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We compare the strength of the algebraic proof systems Sherali-Adams (SA) and 
Nullstellensatz (NS) with Frege-style proof systems. Unlike bounded-depth Frege, 
SA has polynomial-size proofs of the pigeonhole principle (PHP). A natural question is 
whether adding PHP to bounded-depth Frege is enough to simulate SA. We show that 
SA, with unary integer coefficients, lies strictly between tree-like depth-1 Frege+PHP
and tree-like Resolution. We introduce a levelled version of PHP (LPHP) and we show 
that SA with integer coefficients lies strictly between tree-like depth-1 Frege + LPHP
and Resolution. Analogous results are shown for NS using the bijective (i.e. onto and 
functional) pigeonhole principle and a leveled version of it.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

This paper connects logic based proof systems with algebraic ones. While logic based proof systems 
work directly with propositional formulas, the algebraic ones work with polynomials, including polynomial 
translations of Boolean formulas.

For instance, in the Nullstellensatz proof system (NS) [5], a CNF formula is shown unsatisfiable by first 
translating it into a set of polynomial equations, and a proof of the unsatisfiability is a sum of multiples 
of those equations that, after simplifications, reduces to the trivial contradiction 1 = 0 (Definition 2.5). 
NS with coefficients over Z2 was first studied in connection with a major (and yet open) problem in proof 
complexity: the problem of proving super-polynomial size lower bounds for bounded-depth Frege systems 
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with parity gates ([13,6,4] among others). Moreover, lower bounds in NS can be lifted to lower bounds for 
stronger proof systems [30,27,28].

Sherali-Adams (SA) [32] is similar to NS but instead of equations we first produce polynomial inequalities 
and a proof of unsatisfiability is a sum of positive multiples of the inequalities together with sums of positive 
monomials. In this case the trivial contradiction is −1 ≥ 0 (Definition 2.6). The interest in studying SA relies 
primarily on its connections to approximation algorithms for important NP-hard optimization problems, 
see for instance the survey [18].

Frege is the standard textbook logic proof system. Restricting the depth of the formulas in Frege, we 
obtain proof systems like Resolution or bounded-depth Frege (Freged). SA is known to simulate Resolution, and 
it is stronger, since SA can prove the pigeonhole principle efficiently, unlike Resolution or even bounded-depth 
Frege [29,24]. Hence, natural questions are the following.

“Which axioms do we need to add to constant-depth Frege to simulate SA or NS?”

“What is the minimal depth of constant-depth Frege (plus the extra axiom) needed to simulate SA or 
NS?”

The axioms we want to add should be “natural”, in the sense that they should have some clear com-
binatorial meaning. For instance, constant-depth Frege with counting MOD2 axioms simulates NS with 
coefficients over Z2 [21].

The pigeonhole principle (PHP, Definition 4.1) is a natural combinatorial principle, which informally says 
that n +1 pigeons cannot all fly to n holes without any two of them sharing a hole. The bijective pigeonhole 
principle, i.e. onto and functional, is denoted by ofPHP (Definition 4.1). In this work we use propositional 
encodings of these principles.

We use principles generalizing PHP and ofPHP. The leveled pigeonhole principles LPHP and ofLPHP (Defini-
tion 5.1) informally capture similar combinatorial principles, where the pigeons and the holes are organized 
into “layers”.1 The pigeons have some “mass” and the holes have some “capacity” depending on the level 
they belong. The intended mass and capacity of pigeons and holes at the kth level is 2k. The mass of the 
ith pigeon is the same as the capacity of the ith hole, but there is an extra pigeon with positive mass. Each 
pigeon can fly once with the whole mass or twice with half mass. Each hole can accept either one pigeon 
filling the full capacity or two pigeons filling half capacity each. SA efficiently proves LPHP but the proof 
seems to require coefficients encoded in binary (Theorem 5.9).

In this article we answer the questions above for NS and SA with coefficients in Z. A bit unexpectedly, 
their strength seems to depend on whether the coefficients of the polynomials are encoded in unary or 
binary. Unary NS and unary SA refer to having coefficients encoded in unary.

Before we answer the questions, let us mention that, informally, bounded-depth Frege + principle means 
that the principle is given as an extra tautology. Also, a tree-like proof system means that each Boolean 
formula can only be used once.

We visually summarize our results, although the formal statements of the cited theorems are slightly 
stronger than what is shown in the figures, since they also take into account the degree of the polynomials.

As we can see in Fig. 1, tree-like Frege1 + LPHP is strictly stronger than SA and SA is strictly stronger 
than Resolution. On the other hand, tree-like Frege1 + PHP is strictly stronger than unary SA and unary SA
is strictly stronger than tree-like Resolution.

Prior to our work, it was not clear at all if SA was able to prove efficiently any combinatorial principle 
significantly different from PHP (in addition to what Resolution can prove). This work shows this is not the 

1 In [9], the preliminary version of his work, the leveled pigeonhole principle was called weighted pigeonhole principle, wPHP. We 
use the term leveled instead of weighted, to avoid confusion with the weak pigeonhole principle.
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Fig. 1. The p-simulations for SA. The notation P → Q means that the proof system P p-simulates the proof system Q. The 
p-simulations are annotated with “�≡” if the p-simulation is known to be strict, or with “≡?” whenever it is an open question if 
the p-simulation is strict or not. A green arrow → means the p-simulation is trivial. The color • is used to visually differentiate 
the results for the proof systems with unary weights/coefficients. See [19,20] for the separation between SA and unary SA.

case. At best, SA can prove just principles easily reducible to LPHP (in addition to what Resolution can 
prove).

Fig. 1 also states some equivalences between SA and unary SA and other proof systems based on Boolean 
formulas, in particular w-Resolution ([25,26,12], Definition 3.6) and circular Resolution [2].

Informally, weighted Resolution (w-Resolution) is a proof system where clauses have weights that can be 
positive or negative. The positive weight of a clause is the number of times we are allowed to use it as a 
premise of some inference, while the negative weight is the number of times we used it as an assumption and 
hence are required to justify it by deriving it. Clauses with positive weights might appear out of nothing 
as long as the same clauses appear also with negative weights. A proof starts with the initial clauses with 
some chosen positive weights and produces, using a small modification of the rules of Resolution, an empty 
clause with positive weight and all the clauses with negative weights have been justified.

As you can see in Fig. 2, tree-like Frege1 + ofLPHP is stronger than NS. On the other hand, tree-like 
Frege1 + ofPHP is stronger than unary NS and unary NS is strictly stronger than tree-like Resolution. 
We also show that NS and unary NS are p-equivalent to other proof systems based on Boolean formulas 
(Theorem 3.5).

The notion of weighted Resolution can be extended naturally to formulas of higher depth producing 
the system w-Freged (see Definition 3.6). As w-Resolution corresponds to SA, w-Freged can be thought as 
corresponding to generalization of SA handling algebraic expressions of higher depth. Fig. 3 shows the results 
we have for w-Freged. Basically the same results as in Fig. 1 but lifted from formulas of depth 0, i.e. clauses, 
to formulas of depth d. Tree-like Freged+1 + LPHP is strictly stronger than w-Freged and w-Freged is strictly 
stronger than Freged. On the other hand, tree-like Freged+1 + PHP is strictly stronger than unary w-Freged, 
and unary w-Freged is strictly stronger than tree-like Freged.

The PHP is the most studied principle in proof complexity and, for instance, we know that Freged + PHP
is strictly weaker than Frege, at least for d = o 

(
log logn

log log logn

)
[6], hence unary w-Freged is also strictly weaker 

than Frege for the same d (Corollary 4.7). To the best of our knowledge, the leveled pigeonhole principle LPHP
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restricted w-Resolution (Thm. 3.5)

unary NS ≡
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≡?

tree-like
Frege1 + ofLPHP

tree-like
Frege1 + ofPHP

≡? T
hm

.
5.12

≡
?

T
hm

.
4.3

≡
?

tree-like Resolution

�≡

Fig. 2. The p-simulations for NS. The notation is the same of Fig. 1.
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Fig. 3. The p-simulations for w-Freged. The notation is the same of Fig. 1. See [22] for the separation between tree-like Freged and 
Freged.

is a completely new generalization of PHP. This naturally leaves several open questions about it. Including 
the obvious one of proving that depth-d Frege + LPHP is strictly weaker than Frege (see Section 6 for a list 
of open problems).

1.1. Connections with previous work

This article originated in the context of proof systems for MaxSAT extending MaxSAT Resolution, such 
as, for instance, DRMaxSAT [10]. Such systems, when seen as usual propositional proof systems, are stronger 
than Resolution, since they are able to prove some versions of PHP. We were interested to see if they could also 
prove some different natural combinatorial principles. These proof systems are simulated by w-Resolution
(previously called MaxSAT Resolution with Extension in [25,26]).
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Since SA and w-Resolution are equivalent, the question about MaxSAT proof systems morphed into 
asking whether SA was actually able to prove something significantly different from PHP (in addition to 
what Resolution can prove).

In this article, we give a first answer to the questions of the strength of SA and NS. SA can, at best, prove 
principles easily reducible to LPHP (in addition to what Resolution can prove). Similarly, NS can, at best, 
prove principles easily reducible to ofLPHP, in addition to what Resolution can prove (with a small increase 
in depth).

The starting point of our work is [10], where the authors prove that DRMaxSAT is simulated by bounded-
depth Frege + PHP. The simulations upper-bounding the strength of SA, NS and w-Freged in this article 
widely generalize the simulation in [10]. This was possible via the language of w-Resolution and w-Freged, a 
new way of looking at SA and NS (and other semi-algebraic proof systems).

1.2. Organization of the paper

Section 2 contains all the basic definitions: the notion of Freged, Freged + φ, and the semi-algebraic 
proof systems NS and SA. Section 3 introduces the proof systems w-Resolution, restricted w-Resolution, 
and w-Freged, and proves some basic facts about them. Section 4 contains the definition of the pigeonhole 
principle PHP and the simulation of unary SA (resp. unary NS) by Frege1 + PHP (resp. Frege1 + ofPHP).
Section 5, builds on the previous section and introduces a leveled version of the pigeonhole principle LPHP. 
We show how to refute it in SA and how to simulate SA by Frege1 + LPHP. Section 6 briefly recaps some 
aspects of this article and suggests some open problems.

2. Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. A propositional proof system is a polynomial time function P : {0, 1}∗ →
{0, 1}∗ whose range is exactly the set TAUT of propositional tautologies in the DeMorgan language [14]. The 
notion we use to compare the strength of two propositional proof systems is the notion of p-simulation. 
Given two propositional proof systems P, Q we say that P p-simulates Q if there exists a polynomial time 
function f : {0, 1}∗ → {0, 1}∗ such that for all strings x, Q(x) = P (f(x)). If P p-simulates Q and Q p-
simulates P we say that P and Q are p-equivalent. If P p-simulates Q and they are not p-equivalent we say 
that the p-simulation is strict.

2.1. Constant-depth Frege systems

We follow the notation and definitions of [7] with minor changes. Propositional formulas are constructed 
from literals, i.e. Boolean variables xi or negated variables ¬xi, and unbounded fan-in conjunctions 

∧
and 

disjunctions 
∨

.
All formulas are either literals, 

∨
-formulas or 

∧
-formulas. They are defined inductively:

• If Φ is a finite set of literals and 
∨

-formulas, then 
∧

Φ is a 
∧

-formula.
• If Φ is a finite set of literals and 

∧
-formulas, then 

∨
Φ is a 

∨
-formula.

The point of this definition is that an 
∧

-formula cannot be the argument of an 
∧

, hence intuitively, adjacent ∧
(resp. 

∨
) must be collapsed.

Definition 2.1 (depth-d formulas). Let d ∈ N. The classes of formulas Θd over a set of variables X are 
defined inductively as follows:
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1. φ ∈ Θ0 iff φ is a literal, i.e. either x or the negation ¬x of some variable x ∈ X.
2. φ ∈ Θd+1 iff φ ∈ Θd or φ =

∧
Ψ or φ =

∨
Ψ, where Ψ is a finite subset of Θd.

We refer to φ ∈ Θd as φ being of depth d.

For φ ∈ Θd we denote by ¬φ the formula in Θd obtained from φ by interchanging 
∨

and 
∧

and 
interchanging variables and their negations.

A Θd-cedent is a finite multiset of formulas of depth d. A Θ0-cedent is a clause. The intended meaning 
of a cedent Γ is 

∨
Γ. A CNF formula F is a set of clauses. The intended meaning of F is the conjunction 

of its members. We sometimes abuse notation by writing a cedent Γ ∪ Φ simply as Γ, Φ.

Definition 2.2 (Freged). Let F be a set Θd-cedents. A Freged derivation of a Θd-cedent Γ is a tree T in which 
each node is labeled with a Θd-cedent, the root has label Γ, each leaf has label either the empty cedent or 
a cedent from F , and for each node in the tree the label it gets is a consequence of the labels of its parents 
via one of the following inference rules:

Δ, φ, φ

Δ, φ
(contraction)

φ,¬φ (excluded middle)

Δ, φ for φ ∈ Φ
Δ,

∧
Φ (

∧
-introduction) Δ,Φ

Δ,
∨

Φ (
∨

-introduction)

Δ,¬φ Δ, φ

Δ (symmetric cut) Δ
Δ, Δ′ (weakening)

where the cedents Δ, Δ′, Φ are Θd-cedents and 
∨

Φ, 
∧

Φ, φ, ¬φ are formulas of depth d. The size of T is the 
number of symbols of distinct cedents in the derivation. The height of T is its height as a tree rooted in Γ, 
the length of its longest path from the root to a leaf. If we count the number of symbols in all occurrences 
of cedents we use the adjective tree-like. A Freged refutation of F is a derivation of the empty cedent.

The definition of Freged in [7] is essentially the one given above with the contraction rule given 
implicitly, since their cedents are sets. For us, it is more convenient to consider multisets and to have the 
rule given explicitly. The propositional proof system Resolution is Frege0. In this system, the 

∧
and 

∨
rules 

cannot be applied.
Given φ = (φn)n∈N a family of unsatisfiable cedents, for instance φn being the pigeonhole principle 

PHPn+1
n (see Section 4 for the definition of PHPn+1

n ), the notion of Freged + φ has been considered in very 
similar terms, for instance in [1,6], and it is also very common in the context of bounded arithmetic (see for 
instance [23]).

Informally, to refute a formula F in Freged + φ we can either (1) refute F in Freged, or (2) derive 
a substitution instance of φn, for some n. This is a refutation of F , since φ is a family of unsatisfiable 
formulas. In the system Freged +φ we allow the formulas φn to be used only once. Formally, the definition 
is the following.

Definition 2.3 (Freged + φ). Let φ = (φn)n∈N , where φn is an unsatisfiable set of s-many Θd-cedents in n
variables. A refutation of a set of Θd-cedents F in Freged + φ is a set of s Freged derivations Γ1, . . . , Γs of 
G1, . . . , Gs such that: either (1) s = 1 and G1 = ∅, i.e. Γ1 is a refutation of F in Freged, or (2) there is a n ∈ N

such that the set of cedents {G1, . . . , Gs} is a substitution instance of φn.2 The height of the refutation is 
the maximum height of Γ1, . . . , Γs. The size of the refutation is the sum of the sizes of Γ1, . . . , Γs.

2 Let ψn be in the variables x1, . . . , xn. The cedent {G1, . . . , Gs} is a substitution instance of φn if there are depth-d formulas 
ψ1, . . . , ψn s.t. once we substitute in φn all the xis with the ψis we get exactly {G1, . . . , Gs}.
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Even though we know that tree-like Freged+1 is equivalent to Freged [23], tree-like Freged+1 + φ is not 
the same as Freged + φ, since in the first system we allow to derive substitution instances of φ that could 
be formulas of depth d + 1.

Definition 2.4 (Res(k)). Let d, k ∈ N. The system Res(k) is the restriction of Frege1 where the ∧
-introduction rule in Definition 2.2 is limited to Θ0-cedents (i.e. sets of clauses) Φ of size at most 

k. Let φ = (φn)n∈N , where φn is a set of s many Θ0-cedents in n variables. Res(k) + φ is then defined in 
an analogous way as Freged + φ in Definition 2.3.

2.2. Algebraic and semi-algebraic proof systems

In this section, we define formally the proof systems Nullstellensatz [5] and Sherali-Adams [32]. Let X
be the set of variables x1, . . . , xn, ̄x1, . . . , ̄xn. Given the ordered ring of the integers Z, by Z[X] we denote 
the set of polynomials in the variables X and coefficients in Z.

Definition 2.5 (Nullstellensatz, NS). Given polynomials p0, . . . , p� ∈ Z[X], a Nullstellensatz proof over Z
(NSZ) of the equality p0 = 0 from the equalities p1 = 0, . . . , p� = 0 is a polynomial identity of the form

p0 =
�∑

i=1
qipi +

n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) , (1)

where qi, rj , r′j are polynomials in Z[X]. A refutation of p1 = 0, . . . , p� = 0 is a derivation of the equality 
c = 0 where c ∈ Z \ {0}. The size of the polynomial identity in (1) is the length of a bit-string representing 
the polynomials qi, rj , r′j , including the coefficients. The degree of the polynomial identity in (1) is the 
maximum degree of the polynomials qi, rj , r′j .

Definition 2.6 (Sherali-Adams, SA). Given a set of polynomials p0, . . . , p� ∈ Z[X], a Sherali-Adams proof 
over Z (SAZ) of p0 ≥ 0 from p1 ≥ 0, . . . , p� ≥ 0 is a polynomial identity of the form

p0 =
�∑

i=1
qipi +

n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) + q0 , (2)

where rj , r′j are polynomials in Z[X] and the qis are polynomials with positive coefficients. A refutation of a 
set of polynomial inequalities p1 ≥ 0, . . . , p� ≥ 0 is a derivation of c ≥ 0 where c ∈ Z and negative. The size of 
the polynomial identity in (2) is the length of a bit-string representing the polynomials qi, rj , r′j , including 
the coefficients. The degree of the polynomial identity in (2) is the maximum degree of the polynomials 
qi, rj , r′j .

In Definitions 2.5 and 2.6, substituting the variables x̄1, . . . , ̄xn with 1 − x1, . . . , 1 − xn (and the terms 
involving r′j will be identical to 0) results in versions of NS and SA exponentially weaker [16] with respect 
to size. The degree of the two versions of the systems is obviously the same.

Nullstellenstatz and Sherali-Adams could be defined on generic rings (ordered in the case of SA). In this 
paper we consider only NS and SA over the ring Z, NSZ and SAZ, resp., hence from now on we refer to 
them as NS and SA omitting the reference to Z. When we restrict all the polynomials appearing in NS and 
SA derivations to have coefficients ±1, we refer to those systems as unary NS and unary SA. Equivalently, 
we could think of unary NS and unary SA as the versions of NS and SA where the coefficients, instead of 
being encoded in binary, are encoded in unary.
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[C, �, �;w]
[C, �;w]

(contraction)
[�,¬�;w]

(excluded middle)

[C,¬�;w], [C, �;w]
[C;w]

(symmetric cut)
[C;w]

[C,¬�;w], [C, �;w]
(split)

[C;u], [C;w]
[C;u + w]

(fold)
[C;u + w]

[C;u], [C;w]
(unfold)

[C;u], [C;−u]
(removal)

[C;u], [C;−u]
(introduction)

Fig. 4. Inference rules of w-Resolution. C,D are clauses, � is a literal, u,w ∈ Z.

The natural encoding of sets of clauses in the context of (semi-)algebraic proof systems is the following. 
A clause C = {xi : i ∈ I} ∪ {¬xj : j ∈ J} is represented as the monomial − 

∏
i∈I x̄i

∏
j∈J xj , intended to 

be = 0 in NS, and ≥ 0 in SA. In the algebraic context, we follow the common convention that a variable 
being 0 means it is true. In the propositional context it is the opposite, 0 means false and 1 means true. 
A set of clauses is then represented by the set of the (in)equalities encoding its clauses.

Under this natural representation, it is well-known that SA p-simulates Resolution (see for instance [3, 
Lemma 3.5]) and NS with unary coefficients p-simulates tree-like Resolution. Moreover, both p-simulations 
are known to be strict.

3. Weighted resolution and weighted depth-d Frege

A weighted clause over Z is a pair [C; w] where C is a clause and w ∈ Z. First we define the system 
weighted Resolution (w-Resolution). This system comes essentially from [12,26].

Definition 3.1 (w-Resolution). A w-Resolution derivation (over Z) of a clause C from a set of clauses 
{C1, . . . , Cm} is a sequence L1, . . . , Ls of multisets of weighted clauses over Z such that:

1. L1 = {[C1; w], . . . [Cm; w]} where w ∈ N,
2. [C; z] ∈ Ls for some z > 0,
3. all clauses in Ls \ {[C; z]} have positive weights,
4. each Li is obtained from Li−1 by applying one of the inference rules in Fig. 4 as substitution rules, i.e. 

removing the premises from Li−1 and adding the conclusions.

A w-Resolution refutation of F is a w-Resolution derivation of the empty clause. The size of a w-Resolution
derivation L1, . . . , Ls is the total number of occurrences of symbols in L1, . . . , Ls including the weights. 
Unless explicitly stated, the weights are assumed to be encoded in binary. If the weights are restricted 
to −1, 1 then we call the system unary w-Resolution. In the system with weights in unary there are no 
applications of the fold/unfold rules and the weighted clauses in L1 are given as a multiset, instead of 
[Ci; w] we have a multiset consisting in w many copies of [Ci; 1].

The intuition, behind the definition of weighted proof systems, is that we are allowed to make assumptions 
(via the introduction rule) and the negative weights are a way to have some control over them. If we 
need to use an assumption k times, we also need to justify it with weight k. At some point, the assumptions 
must end-up being justified, via the removal rule. The system then needs to keep track of the weights in 
a consistent way, and this is done using inference rules as substitution rules (i.e. removing the premises of 
the rule and adding its conclusions).

A natural subsystem of w-Resolution is restricted w-Resolution. In Theorem 3.5 we will see that restricted 
w-Resolution is equivalent to NS, as w-Resolution is equivalent to SA.
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Definition 3.2 (restricted w-Resolution). A restricted w-Resolution derivation (over Z) of a clause C from a 
set of clauses {C1, . . . , Cm} is a sequence L1, . . . , Ls of multisets of weighted clauses over Z with the same 
requirement as in Definition 3.1 with the condition (3) substituted by the condition

(3′) all clauses in Ls \ {[C; z]} have positive weights and, moreover, they are also weakenings of clauses in 
{C1, . . . , Cm}.

Notice that the rules in Fig. 4 are weighted versions of the inference rules of Frege0 (see Definition 2.2) 
with one exception: the split rule instead of the weakening rule, although both rules result in equivalent 
systems.

Using the split rule instead of the weakening has several advantages. First it allows us to work with a 
w-Resolution system where the negative weights are allowed only in the introduction/removal rules and 
not in the other rules (see Remark 3.3). The second advantage is that it simplifies the proof of the equivalence 
with SA/NS and w-Resolution/restricted w-Resolution (see Theorem 3.5). Finally, with the split rule, every 
rule in Fig. 4, has the property that, for any assignment α, the total weight of the falsified premises equals 
the total weight of the falsified conclusions. This means that the set of rules of w-Resolution will be usable 
also in the context of weighted maxSAT, with the only difference that the weights of the initial clauses are 
part of the input.

Remark 3.3. In w-Resolution (and restricted w-Resolution) allowing to have negative weights only in the
introduction/removal rules results in a p-equivalent system. To see this we show how to simulate a
symmetric cut on clauses with negative weight −w:

[C, x;−w] [C,¬x;−w]
introduction

[C, x;−w] [C,¬x;−w] [C;−w] [C;w]
split

[C, x;−w] [C,¬x;−w] [C;−w] [C, x;w] [C,¬x;w]
removal

[C;−w]

For the other rules the argument is equally simple.
Moreover, w-Resolution is also p-equivalent to w-Resolution with all the weights only allowed to be powers 

of 2. The same is true for restricted w-Resolution. To see this, notice that in w-Resolution, we can substitute 
each weighted clause [C; w] where w =

∑
j∈J 2j , by the set of clauses {[C; 2j ] | j ∈ J} and perform the rule 

used on the clause [C; w] to the clauses {[C; 2j ] | j ∈ J}.

Lemma 3.4. The proof systems w-Resolution and restricted w-Resolution are sound.

Proof. Given a truth assignment α : {x1, . . . , xn} → {�, ⊥} and a multiset of weighted clauses L, let

W (L, α) =
∑

[C;w]∈L
α(C)=⊥

w .

Let F be a set of clauses and suppose F has a w-Resolution refutation (L1, . . . , Ls). If F was satisfiable, 
then there would exist an assignment α satisfying all clauses in F , hence W (L1, α) = 0. Since [⊥; w] ∈ Ls

for some w > 0 and Ls has all positive weights, then

W (Ls, α) > 0 .
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[Γ, φ, φ;w]
[Γ, φ;w]

(contraction)
[φ,¬φ;w]

(excluded middle)

[Γ, φ1;w] [Γ, φ2;w]
[Γ, φ1 ∧ φ2;w], [Γ, φ1, φ2;w]

(
∧

-introd.)
[Γ,Φ;w]

[Γ,
∨

Φ;w]
(
∨

-introd.)

[Γ,¬φ;w], [Γ, φ;w]
[Γ;w]

(symmetric cut)
[Γ;w]

[Γ,¬φ;w], [Γ, φ;w]
(split)

[Γ;u], [Γ;w]
[Γ;u + w]

(fold)
[Γ;u + w]

[Γ;u], [Γ;w]
(unfold)

[Γ;u], [Γ;−u]
(removal)

[Γ;u], [Γ;−u]
(introduction)

Fig. 5. Inference rules of w-Freged. The cedents Γ,Φ,
∨

Φ,
∧

Φ, φ,¬φ all are Θd-cedents, u,w ∈ Z.

On the other hand, the inference rules of Fig. 4 guarantee that in the derivation (L1, . . . , Ls)

W (L1, α) = W (L2, α) = · · · = W (Ls, α) = 0 .

This means that F must be unsatisfiable. �
One of the reasons we introduced w-Resolution and its restricted version is that they are a characterization 

of SA and NS in a language similar to the one used for Freged.

Theorem 3.5. (Unary) SA is p-equivalent to (unary) w-Resolution.
(Unary) NS is p-equivalent to (unary) restricted w-Resolution.
Moreover, degree-d proofs in SA/NS correspond to width-d weighted proofs, where the width of a proof is the 
maximum number of literals in a clause of the proof.

Proof. (sketch) The part of this theorem for SA with binary coefficients follows via p-equivalence with 
circular Resolution: w-Resolution is p-equivalent to circular Resolution [12,31] and circular Resolution is p-
equivalent to SA [2].

It is not hard to see that refutations in the systems NS/SA and refutations in (restricted) w-Resolution
are two different ways of looking at the same thing. The multisets L1, . . . , Ls in a w-Resolution refutation 
are in a correspondence with partial sums of SA/NS refutations. The binomials m(x2

j − xj) correspond to 
applications of the contraction rule, and the trinomials m(xj + x̄j − 1) correspond to applications of the
split/symm. cut rules. The argument that uses these intuitions is in [8]. �

We conclude this section showing a natural generalization of weighted clauses and w-Resolution to Θd-
cedents and weighted Freged (w-Freged).

A weighted Θd-cedent over Z is a pair [Γ; w] where Γ is a Θd-cedent and w ∈ Z.

Definition 3.6 (weighted Freged, w-Freged). A weighted Freged (w-Freged) derivation (over Z) of a Θd-cedent 
Γ from a set of Θd-cedents F = {Γ1, . . . , Γm} is a sequence L1, . . . , Ls of multisets of weighted Θd-cedents 
over Z such that:

1. L1 = {[Γ1; w], . . . [Γm; w]} where w ∈ N,
2. [Γ; z] ∈ Ls for some z > 0,
3. all cedents in Ls \ {[Γ; z]} have positive weights,
4. each Li is obtained from Li−1 by applying one of the inference rules in Fig. 5 as substitution rules, i.e. 

removing the premises from Li−1 and adding the conclusions.
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A w-Freged refutation of F is a w-Freged derivation of the empty cedent. The size of a w-Freged derivation 
L1, . . . , Ls is the total number of occurrences of symbols in L1, . . . , Ls including the weights. Unless explicitly 
stated, the weights are assumed to be encoded in binary. If the weights are restricted to −1, 1 then we call the 
system unary w-Freged. In the system with weights in unary there are no applications of the fold/unfold

rules and the weighted cedents in L1 are given as a multiset, instead of [Γi; w] we have a multiset consisting 
in w many copies of [Γi; 1], if w > 0, or a multiset consisting in −w many copies of [Γi; −1], if w < 0.

Notice that the rules in Fig. 5 are weighted versions of the inference rules of Freged (see Definition 2.2) 
with two exceptions: the split and the

∧
-introd. The use of the split rule instead of the weaking rule 

implies that it is enough to consider negative weights only in the introduction/removal rules, that is 
Remark 3.3 generalizes from w-Resolution to w-Freged.

The version of the 
∧

-introd. used in Fig. 5 has the property that, for any assignment α, the total weight 
of the falsified premises equals the total weight of the falsified conclusions. That is the rules w-Freged would 
be also appropriate for weighted maxSAT, thus generalizing w-Resolution also to the context of maxSAT.

Lemma 3.7. For every d ∈ N, the proof system w-Freged is sound.

Proof. The proof is identical to the proof of Lemma 3.4, just changing “clauses” with “cedents”. �
We conclude this section proving that w-Freged p-simulates Freged. This is a generalization of the known 

fact that SA p-simulates Resolution.

Theorem 3.8. For every d ∈ N, w-Freged p-simulates Freged.

Proof. To simulate Freged with w-Freged we need to argue two things: first how to simulate each inference 
rule of Freged with rules of w-Freged and, second, how to set the weights of a w-Freged derivation to simulate 
a Freged derivation.

The inference rules of w-Freged are the same of the rules of Freged (setting aside the weights for the 
moment) with the exception of the weakening and the 

∧
-introduction. By repeated applications of the

split and 
∧

-introduction rules of w-Freged it is immediate to see that is possible to produce the same 
consequences of the weakening and 

∧
-introduction rules of Freged (having derived possibly some extra 

cedents).
Now, since the rules of w-Freged are substitution rules, given a Freged derivation π of some cedent Γ, to 

simulate π in w-Freged we need to take into account, for each cedent of π, the number of times it is used as 
a premise of some rule in π.

To assign weights to Θd-cedents, the idea is to set [Γ; 1] and then proceed bottom-up in π setting the 
weight of any Θd-cedent looking at all the times it is used and summing the weights of those weighted 
cedents. It is immediate to see that the weights might be as big as 2S, where S is the size of π, in the worst 
case. Since the weights are encoded in binary this gives a p-simulation. Notice that, since the inference rules 
of w-Freged are binary, it is possible to get a slight better bound on the weights, in the form φS/

√
5 where 

φ is the golden ratio [11, Lemma 31]. �
4. The pigeonhole principle and unary NS/SA

In this section we prove the p-simulations relative to the unary parts of Fig. 1, 2 and 3.

Definition 4.1 (Pigeonhole principle). Let m, n ∈ N with m > n and let pi,j be Boolean variables with 
i ∈ [m] and j ∈ [n]. The pigeonhole principle is the set of clauses
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PHPmn = {{pi,1, . . . , pi,n} : i ∈ [m]}
∪ {{¬pi,j ,¬pi′,j} : i, i′ ∈ [m] distinct, j ∈ [n]} .

The onto-functional pigeonhole principle ofPHPmn is the formula PHPmn together with the set of cedents

{{¬pi,j ,¬pi,j′} : i ∈ [m] j, j′ ∈ [n] distinct} , (3)

the functionality axioms, and the set

{{p1,j , . . . , pm,j} : j ∈ [n]} , (4)

the onto axioms. Given a bipartite graph G = (P ∪H, E) with |P | = m and |H| = n, the graph pigeonhole 
principle PHPmn (G) is the formula PHPmn restricted by a partial assignment mapping pi,j = ⊥ for all (i, j) 
∈ E, 
i.e. we remove the literal pi,j from every clause of PHPmn where it appears and remove all clauses of PHPmn
containing ¬pi,j . The onto-functional graph pigeonhole principle ofPHPmn (G) is defined in the same way.

It is well-known that PHPn+1
n has polynomial size unary SA refutations and ofPHPn+1

n has polynomial size 
unary NS refutations. Let’s recall briefly the argument. To refute PHPn+1

n in SA first derive∑
j∈[n+1]

∑
i∈[n]

pi,j − (n + 1) ≥ 0 (5)

n−
∑
i∈[n]

∑
j∈[n+1]

pi,j ≥ 0 . (6)

Then, sum the two inequalities to get −1 ≥ 0. The same argument can be easily adapted to show the results 
for unary NS. Moreover, for a bipartite graph G with maximum degree d, PHPn+1

n (G) has degree-d unary 
SA refutations and ofPHPn+1

n (G) has degree-d unary NS refutations.
We now show some sort of converse of the previous results: Frege1 + PHPn+1

n (G) p-simulates unary SA
and Frege1 + ofPHPmn (G) p-simulates unary NS.

Theorem 4.2. For every d, tree-like Res(d) +PHPn+1
n (G) p-simulates degree-d unary SA, where G is restricted 

to bipartite graphs of degree at most 3 and the height of the tree-like Res(d) + PHPn+1
n (G) derivations is 5.

Notice that tree-like Res(n) is tree-like Frege1. The proof of this result is loosely inspired by the proof of 
[10, Theorem 4].

Proof. We use the characterization of SA given by Theorem 3.5. Let L = (L1, . . . , Ls) be a weighted 
Resolution refutation of a set of clauses F = {C1, . . . , Cm}. The strategy for the simulation is to obtain a 
tree-like Res(d) derivation of a substitution instance of the cedents of PHPn+1

n for some n. To describe this 
derivation it is useful to reason semantically, arguing that from an assignment satisfying all the clauses in 
F we obtain a one-to-one mapping from n + 1 to n using the weighted Resolution derivation L.

Since the weights in L are in unary, all the weights in π are just ±1. Moreover, in L, there will be 
no application of the fold/unfold rules. Without loss of generality, we can assume the weights in the
contraction/symm.cut/split/excl. middle rules are +1 (see Remark 3.3).

Let Ls+1 = {[∅; 1]} and let P be the multiset given by the disjoint union of the multisets L1, . . . , Ls+1
and H be the multiset given by the disjoint union of the multisets L1, . . . , Ls. In particular, |P | = |H| + 1. 
The multiset P will represent the pigeons and H the holes.

Now for each α ∈ P and each β ∈ H we want to define pα,β as conjunctions of a set of at most d literals, 
such that we have small tree-like Res(d) derivations of the cedents {pα,β : β ∈ H} for all α ∈ P , and 
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{¬pα,β , ¬pα′,β} for all β ∈ H, and distinct α, α′ ∈ P . We also want that pα,β 
= ⊥ for at most 3 values of β
and pα,β 
= ⊥ for at most 3 values of α.

Given α ∈ P , let α = [Cα; wα] and let iα be the index of the level to which α belongs, i.e. the 
unique iα such that α ∈ Liα ; similarly for β ∈ H. Given α, β as above, we say that β is a contrac-

tion/symm.cut/split-premise of α if iα = iβ+1 and between the layers Liβ and Liα there is an application 
of the contraction/symm.cut/split rule of weighted Resolution with β one of the premises and α one of 
the conclusions. There are no applications of the fold/unfold rules, so the only rule having two premises 
is the symmetric cut. We say that α is a copy of β if iα = iβ + 1 and between the layers Liα and Liβ , the 
inference rule applied does not involve α or β. In particular, [∅; 1] in Ls+1 is a copy of some element in Ls. 
Moreover, if α is a copy of β, then Cα = Cβ and wα = wβ . If wα = 1 we say that α is a positive-copy of β, if 
wα = −1 we say that α is a negative-copy of β. Finally, we say that α, β are appearing (resp. disappearing) 
siblings if iα = iβ and α and β are the result of an introduction rule on the layer Liα (resp. α and β are 
used as premises of a removal rule on the layer Liα+1).

We now describe the candidate injective mapping from P to H. The pigeons α = [Cα; 1] are mapped 
to holes β with iβ = iα − 1, or with iβ = iα, while the pigeons α = [Cα; −1] are mapped to holes β with 
iβ = iα + 1, or with iβ = iα. The precise hole a pigeon α flies to depends on the truth value of Cα and 
related clauses. The notion of a clause being true or false is under a hypothetical assignment satisfying all 
the initial clauses in F .

• If Cα is true, then the pigeon α flies to the hole α. That is, we set pα,α to be the formula 
∨
Cα (see (8)

below).
• If Cα is an initial clause, the pigeon α always flies to the hole α. In other words α as a member of P is 

mapped to α as a member of H. So we set pα,α to the tautology x ∨ ¬x (see (7)).
• If Cα is false and its weight is +1, the pigeon α flies either to the hole β corresponding to the false 

premise Cβ used to derive it, or to the hole γ corresponding to the appearing sibling of Cα, that is 
γ = [Cα; −1]. The way to say that Cα and Cβ are false is to use the formula ¬ 

∨
Cα ∧ ¬ 

∨
Cβ , but this 

is redundant, since it is always the case that either Cα contains Cβ (see (11)) or the opposite (see (9)).
• If Cα is false and the weight of Cα is −1 then α flies to its copy [Cβ , −1] in the direction of the proof 

(iβ = iα + 1), or to its disappearing sibling (see (10)). The way to define pα,β is analogous as before.

Formally, pα,β is the formula

x ∨ ¬x if α = β and α ∈ L1 , (7)∨
Cα if α = β and α /∈ L1 , (8)

¬
∨

Cβ if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β is a symm.cut-premise of α
β is a contraction-premise of α
α, β appearing siblings, wα = 1
α is a positive-copy of β

(9)

¬
∨

Cβ if
{
α, β disappearing siblings, wα = −1
β is a negative-copy of α

(10)

¬
∨

Cα if β is a split-premise of α , (11)
⊥ otherwise .

The totality axioms {pα,β : β ∈ H} are easily derivable in tree-like Res(d) from the initial clauses 
C1, . . . , Cm. We need to check several cases.
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If Cα is one of the initial clauses C1, . . . , Cm or an instance of the excluded middle rule, in both 
cases {pα,β : β ∈ H} = {pα,α}. The cedent {pα,α} can be obtained by the excluded middle rule and∨

-introduction rule.
If Cα is the result of the application of a contraction rule on Cβ

{pα,γ : γ ∈ H} = {
∨

Cα,¬
∨

Cβ} .

If Cα is the result of the application of a split rule on Cβ or α is a copy of β or α, β are appearing/dis-
appearing siblings then

{pα,γ : γ ∈ H} = {
∨

Cα, ¬
∨

Cα}

is an instance of the excluded middle rule of Res(d), the height to derive it is 1.
The only remaining case is when α is the conclusion of a symmetric cut with premises β, β′. Then, ∨
Cβ =

∨
Cα ∨ x and 

∨
Cβ′ =

∨
Cα ∨ ¬x, and the totality axiom for the pigeon α is

{pα,γ : γ ∈ H} = {
∨

Cα, ¬
∨

Cα ∧ ¬x, ¬
∨

Cα ∧ x} .

This formula can be derived by first deriving by excluded middle

{
∨

Cα ∨ x, ¬
∨

Cα ∧ ¬x} and {
∨

Cα ∨ ¬x, ¬
∨

Cα ∧ x} ,

then by symmetric cut on weakening of the previous two cedents we derive

{
∨

Cα, ¬
∨

Cα ∧ ¬x, ¬
∨

Cα ∧ x} .

This derivation has height 5.
The injectivity axioms {¬pα,β, ¬pα′,β} have α 
= α′ and they are also easily derivable from the initial 

clauses C1, . . . , Cm. As before, we have several cases.
Case α′ = β.

• If β /∈ L1, then {¬pα,β , ¬pβ,β} is either {
∨

Cβ , ¬ 
∨

Cβ} or {
∨
Cα, ¬ 

∨
Cβ} if β is a split-premise of 

α. In both cases, these are easy tautologies derivable in small height.
• If β ∈ L1, then {¬pα,β, ¬pβ,β} is either {

∨
Cβ , ¬(x ∨¬x)} or {

∨
Cα, ¬(x ∨¬x)} if β is a split-premise 

of α. In both cases they are derivable from Cβ, a clause that is a weakening of an initial clause from 
C1, . . . , Cm, in small height.

Case α, α′ 
= β.

• If wβ = −1, then pγ,β = ⊥ for all but at most two γs. This is so because when we have negative weights, 
either β is a copy from the previous layer or β part of an appearing sibling. In both cases one of the γs 
is β so in each axiom of the form {¬pα,β, ¬pα′,β} either pα,β = ⊥ or pα′,β = ⊥ since α, α′ 
= β.

• If wβ = 1, and β is a disappearing sibling, as in the previous case we have that either pα,β = ⊥ or 
pα′,β = ⊥, and the axiom {¬pα,β , ¬pα′,β} is trivially derivable. Suppose then both pα,β and pα′,β

are distinct from ⊥. This means in particular that iα = iα′ = iβ + 1 and β is a premise of both α
and α′. That is, at level Liβ we applied a split rule on β obtaining α, α′. I.e. 

∨
Cα =

∨
Cβ ∨ x and ∨

Cα′ =
∨
Cβ ∨ ¬x for some variable x. Hence,
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{¬pα,β , ¬pα′,β} = {¬(¬
∨

Cβ ∧ ¬x), ¬(¬
∨

Cβ ∧ x)}

= {
∨

Cβ ∨ x,
∨

Cβ ∨ ¬x} ,

which is a tautology derivable in small height in Res(d) using two weakenings of {x, ¬x} and two 
∨

-
introductions.

We showed that from the clauses C1, . . . , Cm in tree-like Res(d) it is possible to derive all the clauses of 
the formula PHPn+1

n (pα,β), which is a PHPn+1
n (G) for some graph G of degree at most 3. This concludes the 

refutation in tree-like Res(d) + PHPn+1
n (G). It is a refutation of height 5. �

The construction of the formulas pα,β in the previous proof does not satisfy the onto axioms but it 
clearly satisfies the functionality axioms of ofPHPn+1

n (G), which means that the substitution instance of the 
functionality axioms is a tautology easily derivable. The reason the construction does not satisfy the onto 
axioms is the following. The last layer Ls might contain arbitrary weighted clauses [Cβ; 1] that, if true, are 
mapped to themselves. Therefore, they receive a pigeon. If they are false, they are mapped to some hole 
in Ls−1, and hence they, as a hole, don’t receive a pigeon. Therefore, we have no guarantee that the holes 
in Ls receive some pigeon. If Ls satisfies the condition (3’) in the definition of restricted w-Resolution (see 
Definition 3.2), then we can adapt the definition of pα,β in the proof of Theorem 4.2 to satisfy the onto
axioms of the pigeonhole principle.

Theorem 4.3. For every d, tree-like Res(d) +ofPHPmn (G) p-simulates degree-d unary NS, where G is restricted 
to bipartite graphs of degree at most 3 and the height of the tree-like Res(d) + ofPHPmn (G) derivations is 5. 
Moreover, for the p-simulation it is enough to have ofPHPmn (G) for m ≤ 2n.

Proof. We use the characterization of unary NS given by Theorem 3.5, and we argue basically as in The-
orem 4.2. We know that the problematic clauses in Ls are weakening of initial axioms or several copies of 
[∅; 1]. We can define the formula pα,β as in Theorem 4.2 setting pα,α = x ∨¬x whenever the clause associated 
to α is a weakening of an initial axiom regardless of the location of α in the proof.

All the copies of [∅; 1] in Ls are copied to Ls+1, as in the case of unary SA. For the argument in SA we 
only needed to copy one of the [∅; 1], here we need to copy all of them. Hence instead of PHPn+1

n (G) we use 
ofPHPmn (G). Of course the number of [∅; 1] we copy in the layer Ls+1 cannot be larger than the size of the 
original proof, therefore m ≤ 2n is enough.

A simple case analysis shows that the functionality axioms {¬pα,β , ¬pα′,β} are easily derivable from the 
initial axioms.

Similarly, the onto axioms {pγ,β : γ ∈ P} are also immediate to derive. For sake of clarity we highlight 
the less trivial case: when β is a split-premise and one of its conclusions is a weakening of an initial axiom. 
That is suppose the clause associated with β is Cβ , the conclusions are α and α′, with Cα = Cβ ∨ x and 
Cα′ = Cβ ∨ ¬x and α is the one which is a weakening of an initial axiom. That is

{pγ,β : γ ∈ P} = {pα,β , pα′,β , pβ,β} = {⊥,¬
∨

Cβ ∧ x,
∨

Cβ = {¬
∨

Cβ ∧ x,
∨

Cβ} .

We assumed that {Cβ , x} is a weakening of an initial axiom, then from it we can derive by ∨-

introduction, {
∨
Cβ , x}, by excluded middle, {

∨
Cβ , ¬ 

∨
Cβ} and finally by ∧-introduction

{
∨
Cβ , x ∧ ¬ 

∨
Cβ}. �

The proof of Theorem 4.2 will generalize, almost without changes, if instead of clauses we consider 
Θd-cedents.
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Theorem 4.4. For every d ∈ N, tree-like Freged+1 + PHPn+1
n (G) p-simulates unary w-Freged, where G is 

restricted to bipartite graphs of degree at most 3.

Proof. The rules that could be applied in w-Freged that could have not been applied in w-Resolution are 
the

∧
-introduction and the

∨
-introduction. This last rule is not problematic, it has only one premise 

and one conclusion. As in the proof of Theorem 4.2, if the conclusion is true, the pigeon corresponding to it 
is mapped to the hole corresponding to the conclusion, if it is false, it is mapped to the hole corresponding 
to the premise.

The rule that might create problems is the
∧

-introduction rule, i.e.

[Γ, φ1;w] [Γ, φ2;w]
[Γ, φ1 ∧ φ2;w] [Γ, φ1, φ2;w] . (12)

Then, for every instance of the binary 
∧

-introduction if the conclusion of the inference is true, the 
pigeon corresponding to it is mapped to the hole corresponding to the conclusion. If one of the conclusions 
of the inference is false, the pigeon corresponding to it is mapped to a false premise. More precisely, fix 
an instance of the rule in (12) and let α1 be the pigeon corresponding to the left conclusion, α2 be the 
pigeon corresponding to the right conclusion, β1 the hole corresponding to the left premise and β2 the hole 
corresponding to the right premise. Then the formula pα1,β1 is

¬Γ ∧ (¬φ1 ∨ ¬φ2) ∧ ¬φ1 ,

and the formula pα1,β2 is

¬Γ ∧ (¬φ1 ∨ ¬φ2) ∧ φ1 ∧ ¬φ2 .

The formula pα2,β1 = ⊥ and the formula pα2,β2 is

¬
∨

Γ ∧ ¬φ1 ∧ ¬φ2 .

This is the only simple non-trivial change needed on top of the trivial generalization of the definition of 
the formula pα,β from clauses to Θd-cedents. The fact that in the rule (12) the injectivity of the mapping 
is not violated follows from the soundness of the rule, that the number of false premises equals the number 
of false conclusions. �

Notice that, by the form of the 
∧

-introd. rule, the functionality axioms of the ofPHPn+1
n (G) would also 

be satisfied. This would not be the case for the standard generalization of the 
∧

-introd. to the context of 
weighted cedents. We conclude this section with a couple of separations and lower-bounds.

Proposition 4.5. For every d = o 
(

log logn
log log logn

)
, Freged does not p-simulate unary w-Freged.

Proof. Any refutation of PHPn+1
n in Freged must have size at least 2n(1/6)d (see for instance [33]). PHPn+1

n has 
polynomial size unary SA refutations, and hence it has polynomial size refutations in unary w-Freged. �
Definition 4.6 (MOD2 principle). Given n ∈ N, the MOD2-principle is the set of cedents in the variables 
xi,j for i 
= j ∈ S

MODn2 = {{xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,2n+1} : i ∈ [2n + 1]}
∪ {{¬xi,j ,¬xi′,j} : i, i′ ∈ [2n + 1] distinct, j ∈ [2n + 1]} .
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Corollary 4.7. Given n ∈ N and d = o 
(

log logn
log log logn

)
, MODn2 has no polynomial-size unary w-Freged refutations.

Proof. Any refutation of the MODn2 principle in Freged + PHP must require size at least exp(nΩ
(
1/d4d

)
) [6, 

Theorem 4]. By Theorem 4.4, Freged+1 + PHP p-simulates unary w-Freged. The lower bound follows: the 

formula MODn2 requires unary w-Freged refutations of size exp(nΩ
(
1/(d+1)4d

)
). �

Definition 4.8 (bit-pigeonhole principle). Let n = 2k. The formula bit-PHPn has variables bi� for each 
i ∈ [n + 1] and � ∈ [k]. The variables bi1, . . . , bik represent the binary expansion of a hole, the hole i is 
mapped to. Then bit-PHPn only needs to enforce injectivity. The formula bit-PHPn is{

{b1−h1
i1 , . . . , b1−hk

ik , b1−h1
i′1 , . . . , b1−hk

i′k } : i 
= i′ ∈ [n + 1]
h ∈ [n]

}
,

where h1, . . . , hk is the binary representation of the hole h and bhj

ij = bij if hj = 1 and bhj

ij = ¬bij if hj = 0.

Theorem 4.9. SA does not p-simulate tree-like Frege1 + PHPn+1
n .

Proof. bit-PHPn does not have polynomial-size SA refutations [15]. On the other hand, bit-PHPn has poly-
nomial size tree-like Frege1 + PHPn+1

n refutations. To see this we use the substitution pij = bj1i1 ∧ · · · ∧ bjkik
where j1, . . . , jk is the binary representation of j. For i 
= i′ ∈ [n + 1] and j ∈ [n], the cedent {¬pij , ¬pi′j} is 
immediately derivable from the axioms of bit-PHPn by 

∨
-introduction. For every i ∈ [n + 1], the cedent 

{pi1, . . . , pin} is tautological, and it has k = log n variables. By excluded middle, derive all the {pij , ¬pij}
and then with weakening and 2k applications of symm. cut it is easy to obtain {pi1, . . . , pin}. �
5. The leveled pigeonhole principle and Sherali-Adams

In this section, we generalize the constructions given for unary SA/NS and unary w-Freged to systems 
with binary weights/coefficients. We prove all remaining p-simulations in Fig. 1, 2 and 3.

The starting point of this section is that, it is not clear at all whether it is possible to adapt Theorem 4.4 to 
show that tree-like Frege1+PHPn+1

n (G) p-simulates SA. It seems we need a stronger version of the pigeonhole 
principle. For this reason, we introduce a new combinatorial principle, the leveled PHP.

The leveled pigeonhole principle maps n2 + 1 pigeons into n2 holes. First, we partition both sets of 
pigeons and holes into n parts. The partition of the holes consists of n sets H1, . . . , Hn given by H� =
{(� − 1)n + 1, . . . , �n}. Let H0 = Hn+1 = ∅. For the partition of the pigeons we set, for some j ∈ [n], 
Pj = Hj ∪ {n2 + 1} and for the remaining � ∈ [n] \ {j}, P� = H�. Let P0 = Pn+1 = ∅.

Definition 5.1 (Leveled pigeonhole principle, LPHP). The leveled pigeonhole principle3 has variables xij for 
each i ∈ [n2 +1] and each j ∈ [n2]. The formula LPHPn

2+1
n2 has the following clauses. For every � ∈ [n], every 

pigeon p ∈ P� we have clauses

{xp1, . . . , xpn2} , (13)

{¬xpj} for all j /∈ H�−1 ∪H� ∪H�+1 , (14)

{¬xpj , xpj′ : j′ ∈ H�−1 \ {j}} for all j ∈ H�−1 , (15)

{¬xpj1 , ¬xpj2 , ¬xpj3} for all distinct j1, j2, j3 ∈ H�−1 (16)

3 In [9], the preliminary version of his work, the leveled pigeonhole principle was called weighted pigeonhole principle, in short 
wPHP. To avoid confusion with the weak pigeonhole principle, we use the term leveled.
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P�

H�−1

H�

H�+1

2�−1

2�−1

2�

2�

2�

Fig. 6. Possible ways pigeons in P� can fly.

and every hole h ∈ H�, we have clauses

{¬xih, ¬xi′h} for all distinct i ∈ P� ∪ P�+1

and i′ ∈ [n2 + 1] , (17)

{¬xi1h, ¬xi2h, ¬xi3h} for all distinct i1, i2, i3 ∈ P�−1 . (18)

Intuitively, p ∈ P� means that p has mass 2�, and h ∈ H� means h has capacity 2�, see Fig. 6. The pigeon 
p ∈ P� has to fly somewhere (eq. (13)) and moreover, it can only fly to holes in H�−1 or H� or H�+1 (eq. 
(14)). The pigeon has to fly with either full or half-mass. If p ∈ P� flies to H�−1, it flies with half-mass 
and hence it should fly to two distinct holes in H�−1 (eq. (15)) but not to three holes in H�−1 (eq. (16)). 
If p ∈ P� flies to H�, we assume it flies with full mass, hence completely filling the capacity of a hole in H�

(eq. (17)). If p ∈ P� flies to H�+1, we also assume it flies with full mass, but now it only fills half of the 
capacity of a hole in H�+1. Therefore, to fill the capacity of a hole h ∈ H�+1 we will need another pigeon 
from P� flying to h but not two more (eq. (18)).

The intended meaning of the variable xij for i ∈ P� is: for j ∈ H� ∪H�+1, xij = 1 means “the pigeon i
flies to j with mass 2�”; for j ∈ H�−1, xij = 1 means “i flies to j with mass 2�−1”. If j /∈ H�−1 ∪H� ∪H�+1

then xij = ⊥.

Definition 5.2 (Onto-functional LPHP, ofLPHP). Let m ≤ n and allow Pj 
= Hj for m indices j1, . . . , jm where 
we have Pj� = Hj� ∪ {n2 + �}. If we add to the axioms of LPHPn

2+1
n2 the following onto-functional axioms, 

we obtain the formula ofLPHPn
2+m

n2 . The axioms we add are: for every � ∈ [n] and every pigeon p ∈ P� the 
clauses

{¬xpj , ¬xpj′} for all distinct j ∈ H� ∪H�+1

and j′ ∈ [n2] ,

and every hole h ∈ H� the clauses



I. Bonacina, M.L. Bonet / Annals of Pure and Applied Logic 176 (2025) 103538 19
{x1h, . . . , xn2+m,h} ,

{¬xih, xi′h : i′ ∈ P�−1 \ {i}} for all i ∈ P�−1 .

Definition 5.3 (graph LPHP and ofLPHP). Similar to the PHP case, given a bipartite graph G = (P �H, E)
with vertices the disjoint union of P with size n2 + 1 and H with size n2, the graph leveled pigeonhole 
principle LPHPn

2+1
n2 (G) is the formula LPHPn

2+1
n2 restricted by the partial truth assignment mapping all the 

variables xi,j for (i, j) 
∈ E to false (⊥).
Given a bipartite graph G = (P�H, E) with |P | = n2+m and |H| = n2, the graph onto-functional leveled

pigeonhole principle ofLPHPn
2+m

n2 (G) is the formula ofLPHPn
2+m

n2 restricted by the partial truth assignment 
mapping all the variables xi,j for (i, j) 
∈ E to false (⊥).

Remark 5.4. The clauses in eq. (16) are not needed to have an unsatisfiable formula but they are useful to 
have a short proof in SA. When considering LPHPn

2+1
n2 (G), the graphs G we need to consider, turn out to 

always have at most 2 edges of the form (p, j), (p, j′) with p ∈ P� and j, j′ ∈ H�−1. Hence, for those graphs 
G, the axioms in eq. (16) are always satisfied: one of the variables xpj1 , xpj2 , xpj3 is always set to ⊥.

Remark 5.5. We defined LPHPn
2+1

n2 (G) for specific fixed partitions H1, . . .Hn, and P1, . . . , Pn, all of size n
except for one Pj of size n +1. We could also allow P1, P2, . . . , Pn to be disjoint sets of size possibly smaller 
than n (at most n + 1 for one Pj). This would not give a more general definition of LPHPn

2+1
n2 , as long as 

for every � ∈ [n], H� = P� \ {n2 + 1}. Basically, we could add some padding to all Pjs and Hjs, until they 
have size n and change G to a graph that forces the new vertices in each part Pj to be mapped to the 
corresponding new vertex in Hj. In Theorem 5.11 we will use the LPHPn

2+1
n2 with partition sets possibly 

smaller than n and we will not use the padding.

It may be not immediately clear why LPHPn
2+1

n2 is unsatisfiable. Informally, a way to see this is to notice 

that for every pigeon p (say p ∈ P�) the axioms of LPHPn
2+1

n2 can be interpreted to state that the weight 
flying away from p is at least 2� and, for every hole h (say h ∈ H�), the weight it can accommodate is 
at most 2�. So the holes can, in total, accommodate a total weight of at most 

∑
�∈[n] n2� which is strictly 

smaller than the total weight of the pigeons flying, that is 2j +
∑

�∈[n] n2� for some j ∈ [n].

5.1. Upper bounds of LPHPn
2+1

n2 /ofLPHPn
2+m

n2 in Sherali-Adams/Nullstellensatz

In this section we show how to prove in SA the unsatisfiability of LPHPn
2+1

n2 and the unsatisfiability of 
ofLPHPn

2+1
n2 in NS.

We use the following notation. Given two polynomials p and q we write p ≡ q if p − q is a polynomial 
in the ideal generated by the Boolean axioms and it has polynomial size. The Boolean axioms in the 
ring of polynomials Z[x1, . . . , xn, ̄x1, . . . , ̄xn] are the polynomials x2

i − xi and xi + x̄i − 1 for i ∈ [n], and 
the ideal generated by them is the set of all polynomials p ∈ Z[x1, . . . , xn, ̄x1, . . . , ̄xn] of the form p =∑n

i=1 qi(x2
i − xi) + q′i(xi + x̄i − 1) for some polynomials qi, q′i ∈ Z[x1, . . . , xn, ̄x1, . . . , ̄xn].

It is immediate to see that ≡ is an equivalence relation. Moreover, given polynomials p, q, p′, q′,

• if M is a monomial, and p ≡ q then Mp ≡ Mq, and
• if p ≡ q and p′ ≡ q′, then p + p′ ≡ q + q′.

Lemma 5.6. Let N ∈ N and x1, . . . , xN , ̄x1, . . . , ̄xN be some generic variables. Let X0 = 1, Xi =
∏

�∈[i] x̄i

for i ∈ [N ] and let x̃i be the polynomial xi + x̄i − 1. By a telescopic sum we have the following algebraic 
equality
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Xi = 1 +
∑
j∈[i]

(Xj−1x̃j −Xj−1xj) , (19)

that is

Xi ≡ 1 −
∑
j∈[i]

Xj−1xj , (20)

XN ≡ 1 −
∑
�∈[N ]

x� +
∑
�∈[N ]

∑
k∈[�−1]

x�xk −
∑
�∈[N ]

∑
k∈[�−1]

∑
z∈[k−1]

x�xkxzXz−1 (21)

∑
i∈[N ]

xi ≡ 1 −XN +
∑
i∈[N ]

∑
j∈[i−1]

Xj−1xjxi . (22)

Proof. Eq. (19) follows from the fact the RHS is just a telescopic sum. Eq. (20) follows from eq. (19) and 
the definition of ≡. To obtain eq. (21) we use eq. (19) in the following chain of equalities:

XN = 1 +
∑
�∈[N ]

(X�−1x̃� − x�X�−1)

eq. (19)= 1 +
∑
�∈[N ]

(
X�−1x̃� − x�

(
1 +

∑
k∈[�−1]

(Xk−1x̃k −Xk−1xk)
))

= 1 −
∑
�∈[N ]

x� +
∑
�∈[N ]

∑
k∈[�−1]

x�xkXk−1 +
∑
�∈[N ]

(
X�−1x̃� −

∑
k∈[�−1]

x�Xk−1x̃k

)
eq. (19)= 1 −

∑
�∈[N ]

x� +
∑
�∈[N ]

∑
k∈[�−1]

x�xk

(
1 +

∑
z∈[k−1]

(Xz−1x̃z − xzXz−1)
)

+
∑
�∈[N ]

(
X�−1x̃� −

∑
k∈[�−1]

x�Xk−1x̃k

)
= 1 −

∑
�∈[m]

x� +
∑
�∈[m]

∑
k∈[�−1]

x�xk −
∑
�∈[m]

∑
k∈[�−1]

∑
z∈[k−1]

x�xkxzXz−1

+
∑
�∈[m]

(
X�−1x̃� −

∑
k∈[�−1]

(
x�Xk−1x̃k −

∑
z∈[k−1]

x�xkXz−1x̃z

))
≡ 1 −

∑
�∈[m]

x� +
∑
�∈[m]

∑
k∈[�−1]

x�xk −
∑
�∈[m]

∑
k∈[�−1]

∑
z∈[k−1]

x�xkxzXz−1 .

To prove eq. (22) notice that eq. (19) immediately implies the algebraic equality∑
i∈[N ]

xi = 1 −XN +
∑
i∈[N ]

(Xi−1x̃i + xi(1 −Xi−1))

= 1 −XN +
∑
i∈[N ]

(Xi−1x̃i +
∑

j∈[i−1]

(Xj−1xjxi −Xj−1xix̃j))

≡ 1 −XN +
∑
i∈[N ]

∑
j∈[i−1]

Xj−1xjxi . �

Lemma 5.7. Given variables a1, . . . , an, ̄a1, . . . , ̄an and b1, . . . , bm, ̄b1, . . . , ̄bn, there is a polynomial-size SA
derivation of the inequality

2
∑

ai +
∑

bj − 2 ≥ 0 (23)

i∈[n] j∈[m]



I. Bonacina, M.L. Bonet / Annals of Pure and Applied Logic 176 (2025) 103538 21
from the Boolean axioms ai + āi − 1 = 0 and bi + b̄i − 1 = 0 and the axioms⎧⎪⎪⎨⎪⎪⎩
−bibjbk ≥ 0 for all distinct i, j, k ∈ [m] ,
−
∏

i∈[n] āi
∏

j∈[m] b̄j ≥ 0 ,
−b�

∏
j∈[m]\{�} b̄j ≥ 0 for all � ∈ [m] .

There is a polynomial-size SA derivation of the inequality

2 − 2
∑
i∈[n]

ai −
∑
j∈[m]

bj ≥ 0 . (24)

from the Boolean axioms, and the axioms⎧⎪⎪⎨⎪⎪⎩
−aiaj ≥ 0 for all distinct i, j ∈ [n] ,
−aibj ≥ 0 for all i ∈ [n], j ∈ [m] ,
−bibjbk ≥ 0 for all distinct i, j, k ∈ [m] .

Proof. Let A0 = 1, B0 = 1, for every j ∈ [m] Bj,0 = 1 and, for every k ∈ [n], let Ak =
∏

�∈[k] ā�, for every 

i ∈ [m] let Bi =
∏

�∈[i] b̄� and Bj,i =
∏

�∈[i]\{j} b̄�. Lemma 5.6, with these notations, gives the following 
equivalences:

Bm ≡ 1 −
∑
j∈[m]

Bj−1bj , (25)

Bm ≡ 1 −
∑
�∈[m]

b� +
∑

�,k∈[m]
k<�

b�bk −
∑

�,k,z∈[m]
z<k<�

b�bkbzBz−1 (26)

∑
i∈[n]

ai ≡ 1 −An +
∑

i,j∈[n]
j<i

Aj−1ajai , (27)

∑
j∈[m]\{i}

bj ≡ 1 −Bi,m +
∑

j∈[m]\{i}

∑
k∈[j−1]\{i}

Bi,j−1bjbk . (28)

Multiplying (28) by bi and summing for every i ∈ [m], we get

2
∑

i,j∈[m]
i<j

bibj ≡
∑
i∈[m]

bi −
∑
i∈[m]

biBi,m +
∑

i,j,k∈[m]
i,j,kdistinct

Bi,j−1bibjbk , (29)

or, equivalently,

2
∑

i,j∈[m]
i<j

bibj −
∑
i∈[m]

bi ≡ −
∑
i∈[m]

biBi,m +
∑

i,j,k∈[m]
i,j,kdistinct

Bi,j−1bibjbk , (30)

Multiplying (27) by Bm, we get∑
i∈[n]

aiBm ≡ Bm −AnBm +
∑
i∈[n]

∑
j∈[i−1]

Aj−1ajaiBm . (31)

Now substitute for Bm in the LHS using (25) and for the first Bm on the RHS using (26). This gives,
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∑
i∈[n]

ai −
∑

i∈[n]j∈[m]

Bj−1aibj ≡ 1 −
∑
�∈[m]

b� +
∑

�,k∈[m]
k<�

b�bk −
∑

�,k,z∈[m]
z<k<�

b�bkbzBz−1

−AnBm +
∑
i∈[n]

∑
j∈[i−1]

Aj−1ajaiBm .

Which, after reordering the terms, is∑
i∈[n]

ai +
∑
�∈[m]

b� −
∑

�,k∈[m]
k<�

b�bk − 1 ≡ −
∑

i∈[n]j∈[m]

Bj−1aibj −
∑

�,k,z∈[m]
z<k<�

b�bkbzBz−1

−AnBm +
∑
i∈[n]

∑
j∈[i−1]

Aj−1ajaiBm . (32)

To conclude it is enough then to sum eq. (30) and twice (32), this gives

2
∑
i∈[n]

ai +
∑
�∈[m]

b� − 2 ≡ −2
∑

i∈[n]j∈[m]

Bj−1aibj − 2
∑

�,k,z∈[m]
z<k<�

b�bkbzBz−1

− 2AnBm + 2
∑

i,j∈[n]
j<i

Aj−1ajaiBm

−
∑
i∈[m]

biBi,m +
∑

i,j,k∈[m]
i,j,kdistinct

Bi,j−1bibjbk . (33)

This last equivalence is essentially a SA derivation (modulo the Boolean axioms) of eq. (23) from the desired 
axioms. Multiplying eq. (33) by −1 it becomes a SA derivation (modulo the Boolean axioms) of eq. (24)
from the desired axioms. �
Lemma 5.8. Given variables a1, . . . , an, ̄a1, . . . , ̄an and b1, . . . , bm, ̄b1, . . . , ̄bn, there is a polynomial-size NS
derivation of the equality

2
∑
i∈[n]

ai +
∑
j∈[m]

bj = 2 (34)

from the Boolean axioms ai + āi − 1 = 0 and bi + b̄i − 1 = 0 and the axioms⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bibjbk = 0 for all distinct i, j, k ∈ [m] ,∏
i∈[n] āi

∏
j∈[m] b̄j = 0

b�
∏

j∈[m]\{�} b̄j = 0 for all � ∈ [m]
aiaj = 0 for all distinct i, j ∈ [n] ,
aibj = 0 for all i ∈ [n], j ∈ [m] .

Proof. Immediate from eq. (33) in the previous Lemma. �
Theorem 5.9. The formula LPHPn

2+1
n2 has polynomial-size SA refutations. Also, for every bipartite graph 

G = (P �H, E) with |P | = n2 + 1, |H| = n2 and degree d, LPHPn
2+1

n2 (G) has SA-refutations of degree d.

Proof. First use Lemma 5.7. The variables ai correspond to the variables xij for i ∈ P� and j ∈ H� ∪H�+1. 
The variables bi correspond to the variables xij with i ∈ P� and j ∈ H�−1.



I. Bonacina, M.L. Bonet / Annals of Pure and Applied Logic 176 (2025) 103538 23
By Lemma 5.7 we have that the axioms of LPHPn
2+1

n2 imply, for every i ∈ [n2 + 1] with i ∈ P�, the 
inequality

2
∑

j∈H�∪H�+1

xij +
∑

j∈H�−1

xij − 2 ≥ 0 , (35)

and, for each j ∈ [n2] with j ∈ H�, the inequality

2 − 2
∑

i∈P�∪P�+1

xij −
∑

i∈P�−1

xij ≥ 0 . (36)

Eq. (35) says that the pigeon i must fly at least once into the set H� ∪H�+1 or at least twice into the set 
H�−1.

Eq. (36) says that the hole j can receive at most one pigeon from the set P� ∪ P�+1, or at most two 
pigeons from P�−1.

To conclude, we want to sum appropriate multiples of eq. (35) and eq. (36), in a way that all variables 
from (35) cancel with variables in (36), and after all the cancellations we just get some negative constant:

∑
�∈[n]
i∈P�

2�
⎛⎝ 2

∑
j∈H�∪H�+1

xij +
∑

j∈P�−1

xij − 2

⎞⎠

+
∑
�∈[n]
j∈H�

2�
⎛⎝2 − 2

∑
i∈P�∪P�+1

xij −
∑

i∈P�−1

xij

⎞⎠ ≥ 0 . (37)

Consider a variable xij in (37), with i ∈ P�.
If j ∈ H�, the coefficient of xij is 2� · 2 − 2� · 2 = 0.
If j ∈ H�+1, the coefficient of xij is 2� · 2 − 2�+1 = 0.
If j ∈ H�−1, the coefficient of xij is 2� − 2 · 2�−1 = 0.
That is, all the variables xij cancel out in (37). The constants in (37) sum to

−2
∑
�∈[n]
i∈P�

2� + 2
∑
�∈[n]
j∈H�

2� = −2j+1 ,

if the pigeon n2 + 1 was in the set Pj , since |P�| = |H�| for all � except for j where |Pj | = |Hj | + 1. That is, 
the sum in (37), after cancellations, reduces to the trivial contradiction −2j+1 ≥ 0. �

Via a similar argument, it is easy to see that ofLPHPn
2+m

n2 has polynomial-size NS refutations.

Theorem 5.10. The formula ofLPHPn
2+m

n2 has polynomial-size NS refutations. Also, for every bipartite graph 

G = (P �H, E) with |P | = n2 +m, |H| = n2 and degree d, ofLPHPn
2+m

n2 (G) has NS-refutations of degree d.

Proof. We proceed as in Theorem 5.9 but we use Lemma 5.8 instead of Lemma 5.7. We obtain

∑
�∈[n]

2�
⎛⎝ 2

∑
j∈H�∪H�+1

xij +
∑

j∈P�−1

xij − 2

⎞⎠

i∈P�
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+
∑
�∈[n]
j∈H�

2�
⎛⎝2 − 2

∑
i∈P�∪P�+1

xij −
∑

i∈P�−1

xij

⎞⎠ = 0 ,

which, after the same semplifications in the previous theorem reduces to the trivial contradiction

0 = −2
∑
�∈[n]
i∈P�

2� + 2
∑
�∈[n]
j∈H�

2� = −
∑
�∈[m]

2j�+1 . �

It is also easy to see that Frege1 + LPHP proves PHP in polynomial size. We don’t know whether the 
opposite is true, but we suspect it is not (see Section 6), even using higher constant depth. This would 
imply not only that LPHPn

2+1
n2 is hard to refute in unary SA, via Theorem 4.2, but even in unary w-Freged, 

via Theorem 4.4.

5.2. p-Simulations

We now prove the remaining p-simulations from Fig. 1, Fig. 2, and Fig. 3.

Theorem 5.11. For every d ∈ N, the proof system tree-like Res(d) + LPHPn
2+1

n2 (G) p-simulates degree-d
SA, where G is restricted to bipartite graphs of degree at most 3 and the tree-like Res(d) + LPHPn

2+1
n2 (G)

derivations have height 5.

Proof. The structure of the proof is similar to the proof of Theorem 4.2. By Theorem 3.5 it is enough to 
prove the result for w-Resolution. Let π = L1, . . . , Ls be a weighted Resolution refutation of a set of clauses 
{C1, . . . , Cm}. W.l.o.g. we can assume that no weighted cedent in π has weight 0 and, by Remark 3.3, we 
can assume that all the weights appearing in π are powers of 2, and all the rules have positive weights, 
except for introduction/removal. Moreover, since π is a refutation, we can assume [∅; 1] ∈ Ls. If the 
last layer of π had [∅; 2z] for some z ≥ 0, we can obtain a new last layer containing [∅; 1], using the unfold

rule.
We define a substitution instance of LPHPn

2+1
n2 (G) without padding (see Remark 5.5) such that we have 

small-depth Res(d) derivations of it.
Let S+1 be the size of π, let Ls+1 = {[∅; 1]} and let P1, . . . , PS be a partition of the multiset L1∪· · ·∪Ls+1

according to the weights of the weighted clauses, i.e. all the weighted clauses in Pj have weight 2j−1 or 
−2j−1. By assumption, all those multisets have size at most S, except P1 that has size at most S + 1. Let 
P0 = PS+1 = ∅. Let H1, . . . , HS be defined as H1 = P1 \ Ls+1, and for all � ∈ {2, . . . , S}, H� = P�. Let 
H0 = HS+1 = ∅.

Let P be the multiset given by the disjoint union of the multisets P1, . . . , PS and similarly, let H be the 
disjoint union of the multisets H1, . . . , HS . Now, for all � ∈ [S], α ∈ P�, and β ∈ H� we want to define ∧

-formulas xα,γ and xγ′,β such that we can easily derive from C1, . . . , Cm the cedents

{xαγ : γ ∈ H} (38)

{¬xαβ} for all β /∈ H�−1 ∪H� ∪H�+1 (39)

{¬xαγ , xαγ′ : γ′ ∈ H�−1 \ {γ}} for all γ ∈ H�−1 (40)

{¬xαγ1 , ¬xαγ2 , ¬xαγ3} for all distinct γ1, γ2, γ3 ∈ H�−1 , (41)

{¬xγβ , ¬xγ′β} for all distinct γ ∈ P� ∪ P�+1 , γ′ ∈ P (42)

{¬xγ1β , ¬xγ2β ,¬xγ3β} for all distinct γ1, γ2, γ3 ∈ P�−1 . (43)
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Informally, the idea is very similar to Theorem 4.2. We want the 
∧

-formulas xα,β to express that if the 
clause Cα is true then α flies to itself (as a hole), and if it is false and its weight is positive, it flies to all
the false premises used to derive it (i.e. two in the case of the fold and one in all remaining cases) or 
to its appearing sibling. If Cα is a weakening of an initial clause, it flies to itself. If the weight of Cα is 
negative, then α flies to its copy in the direction of the proof, or to its disappearing sibling. If we define a 
mapping from pigeons to holes in this way, there might be collisions due to the unfold rules. Those types 
of collisions are exactly the ones allowed to have in the LPHPn

2+1
n2 (G) principle, since they correspond to 

mapping two pigeons with mass 2j to one hole with capacity 2j+1.
Given α ∈ π ∪ Ls+1, let iα be the unique index of the level where α belongs, i.e. α ∈ Liα , and let wα

be the weight of α. Recall that given α, β in π we say that β is a premise of α if iα = iβ + 1, and between 
the layers Liβ and Liα we apply one of the inference rules of Fig. 5, with β one of the premises and α one 
of the conclusions. β is an unfold-premise of α if β is a premise of α and the rule applied is the unfold

rule. The rest of the terminology is the same as in the proof of Theorem 4.2.
Using the terminology from Theorem 4.2, the definition of xα,β is the same as the definition of pα,β , with 

just two more cases. For α ∈ P and β ∈ H, the formula xα,β is

x ∨ ¬x if α = β and α ∈ L1 ,∨
Cα if α = β and α /∈ L1 ,

¬
∨

Cβ if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β is a symm.cut-premise of α
β is a contraction-premise of α
β is a fold/unfold-premise of α
α, β are appearing siblings and wα > 0
α is a positive-copy of β

¬
∨

Cβ if
{
α, β are disappearing siblings and wα < 0
β is a negative-copy of α

¬
∨

Cα if β is a split-premise of α ,

⊥ otherwise .

Notice that if α ∈ P�, and xα,β 
= ⊥, then β ∈ H� in all cases except for the fold/unfold where 
β ∈ H�−1/H�+1.

The axioms that require a slightly different argument from the proof of Theorem 4.2 are (40)–(43). The 
axiom (40) is a weakening of � in all cases, except when α is the conclusion of a fold rule and γ is one of 
its premises. Let 2� be the weight of α, i.e. both its fold premises β, γ have weights 2�−1 and

{¬xαγ , xαγ′ : γ′ ∈ H�−1 \ {γ}} = {
∨

Cα,¬
∨

Cα} .

The axiom (41) is always a weakening of �, since all inference rules have at most 2 premises and none 
of the γ1, γ2, γ3 can be α, since α ∈ P� and the γis are in H�−1. Hence, at least one among the variables 
xαγ1 , xαγ2 , xαγ3 is ⊥ and its negation is true, i.e. �. Similarly, the axiom (43) is always a weakening of �, 
since all the rules have at most two conclusions and the γis cannot be β, for the same reason as before. 
Hence, one among the variables xγ1β , xγ2β , xγ3β is always ⊥.

To check the axioms in (42) we proceed exactly as in the cases of the injectivity in Theorem 4.2. Notice 
that, for β an unfold-premise of γ and γ′, the cedents {¬xγβ, ¬xγ′β} are not part of the cedents in eq. 
(42).
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We showed that from the clauses C1, . . . , Cm in tree-like Res(d) it is possible to derive all the clauses 
of the formula LPHPn

2+1
n2 (G) in the formulas xα,β, which is a LPHPn

2+1
n2 (G) for some graph G of degree at 

most 3. �
The construction of the formulas xα,β in the previous proof does not satisfy the onto/functional axioms 

of ofLPHP. The reason is the same we had for PHP and unary SA: the last layer Ls might contain arbitrary 
weighted clauses [Cβ; wβ ]. If they are true, they are mapped to themselves. If they are false, they are mapped 
to some hole in Ls−1. We have no guarantees that the holes in Ls receive some pigeon. If Ls satisfies the 
condition (3′) of the definition of restricted w-Resolution (Definition 3.2) we can adapt the definition of xα,β

in the proof of Theorem 5.11 to satisfy the onto/functional axioms of the leveled pigeonhole principle.

Theorem 5.12. For every d, tree-like Res(d) +ofLPHPn
2+m

n2 (G) p-simulates degree-d NS, where G is restricted 

to bipartite graphs of degree at most 3 and the height of the tree-like Res(d) + ofLPHPn
2+m

n2 (G) derivations 
is 5.

Proof. (sketch) We use the characterization of NS given by Theorem 3.5 and we reason basically as in 
Theorem 4.3. Let S be the size of the restricted weighted resolution refutation we want to p-simulate.

We know that the problematic clauses in Ls are weakening of initial axioms or a single instance of [∅; z]. 
Let z1, . . . , zlogS be the binary expansion of z.

For each zj 
= 0 we copy [∅; 2zj ] to Ls+1, and we define the formula xα,β as in Theorem 5.11. Now the 
onto axioms for the holes in Ls become weakening of initial clauses except for the holes [∅; 2zj ], which receive 
pigeons from the layer Ls+1. We construct the sets Pj and Hj as in Theorem 5.11. The semantic meaning 
of the variables xαβ is the same as in Theorem 5.11 with the adaptation already seen in Theorem 4.3, i.e. 
that if the clause in α is a weakening of an initial axiom we define xαα = x ∨¬x and xαβ = ⊥ for all β 
= α. 
Compared to Theorem 5.11 there are additional substitution instances of the axioms of ofLPHPn

2+m
n2 (G) that 

we need to show how to derive from the initial axioms. As in Theorem 4.3 this is a simple cases analysis. �
It is immediate to generalize Theorem 5.11 from clauses to Θd-cedents. The argument for this general-

ization is the same as in Theorem 4.4.

Theorem 5.13. For all d ∈ N, tree-like Freged+1 +LPHPn
2+1

n2 (G) p-simulates w-Freged, where G is restricted 
to bipartite graphs of degree at most 3.

6. Open questions

In addition to the open questions left in Fig. 1, 2 and 3, we conclude this article with a list of open 
problems.

1. Prove that depth-d Frege + LPHP is strictly weaker than Frege, say for at least d constant.
2. Refining on the problem above, prove that the formula MOD2 (see Definition 4.6) does not have polynomial 

size refutations in Freged + LPHP, say for at least d constant.
3. Does Freged + PHP, say for constant d, have polynomial size refutations of LPHP? A negative answer, 

together with Theorem 5.13, would imply super-polynomial size lower bounds for w-Freged.

7. Proof of Theorem 3.5

Theorem 7.1 (Normal form for NS/SA proofs). Given a (unary) NS derivation π of p0 as in eq. (1), there 
is a (unary) NS derivation of p0 of the form
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p0 =
�∑

i=1
cpi +

n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′′j (xj + x̄j − 1) −
�∑

i=1
q′ipi (44)

with size only polynomially larger than π, a constant c > 0 and all polynomials q′i with positive coefficients. 
Similarly, given a (unary) SA derivation π of p0 as in eq. (2), if all the pis have negative coefficients, there 
is a (unary) SA derivation of p0 of the form

p0 =
�∑

i=1
cpi +

n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′′j (xj + x̄j − 1) + q0 −
�∑

i=1
q′ipi (45)

with size only polynomially larger than π, a constant c > 0 and all polynomials q′i with positive coefficients.

An analogous result appeared independently in [17, Theorem 1.5].

Proof. Let axjm be a monomial in qi. If a < 0 consider this monomial to be part of q′i (this case can only 
happen in NS). If a > 0 then we can rewrite amxjpi as

amxjpi = ampi(xj + x̄j − 1) − amx̄jpi + ampi ,

where the polynomial ampi is going to be part of r′′j and the polynomial amx̄j is going to be part of q′i. We 
then rewrite ampi in an analogous way, variable by variable. We repeat this for all the monomials in all the 
qis. This way the sum 

∑
i∈[�] qipi is rewritten as 

∑
i∈[m] cipi for some constants ci > 0 at the cost of adding 

monomials to the r′′j s and q′is. Let c = maxi∈[�] ci. We can then further rewrite 
∑

i∈[�] cipi as

∑
i∈[�]

cipi =
∑
i∈[�]

cpi −
∑
i∈[�]

(c− ci)pi .

To conclude, we just consider all monomials in (c − ci)pi as part of q′i. �
Notice that, if all the coefficients in p1, . . . , p� are negative, then the Normal Form for SA in the theorem 

above (i.e. eq. (45)) gets further simplified to

p0 =
m∑
i=1

cpi +
n∑

j=1
rj(x2

j − xj) +
n∑

j=1
r′′j (xj + x̄j − 1) + q′0 ,

for some polynomial q′0 with positive coefficients, since all monomials in − 
∑�

i=1 q
′
ipi have positive coeffi-

cients.

Proof of Theorem 3.5. Given a clause C = {xi : i ∈ I} ∪ {¬xj : j ∈ J} let M(C) be the monomial ∏
i∈I x̄i

∏
j∈J xj and vice versa, given a monomial m =

∏
i∈I x̄i

∏
j∈J xj let C(m) be the clause {xi : i ∈

I} ∪ {¬xj : j ∈ J}.
The argument is essentially the same for all the cases. Let’s see it first for NS. Suppose we have some set 

of clauses F = {C1, . . . , C�}. By Theorem 7.1 a NS refutation of F can be supposed to have the form

−z −
�′∑
i=1

wimiM(Ci) = −
�∑

i=1
wM(Ci) +

n∑
j=1

rj(x2
j − xj)

+
n∑

j=1
r′j(xj + x̄j − 1) , (46)
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for some z > 0, w, wi ≥ 0, polynomials rj , r′j , monomials mi and �′ ≥ �. If j > �, Cj is one among the 
clauses C1, . . . , C�. Recall that −M(Ci) is how the clause Ci is encoded in (semi)-algebraic proof systems.

The idea now is to interpret each monomial in eq. (46) as a weighted clause: a monomial −wm is 
interpreted as the weighted clause [C(m); w].

Given two clauses C, D, we slightly abuse notation and denote C ∪D simply as C, D. For instance, −z

is the weighted clause [∅; z] and −wimiM(Ci) is [Ci, C(mi); wi].
We can then start constructing a weighted Resolution refutation (L1, . . . , Ls) of F .
The multiset L1 is {[Ci; w] : i = 1, . . . , �} and corresponds to − 

∑�
i=1 wM(Ci). Suppose we already 

constructed Lj , then pick any binomial of the form wm(x2
j − xj), not already picked from the sum ∑n

j=1 rj(x2
j − xj), and let

Lj+1 = Lj ∪ {[C(m),¬xj ,¬xj ;−w], [C(m),¬xj ;w]} .

We need to justify how to obtain Li+1 from Li applying the rules of Fig. 5. This is immediate. We interleave 
intermediate multisets between Li and Li+1

Lj

Lj , [C(m),¬xj ,¬xj ;w], [C(m),¬xj ,¬xj ;−w]
Lj , [C(m),¬xj ;w], [C(m),¬xj ,¬xj ;−w] .

Continue this way till all the binomials from 
∑n

j=1 rj(x2
j −xj) are picked. Then continue with the trinomials 

from 
∑n

j=1 r
′
j(xj + x̄j−1). Suppose we constructed Lk, then pick any trinomial of the form wm(xj + x̄j−1), 

not already picked from the sum 
∑n

j=1 r
′
j(xj + x̄j − 1), and let

Lk+1 = Lk

∪ {[C(m),¬xj ;−w], [C(m), xj ;−w], [C(m);w]} .

Again, we need to justify how to obtain Lk+1 from Lk applying the rules of Fig. 5. Again, this again 
immediate. We interleave intermediate multisets between Lk and Lk+1

Lk

Lk, [C(m), xj ;w], [C(m), xj ;−w]
Lk, [C(m), xj ;w], [C(m), xj ;−w], [C(m),¬xj ;w], [C(m),¬xj ;−w]

Lk, [C(m);w], [C(m), xj ;−w], [C(m),¬xj ;−w] .

After we finish this process, let Ls′ the multiset we got. We exhausted all the terms from the RHS of eq. 
(46) and all the monomials, except the ones in the LHS of eq. (46), must cancel. This means that from Ls′

with some applications of the fold/unfold/removal rules we eventually get to

Ls = {[∅; z], [Ci, C(m′
i);w′

i] : i = 1, . . . , �} .

This multiset satisfies the soundness-NS condition. This concludes the proof that NS-sound weighted 
Resolution p-simulates NS.

For the case of SA the argument is completely analogous. A SA refutation of F has the form

−z −
∑

w′
im

′
i = −

�∑
wM(Ci) +

n∑
rj(x2

j − xj)

i∈J i=1 j=1
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+
n∑

j=1
r′j(xj + x̄j − 1) , (47)

for some z > 0, wi, w′
i ≥ 0, polynomials rj , r′j and monomials mi. With the same construction as above we 

arrive to a

Ls = {[∅; z], [C(m′
i);w′

i] : i ∈ I} ,

and this multiset clearly satisfies the condition that all the weights are non-negative.
The other direction of the p-simulations is easier. Given a w-Resolution refutation (L1, . . . , Ls) we want 

to construct an algebraic expression having the form of a NS/SA refutation. Let S1 =
∑

[C;w]∈L1
−wM(C). 

By assumption, all the clauses C in S1 are clauses from F . Then suppose we constructed an algebraic 
expression Si = − 

∑
[C;w]∈Li

wM(C) having the form of a NS/SA derivation.
We want then to construct Si+1. If from Li to Li+1 is applied a symmetric cut rule [C,x;w] [C,¬x;w]

[C;w] , 
then add to the sum the terms

−wM(C) + wM(C, x) + wM(C,¬x) = wM(C)(x + x̄− 1) .

If from Li to Li+1 is applied a split rule [C;w]
[C,x;w] [C,¬x;w] , then add to Si the terms

wM(C) − wM(C, x) − wM(C,¬x) = −wM(C)(x + x̄− 1) .

If from Li to Li+1 is applied a contraction rule [C,¬x,¬x;w]
[C,¬x;w] then add to Si the terms

−wM(C,¬x) + wM(C,¬x,¬x) = wM(C)(x2 − x) .

If from Li to Li+1 is applied a contraction rule [C,x,x;w]
[C,x;w] then add to Si the terms

− wM(C, x) + wM(C, x, x) = wM(C)(x̄2 − x̄)

= wM(C)(x2 − x) + (wM(C)x̄− wM(C)x)(x̄ + x− 1) .

If from Li to Li+1 is applied an excl. middle rule [x,¬x;w] then add to Si the terms

−wM(x,¬x) = −wxx̄

= −x(x + x̄− 1) − x(x2 − x) .

If Li to Li+1 is applied some other rules let Si+1 = Si.4
It is immediate to see that Si+1 constructed following the procedures above is such that Si+1 =

− 
∑

[C;w]∈Li+1
wM(C).

Then, the soundness conditions will guarantee that the final sum Ss has the form required to be a NS/SA
refutation respectively. �
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