduction/removal. Moreover, since 𝜋 is a

refutation, we can assume [∅; 1] ∈ L𝑠 . If the last layer of 𝜋

had [∅; 2
𝑧] for some 𝑧 ≥ 0, we can obtain a new last layer

containing [∅; 1], using the unfold rule.

We define a substitution instance of𝑤PHP𝑛
2+1

𝑛2
(𝐺) without

padding (see Remark 5.1) such that we have shallow Res(𝑑)

derivations of it.

Let S + 1 be the size of 𝜋 , let L𝑠+1 = {[∅; 1]} and let

𝑃1, . . . , 𝑃S be a partition of the multiset L1 ∪ · · · ∪ L𝑠+1 ac-

cording to the weight of the weighted clauses, i.e. all the

weighted clauses in 𝑃 𝑗 have weight 2
𝑗−1

or −2
𝑗−1

. By as-

sumption, all those multisets have size at most S, except 𝑃1

that has size at most S+1. Let 𝑃0 = 𝑃S+1 = ∅. Let𝐻1, . . . , 𝐻S
be defined as 𝐻1 = 𝑃1 \ L𝑠+1, and for all ℓ ∈ {2, . . . ,S},
𝐻ℓ = 𝑃ℓ . Let 𝐻0 = 𝐻S+1 = ∅.
Let 𝑃 be the multiset given by the disjoint union of the

multisets 𝑃1, . . . , 𝑃S and similarly, let𝐻 be the disjoint union

of the multisets 𝐻1, . . . , 𝐻S . Now, for all ℓ ∈ [𝑆], 𝛼 ∈ 𝑃ℓ , and

𝛽 ∈ 𝐻ℓ we want to define

∧
-formulas 𝑥𝛼,𝛾 and 𝑥𝛾 ′,𝛽 such

that we can easily derive from 𝐶1, . . . ,𝐶𝑚 the cedents

{𝑥𝛼𝛾 : 𝛾 ∈ 𝐻 } (23)

{¬𝑥𝛼𝛽 } for all 𝛽 ∉ 𝐻ℓ−1 ∪ 𝐻ℓ ∪ 𝐻ℓ+1 (24)

{¬𝑥𝛼𝛾 , 𝑥𝛼𝛾 ′ : 𝛾 ′ ∈ 𝐻ℓ−1 \ {𝛾}} for all 𝛾 ∈ 𝐻ℓ−1 (25)

{¬𝑥𝛼𝛾1
, ¬𝑥𝛼𝛾2

, ¬𝑥𝛼𝛾3
} for all distinct 𝛾1, 𝛾2, 𝛾3 ∈ 𝐻ℓ−1 ,

(26)

{¬𝑥𝛾𝛽 , ¬𝑥𝛾 ′𝛽 } for all distinct 𝛾 ∈ 𝑃ℓ ∪ 𝑃ℓ+1 , 𝛾
′ ∈ 𝑃 (27)

{¬𝑥𝛾1𝛽 , ¬𝑥𝛾2𝛽 ,¬𝑥𝛾3𝛽 } for all distinct 𝛾1, 𝛾2, 𝛾3 ∈ 𝑃ℓ−1 .

(28)

Informally, the idea is very similar to Theorem 4.2. We

want the

∧
-formulas 𝑥𝛼,𝛽 to express that if the clause 𝐶𝛼 is

true then 𝛼 flies to itself (as a hole), if it is false and its weight

is positive, it flies to all the false premises used to derive it

(i.e. two in the case of the fold and one in all remaining

cases) or to its appearing sibling. If 𝐶𝛼 is a weakening of an

initial clause, it flies to itself. If the weight of 𝐶𝛼 is negative,

then 𝛼 flies to its copy in the direction of the proof, or to its

disappearing sibling. If we define a mapping from pigeons

to holes in this way, there might be collisions due to the

unfold rules. Those types of collisions are exactly the ones

allowed to have in the 𝑤PHP𝑛
2+1

𝑛2
(𝐺) principle, since they

correspond to mapping two pigeons with mass 2
𝑗
to one

hole with capacity 2
𝑗+1

.

Given 𝛼 ∈ 𝜋 ∪L𝑠+1, let 𝑖𝛼 be the unique index of the level

where 𝛼 belongs, i.e. 𝛼 ∈ L𝑖𝛼 , and let𝑤𝛼 be the weight of 𝛼 .

Recall that given 𝛼, 𝛽 in 𝜋 we say that 𝛽 is a premise of 𝛼 if

𝑖𝛼 = 𝑖𝛽 +1, and between the layers L𝑖𝛽 and L𝑖𝛼 we apply one

12
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of the inference rules of Fig. 3.1, with 𝛽 one of the premises

and 𝛼 one of the conclusions. 𝛽 is an unfold-premise of 𝛼 if

𝛽 is a premise of 𝛼 and the rule applied is the unfold rule.

The rest of the terminology is the same as in the proof of

Theorem 4.2.

Using the terminology from Theorem 4.2, the definition of

𝑥𝛼,𝛽 is the same as the definition of 𝑝𝛼,𝛽 , with just two more

cases. The formula 𝑥𝛼,𝛽 is

𝑥 ∨ ¬𝑥 if 𝛼 = 𝛽 and 𝛼 ∈ L1 ,∨
𝐶𝛼 if 𝛼 = 𝛽 and 𝛼 ∉ L1 ,

¬
∨

𝐶𝛽 if



𝛽 is a symm.cut-premise of 𝛼

𝛽 is a contraction-premise of 𝛼

𝛽 is a fold/unfold-premise of 𝛼

𝛼, 𝛽 are appearing siblings and𝑤𝛼 > 0

𝛼 is a positive-copy of 𝛽

¬
∨

𝐶𝛽 if

{
𝛼, 𝛽 are disappearing siblings and𝑤𝛼 < 0

𝛽 is a negative-copy of 𝛼

¬
∨

𝐶𝛼 if 𝛽 is a split-premise of 𝛼 ,

⊥ otherwise .

The axioms that require a slightly different argument from

the proof of Theorem 4.2 are (25)–(28). The axiom (25) is a

weakening of ⊤ in all cases, except when 𝛼 is the conclusion

of a fold rule and 𝛾 is one of its premises. Let 2
ℓ
be the

weight of 𝛼 , i.e. both its fold premises 𝛽,𝛾 have weights

2
ℓ−1

and

{¬𝑥𝛼𝛾 , 𝑥𝛼𝛾 ′ : 𝛾 ′ ∈𝑊ℓ−1 \ {𝛾}} = {
∨

𝐶𝛼 ,¬
∨

𝐶𝛼 } .

The axiom (26) is always aweakening of⊤, since all inference
rules have at most 2 premises and none of the 𝛾1, 𝛾2, 𝛾3 can

be 𝛼 , since 𝛼 ∈ 𝑃ℓ and the 𝛾𝑖s are in 𝐻ℓ−1. Hence, at least one

among the variables 𝑥𝛼𝛾1
, 𝑥𝛼𝛾2

, 𝑥𝛼𝛾3
is ⊥ and its negation is

true, i.e. ⊤. Similarly, the axiom (28) is always a weakening

of ⊤, since all the rules have at most two conclusions and

the 𝛾𝑖s cannot be 𝛽 , for the same reason as before. Hence,

one among the variables 𝑥𝛾1𝛽 , 𝑥𝛾2𝛽 , 𝑥𝛾3𝛽 is always ⊥.
To check the axioms in (27) we proceed exactly as in the

cases of the injectivity in Theorem 4.2. Notice that the ce-

dents {¬𝑥𝛾𝛽 , ¬𝑥𝛾 ′𝛽 } for 𝛽 an unfold premise of 𝛾 and 𝛾 ′ are
not part of the cedents in eq. (26).

We showed that from the clauses 𝐶1, . . . ,𝐶𝑚 in tree-like

Res(𝑑) it is possible to derive all the clauses of the formula

𝑤PHP𝑛
2+1

𝑛2
(𝐺) in the formulas 𝑥𝛼,𝛽 , which is a 𝑤PHP𝑛

2+1

𝑛2
(𝐺)

for some graph 𝐺 of degree at most 3. □

The construction of the formulas 𝑥𝛼,𝛽 in the previous proof

does not satisfy the onto/functional axioms of𝑤ofPHP. The
reason is the same we had for PHP and unary SA: the last
layer L𝑠 might contain arbitrary weighted clauses [𝐶𝛽 ;𝑤𝛽 ].

If they are true, they are mapped to themselves. If they are

false, they are mapped to some hole in L𝑠−1. We have no

guarantees that the holes in L𝑠 receive some pigeon, but if

L𝑠 satisfies the soundness-NS condition we can adapt the

definition of 𝑥𝛼,𝛽 in the proof of Theorem 5.3 to satisfy the

onto/functional axioms of the weighted pigeonhole principle.

Theorem 5.4. For every𝑑 , tree-like Res(𝑑)+𝑤ofPHP𝑛
2+1

𝑛2
(𝐺)

p-simulates degree-𝑑 NS, where 𝐺 is restricted to bipartite
graphs of degree at most 3 and the height of the tree-like
Res(𝑑) +𝑤ofPHP𝑛

2+1

𝑛2
(𝐺) derivations is 5.

Proof. (sketch) We use the characterization of NS given

by Theorem 3.6 and we reason basically as in Theorem 4.3.

We know that the problematic clauses in L𝑠 are weakening

of initial axioms or a single instance of [∅; 𝑧]. We copy [∅; 𝑧]
to a L𝑠+1, and we define the formula 𝑥𝛼,𝛽 as in Theorem 5.3.

Now the onto axioms for the holes in L𝑠 become weakening

of initial clauses except for the hole [∅; 𝑧], which receive a

pigeon flying there from the layer L𝑠+1. □

It is immediate to generalize Theorem 5.3 from clauses

to Θ𝑑 -cedents. The argument for this generalization is the

same as in Theorem 4.4.

Theorem 5.5. For all 𝑑 ∈ N, weighted depth-𝑑 Frege is
p-simulated by tree-like depth-(𝑑 + 1) Frege + 𝑤PHP𝑛

2+1

𝑛2
(𝐺),

where 𝐺 is restricted to bipartite graphs of degree at most 3.

6 OPEN QUESTIONS
In addition to the open questions left in Fig. 1.1, 1.2 and 1.3,

we conclude this article with a list of open problems.

(1) Prove that depth-𝑑 Frege + 𝑤PHP is strictly weaker

than Frege, say for at least 𝑑 constant.

(2) Refining on the problem above, prove that the formula

MOD2 (see Definition 4.6) does not have polynomial size

refutations in depth-𝑑 Frege +𝑤PHP, say for at least 𝑑

constant.

(3) Does depth-𝑑 Frege + PHP, say for constant 𝑑 , have

polynomial size refutations of 𝑤PHP? A negative an-

swer, together with Theorem 5.5, would imply super-

polynomial size lower bounds for weighted depth-𝑑

Frege.
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