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Abstract
MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a
CNF formula. We consider a natural generalization of this problem to generic sets of polynomials
and propose a weighted version of Polynomial Calculus to address this problem.

Weighted Polynomial Calculus is a natural generalization of MaxSAT-Resolution and weighted
Resolution that manipulates polynomials with coefficients in a finite field and either weights in N
or Z. We show the soundness and completeness of these systems via an algorithmic procedure.

Weighted Polynomial Calculus, with weights in N and coefficients in F2, is able to prove efficiently
that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in Z, it also
proves efficiently that the Pigeonhole Principle is minimally unsatisfiable.
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1 Introduction

The question of whether a set of polynomials F = {f1, . . . , fm} is satisfiable—i.e. to know
if there exists an assignment of the variables α s.t. fi(α) = 0 for every i—is at the root
of algebraic geometry, and it is a natural generalization of SAT, since we can encode CNF
formulas as sets of polynomials (over {0, 1}-valued variables).

The state-of-the-art of practical SAT solving is dominated by CDCL SAT solvers, all
of them based on the Resolution proof system [28, 3]. In the last two decades, these
solvers have reached remarkable efficiency in industrial SAT instances, but to get further
substantial improvements we think it will be necessary to broaden the current paradigm
beyond Resolution. Therefore it makes sense to look at the problem from a different point of
view using algebraic language and methods to have an impact on solving instances.

Another line of investigation is focusing on encodings to overcome the limitations of CDCL
solving. For instance, [21, 5] has shown that the dual-rail encoding allows translating SAT
instances into MaxSAT problems. This results in translations of the Pigeonhole Principle
with polynomial size proofs using MaxSAT resolution. The same applies to the translation of
SAT to Max2SAT using the gadget described in [2]. Moreover, in both cases, general-purpose
MaxSAT solvers are able to solve these instances in practice, even though these MaxSAT
solvers are not based on MaxSAT resolution.
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5:2 Polynomial Calculus for MaxSAT

We have algebraic systems that are stronger than Resolution, and therefore it makes sense
to extend those systems to solve MaxSAT problems to see if we can improve on the dual-rail
and Max2SAT translations. Moreover, algebraic systems inherently allow more alternative
encodings of the problems. For instance, we can use a direct encoding into polynomials, or
encode first via a CNF and then translate them into polynomials. These encodings allow us
to use algorithms to compute Groebner bases [10, 9, 18], and efficiency maybe gained by these
changes. For instance, a direct algebraic encoding, and Groebner-based techniques are useful
in practice for coloring [14, 15, 16] and the verification of multiplier circuits [25, 23, 24, 22].
The proof system capturing Groebner-based algorithms is Polynomial Calculus (PC) [12],
which is a proof system strictly stronger than Resolution. Polynomial Calculus is degree-
automatable, in the sense that bounded degree proofs can be found efficiently (in time nO(d),
where d is the degree). This is one more reason to extend PC techniques to MaxSAT.

In this paper, we consider the generalization of MaxSAT to the context of polynomials,
that is the question of what is the maximum number of polynomials of a given set we are
able to simultaneously satisfy. Equivalently, the minimum number of polynomials that we
cannot satisfy. In this algebraic context, there are also MaxSAT problems that have natural
direct encodings as sets of polynomials, for instance, max-cut or max-coloring.

We define an extension of PC suitable for MaxSAT, i.e. a system that not only is able to
prove that a set of polynomials is unsatisfiable but to prove what is the maximum number of
polynomials that can be satisfied simultaneously.

Our generalization of PC to a system suitable for MaxSAT is done in a similar way as the
adaptation of Resolution to systems suitable for MaxSAT, for instance, MaxSAT-Resolution
[7, 8], and weighted Resolution [6]. As weighted Resolution is a system for MaxSAT handling
weighted clauses, we consider weighted PC, a system handling weighted polynomials. We
consider polynomials over finite fields. The intuitive reason for this is that, over a finite field
Fq with q elements, we can express f ̸= 0 as the polynomial equality fq−1 = 1. We define
weighted Polynomial Calculus for polynomials with coefficients in F2 in Section 3 and in
Section 6 we give the definition in the general case.

We call wPCF2,N the weighted version of Polynomial Calculus handling weighted poly-
nomials with coefficients in F2 and weights in N. Intuitively the positive weight of a
clause/polynomial is the “penalty” we pay to falsify it. Weighted Resolution has been
generalized to Z-weighted Resolution, i.e. weighted resolution but with negative weights
[27, 6, 26, 30]. In a similar way, we also define wPCF2,Z as wPCF2,N but where we allow
negative weights in the proofs. Intuitively the meaning of a weighted clause/polynomial with
a negative weight is that it is introduced in the proof as an “assumption” to be justified later,
and the negative weight is to keep track of such assumptions yet to be justified.

Connections of weighted Polynomial Calculus with other MaxSAT systems

It is well known that PC (with an appropriate encoding of CNF formulas, the twin variable
encoding, see Section 2.2) simulates Resolution. This immediately gives that wPCF2,N with
twin variables is as strong as N-weighted Resolution and wPCF2,Z is as strong as Z-weighted
Resolution (aka Sherali-Adams and Circular Resolution [4, 6]). Pictorially the relations
between wPCF2,N/wPCF2,Z and the aforementioned systems can be summarized as in Fig. 1.

None of the systems above are equivalent since wPCF2,N and Z-weighted Resolution are
incomparable. In one direction Tseitin(G) is easy in wPCF2,N while it is hard for Z-weighted
Resolution. This follows from the lower bound in [20]. (Tseitin formulas are treated in more
detail in Section 5.) In the other direction, the Pigeonhole Principle is easy for Z-weighted
Resolution (see for instance [4]) and hence for wPCF2,Z, while it is hard for wPCF2,N. This
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MaxSAT-Resolution

weighted Resolution

Z-weighted ResolutionwPCF2,N
(twin variables)

wPCF2,Z
(twin variables)

=
?

̸= ̸=

̸= ̸=

(PHP)

(Tseitin)

Figure 1 P → Q means that P is at least as strong as Q. A dashed line means the two systems
are incomparable.

follows from the lower bound on the Pigeonhole principle in Polynomial Calculus [29]. Both
the Pigeonhole principle and Tseitin have short proofs in wPCF2,Z.

We recall that Figure 1 can also be read in the context of propositional proof systems.
Indeed, all the MaxSAT systems in Figure 1 can be seen as propositional proof systems, if
the weights of the initial clauses/polynomials are not part of the input but part of the proof
and to refute we just want to derive one instance of the empty clause or the polynomial 1.
In this setting weighted Resolution is the same as Resolution and wPCF2,N is the same as PC
over F2.

Analogous simulations as the ones in Fig. 1 hold also for wPCFq,N/wPCFq,Z.

The main technical contribution of this work is the proof of the completeness of wPCFq,N.
This is proved in detail for F2 in Section 4 and we show how to adapt it to the general
case in Section 6. The completeness is proved via a saturation process which is a natural
generalization of an analogous process used in [7, 8, 1] to prove the completeness of MaxSAT-
Resolution. Unlike for MaxSAT-Resolution, we take a more semantic view of the process
which makes easier to adapt it to the context of polynomials.

Structure of the paper

Section 2 contains all the necessary preliminaries, in particular, the definition of PC and the
extension of MaxSAT to polynomials. In Section 3, we give the formal definition of wPCF2,N
and wPCF2,Z. Section 4 contains the completeness of wPCF2,N. In Section 5, we give an
application of the saturation process to Tseitin formulas. Section 6 shows how to generalize
the definition of wPCF2,N and wPCF2,Z from F2 to a generic finite field. Finally, in Section 7,
we give some concluding remarks.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. In general, we use capital letters to denote (multi-)sets.

2.1 Polynomial Calculus
Let Fq be a finite field with q elements (it exists whenever q = pk for some prime p and
integer k). For most of this paper, we focus on q = 2, i.e. on the field with two elements 0, 1.

SAT 2023



5:4 Polynomial Calculus for MaxSAT

Given a set of variables X, with Fq[X] we denote the ring of multivariate polynomials with
coefficients in Fq and variables in X.

We denote polynomials using the letters f, g, while we use Greek letters to denote
assignments. An assignment is a function α : X → Fq and for a polynomial f ∈ Fq[X], f(α)
is the evaluation of f in α: the element of Fq resulting from substituting each variable x in
f with α(x) and simplifying the resulting expression. If f(α) = 0 we say that α satisfies f .
The polynomial 1 represents the unsatisfiable polynomial (the equivalent to the empty clause
in SAT).

Next, we define the algebraic proof system Polynomial Calculus, originally introduced by
Clegg et al. [12]. Even though the system can be defined for any field (or even rings, see for
instance [11]), in this paper we only consider finite fields.

Polynomial Calculus over Fq (PCFq
) is a proof system that handles polynomials in

Fq[X]. A derivation in PCFq
of a polynomial f from a set of polynomials F is a sequence of

polynomials f1, . . . , fm, where fm = f , and for each i either fi ∈ F , or fi = gfj for some
g ∈ Fq[X] and j < i, or fi = fj + fk for some j, k < i. A refutation is a derivation of the
polynomial 1, and the size of a derivation is the total number of bits needed to express it.

Sometimes, the inference rules of PCFq
are given as

f g

f + g
,

f

αf
and f

xf

for all f, g ∈ Fq[X], α ∈ Fq, and x ∈ X. This will just give a polynomial increase in the size
of the derivations (hence it is p-equivalent to our presentation of PCFq

). PCFq
—together

with an encoding of formulas into polynomials—is a Cook-Reckhow propositional proof
system [13].

2.2 From formulas in CNF to polynomials
A clause C is a set of literals, i.e. Boolean variables xi or negated Boolean variables ¬xi

from a given set of variables {x1, . . . , xn}. A CNF formula is a set of clauses, and a k-CNF
is a CNF where each clause has at most k literals. An assignment α : {x1, . . . , xn} → {0, 1}
satisfies a clause if it maps at least a literal to 1, where α(¬xi) := 1 − α(xi). An assignment
satisfies a CNF formula if it satisfies all the clauses in it.

To encode CNF formulas into sets of polynomials that could be refuted in PCFq
, we

use the following encoding with twin variables. We call twin variables the set of variables
X = {x1, . . . , xn, x̄1, . . . , x̄n}. The intended meaning of x̄i is 1 − xi.

For every clause C = {xi : i ∈ I} ∪ {¬xj : j ∈ J}, we associate the monomial M(C) =∏
i∈I x̄i

∏
j∈J xj in the twin variables X. Then a set of clauses {C1, . . . , Cm} is encoded as

{M(C1), . . . , M(Cm)} ∪ {x2
i − xi, xi + x̄i − 1 : i ∈ [n]} .

Any assignment α : {x1, . . . , xn} → {0, 1} can be extended to an assignment α′ : X → {0, 1},
where for each i ∈ [n], α′(xi) = α(xi) and α′(x̄i) = 1−α(xi). Then α satisfies a CNF formula
(i.e. α maps all the clauses to 1) if and only if α′ satisfies the polynomial encoding of F (i.e.
α′ is a common solution of the polynomials).

With this encoding of CNF formulas into polynomials, it is well-known that for every q,
PCFq

p-simulates Resolution and indeed the p-simulation is strict [11]. For example, Tseitin
formulas (see Section 5) have polynomial size PCF2 refutations while they require exponential
size in Resolution [32]. Notice that the variables x̄is are not strictly needed for the encoding
(they could be eliminated just by substituting 1−xi for each occurrence of x̄i), but PCFq

with
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this alternative encoding does not p-simulate Resolution, not even on k-CNFs [17]. With
different encodings of CNF formulas, for instance, using {±1}-valued variables, it is open
whether PCFq

simulates Resolution (see [31] for lower bounds on PCQ with the ±1-variables).

2.3 MaxSAT on sets of polynomials
Let X be a generic set of variables. To define partial weighted MaxSAT, we distinguish
between hard and soft clauses. The hard clauses need to be satisfied, while the soft ones
consist of a clause and a weight (a number in N). The weight of a soft clause is the cost
of falsifying it. Given a set of soft clauses F and a set of hard ones H, Weighted Partial
MaxSAT is the problem of finding an assignment to the variables X that satisfies the hard
clauses H, and that minimizes the cost of the falsified soft clauses F .

In this paper, we generalize partial weighted MaxSAT to arbitrary polynomials in Fq[X].
The generalization of the hard constraints of MaxSAT is some set of polynomials H ⊂ Fq[X],
while the generalization of the soft constraints is a multi-set of the form

F = {[ f1 , w1 ], . . . , [ fm , wm ]} ,

where fi ∈ Fq[X] and wi ∈ N. A pair [ f , w ] where f ∈ Fq[X] and w ∈ Z is a weighted
polynomial. The weight w informally measures the “importance” we give to satisfying the
polynomial f . In this context, we are interested in assignments α that minimize the weight
of the falsified soft polynomials in F , and satisfy all the polynomials in H.

▶ Definition 2.1 (H-compatible assignment). Let H ⊆ Fq[X]. An assignment α : X → Fq is
H-compatible if for every h ∈ H, h(α) = 0.

Now, for each assignment α : X → Fq, we measure how close it is to satisfying all the
polynomials in F , and we do this by defining its cost as the sum of the weights of the
polynomials in F not satisfied by α. Therefore, the cost of the assignment α on F is

cost(α, F ) =
∑

i∈[m]

wiχi(α) , (1)

where χi(α) is 1 if fi(α) ̸= 0, and 0 otherwise. Finally, to solve a partial weighted MaxSAT
problem, we want the minimum value of cost(α, F ) for any H-compatible assignment α, i.e.

costH(F ) = min
α H-compatible

cost(α, F ) . (2)

If H = ∅, we denote costH(F ) simply as cost(F ). Of course, if F is satisfiable using a
H-compatible assignment, then costH(F ) = 0.

Notice that, the polynomials in H and the weighted polynomials in F could come from
the translation of a partial weighted MaxSAT instance. However, we cannot assume this is
always the case. Moreover, the polynomials in H could be used to enforce specific types of
assignments.

▶ Example 2.2 (Boolean axioms). If H = {x2 − x : x ∈ X}, the H-compatible assignments
are all the functions α : X → {0, 1}. We refer to this H as Boolean axioms. If we are over F2
then, equivalently, H could be taken as ∅.

In the case of twin variables X = {x1, . . . , xn, x̄1, . . . , x̄n} and the Boolean axioms
H = {x2

i − xi, xi + x̄i − 1 : i ∈ [n]}, the H-compatible assignments are all the functions
α : X → {0, 1} satisfying the additional property that for each i ∈ [n], α(xi) + α(x̄i) = 1. We
refer to this case as Boolean axioms with twin variables. Similarly as before, if we are over
F2, then, equivalently, H could be taken as {xi + x̄i − 1 : i ∈ [n]}.

SAT 2023



5:6 Polynomial Calculus for MaxSAT

Sometimes a direct encoding with polynomials not coming from CNF formulas is more
natural. For instance, this is the case of max-cut.

▶ Example 2.3 (max-cut). Given a graph G = (V, E) consider X = {xv : v ∈ V } and let
F = {[ xv1 + xv2 + 1 , 1 ] : (v1, v2) ∈ E} ⊆ F2[X]. Finding cost(F ) is equivalent to finding a
max-cut in G. This codification could be easily generalized to weighted max-cut.

3 Polynomial Calculus for MaxSAT

We first define Polynomial Calculus for MaxSAT in the special case of polynomials with
coefficients in F2 (the general case is in Section 6). Recall that F2 is the finite field with 2
elements 0 and 1 (this field is unique up to isomorphism), in particular for each element of
a ∈ F2, a2 = a and 2 · a = a + a = 0.

The initial instance consists of a multi-sets of weighted polynomials, i.e. pairs [ f , w ] with
f ∈ F2[X] and w ∈ N, and a set of hard polynomials H. We define Z-weighted Polynomial
Calculus (wPCF2,Z), an inference system that handles weighted polynomials with weights in Z,
and N-weighted Polynomial Calculus (wPCF2,N), an inference system that handles weighted
polynomials with weights in N. Both systems use the same set of inference rules. The formal
definition of wPCF2,Z/wPCF2,N is Definition 3.3, but we discuss first the inference rules of the
system. They are two types: structural rules (the fold, unfold and the H-simplification),
and proper inference rules (sum and split).

To have a sound proof system in the context of partial weighted MaxSAT, we use the
inference rules as substitution rules, that is, when applied, these rules replace the premises
with the conclusions. In this context, a substitution rule is sound if, for every assignment α,
the cost of the set of premises on α equals the cost of the conclusions on α.
Fold-unfold. Let F, G be two multi-sets of weighted polynomials, we say that F and G are
fold-unfold equivalent (F ≈ G) if there is a sequence of multi-sets of weighted polynomials
starting with F and ending with G where from one multi-set to the next, one of the following
substitution rules is applied

[ f , u ] [ f , w ]
[ f , u + w ] (fold) [ f , u + w ]

[ f , u ] [ f , w ] (unfold)

[ f , 0 ] (0-fold) [ f , 0 ] (0-unfold)

where f ∈ F2[X], and w, u ∈ Z.

▶ Example 3.1. For instance, {[ f , 0 ]} ≈ ∅ and {[ f , 2 ]} ≈ {[ f , 1 ], [ f , 1 ]}.

It is immediate to see that the fold-unfold equivalence rules are sound. Notice that this
fold-unfold equivalence is similar to the fold-unfold equivalence used in [6] in the context of
weighted clauses and weighted Resolution.
H-equivalence. In F2[X], the polynomials x2 − x and 0 are two distinct polynomials, but
since they always evaluate to 0, we want to identify them. Moreover, given a set of hard
constraints H, we are only interested in H-compatible assignments, hence we want to identify
two polynomials f, g such that for every H-compatible assignment α, f(α) = g(α). This can
be seen as having a equivalence rule of the form

[ f , w ]
[ g , w ] (H-equivalence)



I. Bonacina, M. L. Bonet and J. Levy 5:7

where f, g ∈ F2[X] and w ∈ Z are such that for every H-compatible assignment α : X → F2,
f(α) = g(α). If f and g are H-equivalent we write f ≡H g (when H is clear from the
context we simply write f ≡ g). In particular, for every H, f2 ≡H f .

Notice that, by definition, if f ≡H g then the cost is preserved on every H-compatible α,
hence the rule is sound on H-compatible αs. To efficiently check whether f ≡H g might be
problematic, depending on H.
▶ Remark 3.2. The H-equivalence could be checked efficiently for H = ∅, just by looking at
the multilinearization of the polynomials. The multilinearization of a polynomial f , mul(f)
is the unique multilinear polynomial H-equivalent to f .

In the case of polynomials coming from the direct translation of CNF formulas, we use
the H-equivalence for twin variables and H being the Boolean axioms for twin variables. In
this case, the H-equivalence can also be checked efficiently [19, section 4.3 and Theorem 4.4].
Sum and split. Apart from the previous structural rules, in wPCF2,N and wPCF2,Z we have
the following inference rules:

[ f , w ]
[ fg , w ] [ f(g + 1) , w ] (split) [ f , w ] [ g , w ]

[ f + g , w ] [ fg , 2w ] (sum) (3)

for all f, g ∈ F2[X] and w ∈ Z.
Notice that the previous rules are sound. For the split rule, if f(α) = 0 then both the

conclusions are 0, but if f(α) = 1, then exactly one of the conclusions is 1. For the sum
rule, the argument by cases is analogous. The case that justifies the weight of 2w for the
polynomial fg in the conclusion is when f(α) = 1 and g(α) = 1. In this case f(α) + g(α) = 0
and f(α)g(α) = 1, hence the weight of the conclusion fg should equal the sum of the weights
of both premises, which is two.

Formally the definition of wPCF2,Z/wPCF2,N is the following.

▶ Definition 3.3 (wPCF2,Z, wPCF2,N). Given a multi-set of weighted polynomials F and a
set of hard constraints H, a wPCF2,Z derivation of a weighted polynomial [ f , w ] from F and
H is a sequence of multi-sets L0, . . . , Lℓ s.t.
1. L0 = F ,
2. [ f , w ] ∈ Lℓ and all the other weighted polynomials [ f ′ , w′ ] ∈ Lℓ have w′ ∈ N, and
3. for each i > 0 either Li ≈ Li−1 or Li is the result of an application of the split/sum/H-

equivalence rule as a substitution rule on Li−1.
The system wPCF2,N is the restriction of wPCF2,Z where all weights are natural numbers.
The size of a wPCF2,Z/wPCF2,N derivation L0, . . . , Lℓ is the total number of occurrences of
symbols in L0, . . . , Lℓ.

To clarify the definition, we give an example of derivation in wPCF2,N.

▶ Example 3.4 (Example 2.3 cont.). In Fig. 2 we show a wPCF2,N-derivation of [ 1 , 2 ] from
the set of polynomials we saw in Example 2.3 in the case of G being the clique on 4 vertices.
That is the weighted polynomials [ x + y + 1 , 1 ], [ x + z + 1 , 1 ], [ x + t + 1 , 1 ], [ y + z + 1 , 1 ],
[ y + t + 1 , 1 ], [ z + t + 1 , 1 ]. In this derivation, the polynomials that are just copied from
one multiset to the next are substituted with a •. From one multiset to the next we applied
multiple rules in parallel. The horizontal lines are just a visual help to visualize the multisets.
Notice that we have H-equivalences (for H = ∅) applied implicitly. For instance, some sum
only have one consequence since the other is equivalent to 0. This example shows that to
obtain [ 1 , 2 ] it is important to use both consequences of a sum.

We prove now the soundness of wPCF2,Z.

SAT 2023



5:8 Polynomial Calculus for MaxSAT

[ x + y + 1 , 1 ]
A1

[ x + z + 1 , 1 ]
A2

[ x + t + 1 , 1 ]
A3

[ y + z + 1 , 1 ]
A4

[ y + t + 1 , 1 ]
A5

[ z + t + 1 , 1 ]
A6

[ A1(z + t) , 1 ] [ A1(z + t + 1) , 1 ] [ z + t , 1 ] [ A2A3 , 2 ] [ A4A5 , 2 ] [ z + t , 1 ] [ z + t + 1 , 1 ]

split sum sum

• [ z + t , 1 ] [ A1A6 , 1 ] [ A2A3 , 1 ] [ A2A3 , 1 ] [ A4A5 , 1 ] [ A4A5 , 1 ] [ 1 , 1 ]

≈ ≈ sum

• [ z + t , 1 ] [ A1A2A3A6 , 2 ] [ y + yz + yt + zt , 1 ] • [ A4A5 , 1 ] • [ 1 , 1 ]

sum

• • [ z + t , 1 ] [ z + t + 1 , 1 ] • • [ 1 , 1 ]

sum

• • [ 1 , 1 ] • • [ 1 , 1 ]

sum

[ A1(z + t) , 1 ] [ A1A2A3A6 , 2 ] [ 1 , 2 ] [ A2A3 , 1 ] [ A4A5 , 1 ]

≈

Figure 2 A wPCF2,N derivation of [ 1 , 2 ] from the axioms of max-cut on a clique of 4 vertices:
[ x1 +x2 +1 , 1 ], [ x1 +x3 +1 , 1 ], [ x1 +x4 +1 , 1 ], [ x2 +x3 +1 , 1 ], [ x2 +x4 +1 , 1 ], [ x3 +x4 +1 , 1 ].

▶ Theorem 3.5 (soundness). Given F = {[ f1 , w1 ], . . . , [ fm , wm ]} where fi ∈ F2[X] and a
set of polynomials H ⊆ F2[X], if there is a wPCF2,Z derivation of [ 1 , w ] from F (and H as
hard constraints), then costH(F ) ≥ w.

Proof. Let L0, L1, L2, . . . , Ls be a wPCF2,Z derivation of (1; w), i.e. Ls contains [ 1 , w ],
L0 = F and each Li+1 is obtained from Li applying the split, the sum substitution rules,
the fold-unfold equivalence or the H-simplification. We have to show that costH(F ) ≥ w.
We have that costH(Ls) ≥ w since [ 1 , w ] ∈ Ls and all the other weighted polynomials in Ls

have non-negative weights. Hence, to prove the statement is enough to show that for each i,
costH(Li+1) = costH(Li). We prove something slightly stronger, that for each H-consistent
α : X → F2, cost(α, Li+1) = cost(α, Li). This follows immediately from the comments we
already made on the soundness of the various rules. ◀

We conclude this section with an observation on the split and sum rules in wPCF2,Z.
Using weights in Z, one of them is always redundant, unlike the case of weights in N where
both are necessary. To simulate the split rule using the sum rule using weights in Z we can
do the following:

[ f , w ]
≈

[ f , w ] [ fg , w ] [ fg , −w ] [ f(g + 1) , w ] [ f(g + 1) , −w ]
sum

[ f , w ] [ fg , w ] [ f(g + 1) , w ] [ fg + f(g + 1) , −w ] [ f2g(g + 1) , −2w ]
≈ & ≡

[ fg , w ] [ f(g + 1) , w ]

In a similar way, we can also simulate the sum using the split rule using weights in Z.
(The proof of this will appear in the final version of this paper.)
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4 Completeness

We show the completeness of wPCF2,N, that is the converse of Theorem 3.5. For simplicity,
we focus on the Boolean axioms as hard constraints, that is H = ∅ or, in the case of twin
variables {x1, . . . , xn, x̄1, . . . , x̄n}, H = {xi + x̄i − 1 : i ∈ [n]}.

▶ Theorem 4.1 (completeness for Boolean axioms). Given F a set of weighted polynomials
over F2[X], there is a wPCF2,N derivation of [ 1 , costH(F ) ] from F and the set of Boolean
axioms as hard constraints H.

Our proof generalizes the saturation process from [8] and gives an algorithm to find
wPCF2,N-derivations of [ 1 , costH(F ) ]. We five an example of the construction in Section 5.
Clearly the completeness for H = ∅ implies the completeness for H = {xi + x̄i − 1 : i ∈ [n]}.
For instance, just removing the twin variables, that is substituting each variable x̄i with
1 − xi. We show a saturation process that adapts to this context without removing the twin
variables.

Our construction shows indeed something stronger, that wPCF2,N is still complete even if
we restrict the split rule of wPCF2,N to be of the form

[ f , w ]
[ ffx=0fx=1 , w ] [ f(fx=0fx=1 + 1) , w ] ,

where x is some variable and fx=0 is the polynomial resulting from the restriction of f

mapping x to 0, and analogously for fx=1. In the case of twin variables, for fx=0 we also
map x̄ to 1, to be consistent with the Boolean axioms, and analogously for fx=1.

Recall that for polynomials f, g ∈ F2[X], let f ≡ g if for every H-compatible assignment
α, f(α) = g(α). It is immediate to see that ffx=0fx=1 ≡ fx=0fx=1 since for every value
a ∈ F2, a2 = a. Therefore, if f ̸≡ fx=0fx=1 and fx=0fx=1 ̸≡ 0, the special case of the split
rule above allows to infer from f some new polynomials and one of them (fx=0fx=1) without
the variable x.

▶ Definition 4.2. We say that a polynomial f depends on a variable x if for every polynomial
g not containing x (and also x̄ in the case of twin variables), f ̸≡ g.

Notice that, the following are equivalent:
f depends on x,
For H = ∅, the multilinearization of f is a polynomial xf1 + f0 with f1, f0 not containing
x and f1 ̸≡ 0. For the twin variables and H = {xi + x̄i − 1 : i ∈ [n]}, f is equivalent to
a multilinear polynomial of the form xf1 + x̄f ′

1 + f0, with f1, f ′
1, f0 not containing x, x̄,

and f1 ̸≡ f ′
1.

f ̸≡ fx=0fx=1.
(The proof of this will appear in the final version of this paper.) The reason we give these
equivalences is that the third condition makes easier to generalize the whole construction to
arbitrary finite fields.

The main concept used to show the completeness of wPCF2,N is the notion of set of
polynomials saturated w.r.t. a variable.

▶ Definition 4.3 (x-saturated set). Let x ∈ X and S be a set of weighted polynomials. The
set S is x-saturated if every H-compatible assignment α : X → F2 can be modified in x to a
H-compatible assignment satisfying all weighted polynomials in S that depend on x.
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Notice that, if S is x-saturated then the subset of polynomials in S depending on
x is satisfiable, but the converse is not true. For instance, {[ x + y , 1 ], [ x + z , 1 ]} is
clearly satisfiable but it is not saturated w.r.t. to x since we cannot extend the assignment
y = 0, z = 1 to satisfy both polynomials.

Next, we give a procedure to x-saturate a set of weighted polynomials S. Recall that we
focus on H being the Boolean axioms. Informally, the procedure to obtain the x-saturation
consists of applying the split rule to a polynomial or the sum of two polynomials, as long
as the application of these rules generates polynomials that don’t contain the variable x, and
are not equivalent to 0. The procedure is applied as long as it is possible, and we will see
that it finishes in a finite number of steps and when it terminates the generated set must be
x-saturated.

▶ Lemma 4.4. In the context of H the Boolean axioms, for every set of weighted polynomials
S and every variable x, there is a wPCF2,N derivation of a set of polynomials S′ which is
x-saturated.

Proof. For a polynomial f , recall that fx=0 is the evaluation of f in x = 0 and, in the case
of twin variables, the restriction also sets x̄ = 1 (resp. for fx=1).

Suppose we have a set of weighted polynomials S and a variable x. We construct a
sequence of weighted polynomials S0, S1, . . . to find the saturation. We start with S0 = S,
then we want Si+1 to be derivable from Si using the rules of wPCF2,N, and moreover, in Si+1
we added some new polynomial non-dependent on x. The way to obtain Si+1 from Si is the
following. For each i ≥ 0, if there is an [ f , w ] ∈ Si depending on x and s.t. fx=0fx=1 ̸≡ 0,
non-deterministically choose one of such [ f , w ] and let

Si+1 = (Si \ {[ f , w ]}) ∪ {[ fx=0fx=1 , w ], [ fx=0fx=1 + f , w ]} .

The derivation of Si+1 from Si, by substituting [ f , w ] with the weighted polynomials
[ fx=0fx=1 , w ] and [ fx=0fx=1 + f , w ], is justified by:

[ f , w ]
split

[ ffx=0fx=1 , w ] [ f(fx=0fx=1 + 1) , w ]
≡

[ fx=0fx=1 , w ] [ fx=0fx=1 + f , w ]

where the last ≡ holds since ffx=0fx=1 ≡ fx=0fx=1. Notice that, with this substitution, we
have obtained the weighted polynomial [ fx=0fx=1 , w ] where the variable x doesn’t appear
(and hence clearly not depending on x) and it is not equivalent to 0 since the condition to
obtain Si+1 is that fx=0fx=1 ̸≡ 0. We used the assumption that f depends on x to ensure
the polynomial fx=0fx=1 in the conclusions is new and it is not equivalent to the polynomial
f in the premises.

If there are [ f , w ], [ g , w′ ] ∈ Si depending on x, with f ̸≡ g,

(fx=0 + gx=0)(fx=1 + gx=1) ̸≡ 0 ,

and w′ ≥ w > 0, non-deterministically choose two of them. First substitute [ g , w′ ] by
[ g , w ] and [ g , w′ − w ], and then let

Si+1 = (Si \ {[ f , w ], [ g , w ]}) ∪ {[ (f + g)x=0(f + g)x=1 , w ], [ fg , 2w ],
[ (f + g)x=0(f + g)x=1 + f + g , w ]} .
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We can obtain Si+1 from Si using first the sum rule to infer [ f + g , w ] and [ fg , 2w ] and
then use the split rule on [ f + g , w ] as we did in the previous case on a single polynomial.

[ f , w ] [ g , w ]
sum

[ f + g , w ] [ fg , 2w ]
split & ≡

[ (f + g)x=0(f + g)x=1 , w ] [ (f + g)x=0(f + g)x=1 + f + g , w ] [ fg , 2w ]

Doing this substitution we obtain a polynomial where the variable x doesn’t appear and it is
not equivalent to 0 since the condition to obtain Si+1 is that (fx=0 + gx=0)(fx=1 + gx=1) ̸≡ 0.

If we cannot transform Si to Si+1 in neither of the two ways we stop the process.
This sequence of transformations must be finite and the last element Sℓ will be x-saturated.

The process must be finite since otherwise the new sequence given by

σ(i) =
∑

α : X→F2
H-compatible

cost(α, S+
i )

for S+
i the part of Si depending on x, would give a sequence of strictly decreasing natural

numbers. Indeed, all the σ(i)s are natural numbers because we are using the rules of
wPCF2,N, so, no negative weight could appear in any Si and cost(α, S+

i ) ≥ 0. To show
that σ(i + 1) < σ(i) it is sufficient to notice that, by the soundness of wPCF2,N, for every
H-compatible α : X → F2,

cost(α, Si+1) = cost(α, Si) ,

which implies that

cost(α, S+
i+1) + cost(α, {[ h , w ]}) = cost(α, S+

i ) ,

for some polynomial h ̸≡ 0, not depending the variable x and with w > 0. Hence

σ(i + 1) +
∑

α : X→F2
H-compatible

cost(α, {[ h , w ]}) = σ(i) ,

and ∑
α : X→F2

H-compatible

cost(α, {[h, w]}) > 0

because h ̸≡ 0 and w > 0. Therefore, σ(i + 1) < σ(i). And the sequence must be finite.
Now, Sℓ, the last set of the sequence, must be x-saturated. Suppose, towards a contra-

diction, that both α0, i.e. α modified mapping x 7→ 0, and α1, i.e. α modified mapping
x 7→ 1, falsify some polynomials in Sℓ depending on x. (In the case of twin variables α0
also sets x̄ 7→ 1 and α1 also sets x̄ 7→ 0.) Let such polynomials resp. be f, g. That is we
have fx=0(α) ̸= 0, and gx=1(α) ̸= 0. Since Sℓ is the last element of the previous process
we must have that fx=0fx=1 ≡ 0 and gx=0gx=1 ≡ 0. Hence it must be that fx=1(α) = 0,
and gx=0(α) = 0. In particular, f and g are two non-equivalent polynomials. Then, again
by the assumption on Sℓ being the last element of the process, we must also have that
(f + g)x=0(f + g)x=1 ≡ 0, but this is not possible since

(f + g)(α0) = (f + g)x=0(α) = fx=0(α) + gx=0(α) ̸= 0

and similarly fx=1(α) + gx=1(α) ̸= 0. ◀
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Notice that in the proof of the previous lemma, there are many alternative ways to
introduce new polynomials not depending on x in each step of the sequence S1, S2, . . . . The
one we chose has the property that we only use a special form of the split rule:

[ f , w ]
[ fx=0fx=1 , w ] [ fx=0fx=1 + f , w ] .

Moreover, we keep the number and the degree of the polynomials we introduce at each step
lower than other alternative choices. For instance, given multilinear polynomials f = xf1 +f0
and g = xg1 + g0 depending on x, we could have done two split to obtain g1f and f1g and
then sum them to obtain f0g1 + f1g0 (and hence introducing also [ f1g1fg , 2 ]). This would
have resulted in the introduction of a larger number and higher degree polynomials compared
to the construction we gave.

We now show how to obtain the completeness, under the assumption that the saturation
can be computed in wPCF2,N. Essentially iterating the saturation on all the variables one by
one.

▶ Lemma 4.5. Let H ⊂ F2[X]. If for every set of weighted polynomials S and every variable
x, there is a wPCF2,N derivation of a set of polynomials S′ which is x-saturated, then for every
set of weighted polynomials F over F2[X] there exists a wPCF2,N-derivation of [ 1 , costH(F ) ]
from F and the hard constraints H.

Proof. Let X = {x1, . . . , xn}. First saturate F w.r.t. x1. By hypothesis, from F in wPCF2,N
we can derive a x1-saturated set S1. Let S1 = S+

1 ∪S−
1 , where S+

1 is the part of S1 depending
on x1 and S−

1 the part of S1 not depending on x1.
Saturate S−

1 w.r.t. x2. Again, by assumption, from S−
1 we can derive in wPCF2,N a

x2-saturated set S2. This gives a decomposition S2 = S+
2 ∪ S−

2 , where S−
2 are the weighted

polynomials in S2 not depending on x2 (and x1). Continuing saturating by all the variables of
X one by one we arrive at a set Sn, where the weighted polynomials in S−

n are just constants,
i.e. S−

n ≈ {[ 1 , w ]} for some w ∈ N.
To show that w = costH(F ) it is enough to show that

⋃
j∈[n] S+

j is satisfiable by a H-
compatible assignment. Let α : X → F2 be an arbitrary H-compatible assignment. Since Sn

is xn-saturated there is a way to modify α in xn to get a H-compatible assignment satisfying
all S+

n . Let this assignment be αn. Suppose we obtained a H-compatible assignment αi

satisfying
⋃

j≥i S+
j , since Si−1 is xi−1-saturated, there is a way to modify αi in xi−1 to satisfy

all S+
i−1. Let this assignment be αi−1. Since the polynomials in

⋃
j≥i S+

j only contained the
variables xi . . . , xn, the assignment αi−1 continues to satisfy

⋃
j≥i S+

j . We continue this way
until we get an assignment α1 satisfying all

⋃
j∈[n] S+

j . Thus proving that it must have been
that w = costH(F ). ◀

Notice that the previous lemma does not require H to be the Boolean axioms and it is
completely general.

Now, it is immediate to prove the completeness of wPCF2,N (Theorem 4.1). Indeed, by
Lemma 4.4, for every set of weighted polynomials S and every variable x, there is a wPCF2,N
derivation of a set of polynomials S′ which is x-saturated. Then, by Lemma 4.5, there is a
wPCF2,N derivation of [ 1 , costH(F ) ] from F and as set of hard constraints H the Boolean
axioms. This concludes the proof of Theorem 4.1.

5 Tseitin formulas

We exemplify the saturation process on Tseitin formulas, although also Example 3.4 was
found using the saturation process. An implementation of the saturation algorithm in python
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is freely available at https://github.com/jordilevy/pyPolyCal.git.
First, we recall what are Tseitin formulas. That is, in this section, consider fixed a graph

G = (V, E) with |V | = 2n + 1 and Boolean variables xv,w for each {v, w} ∈ E. For v ∈ V ,
let N(v) = {w ∈ V : {v, w} ∈ E}. The Tseitin formula on G is a CNF formula expressing
that in each vertex v ∈ V the parity of the variables xe for the edges incident to v is 1, that
is Tseitin(G) is the CNF⋃

v∈V

{ ⊕
w∈N(v)

xv,w = 1 (mod 2)
}

, (4)

where
⊕

w∈N(v) xv,w = 1 (mod 2) is encoded as a set of clauses. For instance, if N(v) =
{w1, w2, w3}, then

⊕
w∈N(v) xv,w + 1 (mod 2) is

{xv,w1 , xv,w2 , xv,w3}, {¬xv,w1 , ¬xv,w2 , xv,w3},

{xv,w1 , ¬xv,w2 , ¬xv,w3}, {¬xv,w1 , xv,w2 , ¬xv,w3} . (5)

Since V has an odd size, Tseitin(G) is unsatisfiable.
Consider first the natural encoding of eq. (4) as polynomials. That is consider the set of

variables X = {xv,w : {v, w} ∈ E} and Lv be the polynomial
∑

w∈N(v) xv,w + 1 in F2[X].
It is well known that PCF2 is able to refute {Lv : v ∈ V } in linear size. In wPCF2,N we

prove more.

▶ Proposition 5.1. There is a linear size derivation in wPCF2,N of [ 1 , c ] from {[ Lv , 1 ] :
v ∈ V }, where c is the number of connected components of odd size in G. In particular, if
G is connected, wPCF2,N proves that {[ Lv , 1 ] : v ∈ V } is minimally unsatisfiable, i.e. it is
possible to satisfy all polynomials in it except one.

Proof. We show how to infer [ 1 , 1 ] from {[ Lv , 1 ] : v ∈ V } via the saturation process, when
G is connected. For the saturation process, the order in which we saturate the variables is
not important.

At each intermediate saturation step ℓ there is a set of weighted polynomials Sℓ that
we have to saturate. The set Sℓ has the form {[ LS1 , 1 ], . . . , [ LSm

, 1 ]}, where S1, . . . , Sm

form a partition of V and LSi =
∑

v∈Si
Lv. Moreover, we already saturated w.r.t. all the

variables xv,w with v, w in the same Si.
At the beginning of the saturation process, we have the partition of V consisting of all

the singletons: {{v} : v ∈ V }.
Suppose then we are at an intermediate step ℓ of the saturation. We have a set Sℓ =

{[ LS1 , 1 ], . . . , [ LSm , 1 ]} and we want to saturate w.r.t. xv,w. By the inductive assumption,
{v, w} is not an internal edge of any of the sets Sis. Hence there are exactly two distinct sets
Si and Sj with v ∈ Si and w ∈ Sj . That is, to saturate Sℓ w.r.t. xv,w is enough to saturate
S ′ = {[ LSi

, 1 ], [ LSj
, 1 ]}. We follow the procedure from Lemma 4.4.

▶ Fact 1. For every linear polynomial L depending on x, Lx=0Lx=1 = Lx=0(Lx=0 + 1) ≡ 0.

By Fact 1, the only possibility is to sum LSi and LSj . That is from S ′ we obtain

S ′′ = {[ LSi + LSj , 1 ], [ LSiLSj , 2 ]} .

Now, LSi +LSj ≡ LSi∪Sj does not contain variables xv′,w′ with v′, w′ ∈ Si ∪Sj . In particular
it does not contain xv,w. To continue the saturation process, the only possibility would be to
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do a split on LSiLSj , but this produces the polynomial LSi,x=0LSj ,x=0LSi,x=1LSj ,x=1 ≡ 0
by Fact 1. Therefore S ′′ is saturated w.r.t. xv,w. And so is the multi-set

{[ LSk
, 1 ] : k ̸= i, j} ∪ {[ LSi

+ LSj
, 1 ], [ LSi

LSj
, 2 ]} .

The part of this set not depending on xv,w is

Sℓ+1 = {[ LSk
, 1 ] : k ̸= i, j} ∪ {[ LSi

+ LSj
, 1 ]} .

Notice that [ LSiLSj , 2 ] is not in Sℓ+1 since it depends on xv,w. The set Sℓ+1 is the one we
want to saturate at the next step for some other variable. During the saturation process we
obtain coarser and coarser partitions of V and, at the end of the whole process, we obtain
{[ LV , 1 ]}. To conclude we just need to observe that LV ≡ |V | ≡ 1. ◀

To show that wPCF2,N and weighted Resolution are incomparable, we need to consider
Tseitin(G) encoded as a set of polynomials using the twin variables encoding from Section
2.2. Assume all the initial polynomials of this encoding to have weight 1. From this system
of polynomials is still easy to derive [ 1 , c ] in wPCF2,N where c is the number of connected
components of odd size in G. Such derivations can be found using the saturation process,
provided we use the natural heuristic of preferentially taking the sum of two weighted
polynomials [ f , w ] and [ g , w ] when fg ≡ 0. The intuitive reason behind this heuristic
is that in such a sum the number of polynomials in conclusion decreases and we do not
introduce a polynomial of higher degree. Under this heuristic it is immediate to see that the
saturation process will essentially reconstruct the polynomials {[ Lv , 1 ] : v ∈ V (G)}. Indeed,
take for instance the twin variables encoding of the set of clauses in eq. (5), that is

S = {[ x̄v,w1 x̄v,w2 x̄v,w3 , 1 ], [ xv,w1xv,w2 x̄v,w3 , 1 ],
[ x̄v,w1xv,w2xv,w3 , 1 ], [ xv,w1 x̄v,w2xv,w3 , 1 ]} .

We have that the product of any two of the polynomials is divisible by xv,wi
x̄v,wi

≡ 0 for
some i. Therefore applying the sum rule on S, eventually we will obtain

[ x̄v,w1 x̄v,w2 x̄v,w3 + xv,w1xv,w2 x̄v,w3 + x̄v,w1xv,w2xv,w3 + xv,w1 x̄v,w2xv,w3 , 1 ] ≡ [ Lv , 1 ] .

6 Polynomial Calculus for MaxSAT (general case)

In this section, we adapt the definition of wPCF2,N and wPCF2,Z from F2 to an arbitrary
finite field Fq. Polynomial Calculus modulo distinct primes has been studied, for instance in
[11]. The Tseitin principle can be extended from counting mod 2 to counting mod p, and
this principle is easy in Polynomial Calculus on polynomials with coefficients in Fp.

That is we focus on polynomials with coefficients in Fq, where q = pk for some fixed
prime p and k ∈ N. Recall that Fq is the finite field with q elements (this field is unique up
to isomorphism), and for each element of a ∈ F, aq = a and p · a = a + · · · + a︸ ︷︷ ︸

p

= 0.

Fold-unfold and H-equivalence. We consider multi-sets of weighted polynomials, i.e.
pairs [ f , w ] with f ∈ Fq[X] and w ∈ Z, under the fold-unfold equivalence and the
H-equivalence. This is the same as what we saw in Section 3 with the only difference that
the polynomials instead of being in F2[X] now belong to Fq[X].

Recall that, for f, g H-equivalent we write f ≡H g. In particular, for every H, fq ≡H f .
Hence, in the application of the rules, by the H-equivalence we can always assume the variables
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in all the polynomials to appear with degree at most q−1. Moreover, if H ⊇ {x2 −x : x ∈ X},
then we can assume the polynomials to be multilinear. For H = {x2 − x : x ∈ X}, to check
efficiently if f ≡H g we can then compute the multilinearization of f and g and compare them.
In the case of the twin variables {x1, . . . , xn, x̄1, . . . , x̄n}, H = {x2

i − xi, xi + x̄i − 1 : i ∈ [n]},
we also have that we can check efficiently if f ≡H g using the construction in [19, section 4.3
and Theorem 4.4].

Sum and split. The general forms of the split and sum rules are:
[ f , w ]

[ fg , w ] [ f(gq−1 − 1) , w ] (split)

[ f , w ] [ g , w ]
[ f + g , w ] [ fg , w ] [ f ((f + g)q−1 − 1) , w ] (sum)

for all f, g ∈ Fq[X] and w ∈ Z. The split rule is sound since for every assignment α : X → Fq

if f(α) = 0 the cost of the premise is 0 and so is the cost of the conclusion. If f(α) ̸= 0, then
either g(α) = 0 or g(α) ̸= 0, but in this latter case then gq−1(α) = 1. The soundness of the
sum rule is analogous.

Using the rules above, we generalize immediately the definition of wPCF2,N and wPCF2,Z
(Definition 3.3) from weighted polynomials with coefficients in F2 to weighted polynomials
with coefficients in Fq. We call the resulting systems wPCFq,N and wPCFq,Z.

Similar to the case of F2, we have that the sum rule is redundant in wPCFq,Z. (The proof
of this fact will appear in the final version of this paper.)

▶ Theorem 6.1 (soundness). Given F = {[ f1 , w1 ], . . . , [ fm , wm ]} where fi ∈ Fq[X] and a
set of polynomials H ⊆ Fq[X], if there is a wPCFq,Z derivation of [ 1 , w ] from F (and H as
hard constraints), then costH(F ) ≥ w.

Proof. (sketch) This is a simple generalization of the proof of Theorem 3.5. ◀

We show the completeness in the case of Boolean axioms. That is H = {x2 − x : x ∈ X}
or, for the twin variables {x1, . . . , xn, x̄1, . . . , x̄n} H = {x2

i − xi, xi + x̄i − 1 : i ∈ [n]}.

▶ Theorem 6.2 (completeness for Boolean variables). Given F a multiset of weighted poly-
nomials in Fq[X], there is a wPCFq,N derivation of [ 1 , costH(F ) ] from F , and the set of
Boolean axioms as hard constraints.

The argument is a minor adaptation of the argument we saw in Section 4. The definition
of when a polynomial f depends on a variable x (Definition 4.2), the definition of (x, H)-
saturated set (Definition 4.3), and Lemma 4.5 do not really depend on F2 and can be
trivially extended to Fq. Therefore to prove Theorem 6.2 it is enough to show how to adapt
Lemma 4.4, the lemma showing how to construct the saturation.

▶ Lemma 6.3. For every set of weighted polynomials S and every variable x, there is a
wPCFq,N derivation of a set of polynomials S′ which is (x, H)-saturated, for H the Boolean
axioms.

Proof. (sketch) The proof is analogous to the argument for Lemma 4.4. The crucial property
used to prove Lemma 4.4 was that ffx=0fx=1 ≡ fx=0fx=1, which is true for polynomials
with coefficients in F2. For Fq it is analogous: the crucial property is that fq−1fx=0fx=1 ≡
fx=0fx=1. This polynomial can be derived from f using the split rule of wPCFq,N as follows

[ f , w ]
split

[ ffq−2fx=0fx=1 , w ] [ f((fq−2fx=0fx=1)q−1 − 1) , w ]
≡

[ fx=0fx=1 , w ] [ f(fx=0fx=1)q−1 − f , w ] ,
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Notice that this generalizes the case of F2. Similar to that special case, we have that this
split is non-trivial if both fx=0fx=1 ̸≡ 0 and fq−2fx=0fx=1 ̸≡ f , which similarly to the case
of F2 is equivalent to saying that f depends on x. (The proof of this fact will appear in
the final version of this paper.) The construction of the sequences of multi-sets is then the
natural adaptation of the construction we saw for F2 to Fq. The reason the sequence is finite
and the obtained multi-set is x-saturated is the same as in Lemma 4.4. ◀

7 Conclusions

We showed a way to generalize Polynomial Calculus to the context of MaxSAT, for polynomials
with coefficients in a finite field. This involves extending the rules of Polynomial Calculus
to have additional conclusions and applying them replacing premises with conclusions,
to make them sound for MaxSAT. We showed its completeness via a saturation process.
The resulting proof system may be used for SAT or for MaxSAT. The system wPCF2,N is
stronger than MaxSAT Resolution, and wPCF2,Z is stronger than Z-weighted Resolution (aka
Sherali-Adams). As an example, we show how the process is able to prove efficiently Tseitin
formulas.
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