
MaxSAT Resolution with Inclusion Redundancy
Ilario Bonacina #

UPC Universitat Politècnica de Catalunya, Spain

Maria Luisa Bonet #

UPC Universitat Politècnica de Catalunya, Spain

Massimo Lauria #

Sapienza Università di Roma, Italy

Abstract
Popular redundancy rules for SAT are not necessarily sound for MaxSAT. The works of [Bonacina-
Bonet-Buss-Lauria’24] and [Ihalainen-Berg-Järvisalo’22] proposed ways to adapt them, but required
specific encodings and more sophisticated checks during proof verification. Here, we propose a
different way to adapt redundancy rules from SAT to MaxSAT. Our rules do not require specific
encodings, their correctness is simpler to check, but they are slightly less expressive. However,
the proposed redundancy rules, when added to MaxSAT-Resolution, are already strong enough to
capture Branch-and-bound algorithms, enable short proofs of the optimal cost of notable principles
(e.g., the Pigeonhole Principle and the Parity Principle), and allow to break simple symmetries (e.g.,
XOR-ification does not make formulas harder).

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Complexity theory and logic

Keywords and phrases MaxSAT; Redundancy; MaxSAT resolution; Branch-and-bound; Pigeonhole
principle; Parity Principle

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.19

Funding Ilario Bonacina: The author was supported by grant PID2022-138506NB-C22 (PROOFS
BEYOND) funded by AEI.
Maria Luisa Bonet: The author was supported by grant PID2022-138506NB-C22 (PROOFS BE-
YOND) funded by AEI.
Massimo Lauria: The author has been supported by the project PRIN 2022 “Logical Methods in
Combinatorics” N. 2022BXH4R5 of the Italian Ministry of University and Research (MIUR).

1 Introduction

MaxSAT is the problem of finding an assignment that minimizes the number of falsified
clauses in a given CNF formula. Several variants of MaxSAT exist that, for example, allow
to give different weights to clauses, or enforce some clauses to be hard requirements for the
solution. While all state-of-the-art SAT-solvers are more or less based on the same theoretical
approach, there is more variety among state-of-the-art MaxSAT solvers, e.g., core-guided,
minimum-hitting-set, branch-and-bound, and MaxSAT Resolution [27, 4]. Here we focus
mostly on MaxSAT Resolution and we make some observations about branch-and-bound
(in Section 5). MaxSAT Resolution was first defined in [15] and proved complete for MaxSAT
in [12]. Although MaxSAT is a much harder problem than SAT, in some cases MaxSAT
solvers can be adapted to be more efficient than CDCL SAT-solvers on hard problems, for
instance dual-rail MaxSAT Resolution [10] has short proofs of the Pigeonhole Principle.

We propose new proof systems for MaxSAT by incorporating redundancy rules into
MaxSAT resolution. Redundancy rules were introduced in SAT solving to allow the intro-
duction of clauses that preserve satisfiability even though they are not logical consequences.

© Ilario Bonacina and Maria Luisa Bonet and Massimo Lauria;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ilariobonacina@upc.edu
mailto:bonet@cs.upc.edu
mailto:massimo.lauria@uniroma1.it
https://doi.org/10.4230/LIPIcs.SAT.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 MaxSAT Resolution with Inclusion Redundancy

In other words, redundant clauses formalize the notion of reasoning “without loss of gener-
ality” [29] by restricting the space of solutions without killing it entirely. The first type of
redundancy rules considered were Blocked Clauses (BC) [26] and Resolution Asymmetric
Tautologies (RAT) [23, 18]. BC, RAT and stronger redundancy rules are extensively used
in proof logging of pre-processing and in-processing of state-of-the-art SAT-solvers, and
hence are extensively studied in the literature, for instance in [16, 17, 19, 21, 24, 30]. Par-
ticularly relevant to this article is the work of Buss and Thapen [13]. Redundancy rules
strengthen significantly the Resolution proof system, for instance allowing to prove efficiently
the Pigeonhole Principle [21].

Redundancy rules for MaxSAT can only add clauses that do not increase the minimum
number of falsified clauses, and the usual redundancy checks used in SAT do not provide
any guarantees on that. Recently, some papers have proposed ways to integrate and study
redundancy rules in MaxSAT. The work of Ihalainen, Berg and Järvisalo [22], building on
[6], studies the advantage of redundancy to preprocess MaxSAT instances. Proof system
veriPB [7] includes redundancy rules, among many others. Being rooted in cutting planes,
veriPB is particularly apt at certifying optimality, and it can log the reasoning of MaxSAT
solver strategies that are way out of reach of MaxSAT resolution [5]. In contrast to these
works, the explicit goal of the of Bonacina, Buss, Bonet, Lauria [8] is to study the proof
complexity of redundancy rules for MaxSAT in a similar vein of what [13] does for SAT,
something that is beyond the scope of those other works, more focused on proof logging
actual solvers. To witness that a clause is redundant for SAT it is sufficient to provide an
appropriate variable substitution, and even that is not necessary for the weakest forms of
redundancy like BC. For MaxSAT, a proof must witness that the redundant clause preserves
optimality. In [22] the authors do not provide a polynomially checkable methods for their
most powerful rule, but they do for the simplest ones. In [7] they leverage the underlying
language cutting planes, usually strong enough to prove the redundancy of a clause explicitly.
The work in [8] gives a simple condition that is easy to check and allow to reuse all redundancy
rule from [13] in the MaxSAT setting.

The scope of this paper is to understand the power of redundancy rules in the context
of MaxSAT and MaxSAT resolution. We analyze forms of redundancy that are simple,
and yet add non-trivial power to MaxSAT resolution. In particular, we adapt the rules
from [13], namely Literal Propagation Redundancy (LPR), Subset Propagation Redundancy
(SPR), Propagation Redundancy (PR), or Substitution Redundancy (SR), to the context of
MaxSAT. For simplicity of presentation, we develop our redundancy rules in a setting where
all clauses are soft. Everything generalizes easily to a setting with soft/hard clauses. There,
the hard clauses would be manipulated by standard resolution, while the soft clauses would
be subjected to MaxSAT resolution and our new redundancy rules. That setting would make
the arguments more cumbersome, without providing any further technical insight.

We stress again that this paper does not provide strong proof systems for MaxSAT. Even
MaxSAT-Resolution +iSR, which the stronger proof system presented here, is easily simulated
by veriPB, a very strong proof system that captures most proof techniques in SAT/CP
solving and optimization. Our goal is quite the opposite: we add redundancy in the least
intrusive way possible to a simple proof system for MaxSAT, and we investigate its strength.
In this setting lower bounds could be reachable, at least for weak redundancy rules as iSPR.
On the contrary lower bounds for veriPB are way beyond the reach of current techniques.

Moreover, regarding proof logging applications, the framework we propose captures simple
branch-and-bound algorithms, it is plausible it could capture some branch-and-bound usage
from MaxCDCL [28], and can also witness some preprocessing techniques. On the other hand,

I. Bonacina and M.L. Bonet and M. Lauria 19:3

it is unlikely that MaxSAT-Resolution +iSR could capture core-guided MaxSAT. Nevertheless,
a small advantage over veriPB is that DRAT/PR verifiers can be adapted to work with our
framework with minimal effort.

The redundancy rules in [22, 8, 7] are all variants of rules LPR, SPR, PR, SR as given
in [13]. All these variants rely on a specific, although common, blocking variables encoding of
MaxSAT instances. Furthermore, every time a redundant clause is added to the proof, the
verifier must check that cost is preserved.

In this work we follow a different approach. Essentially, we show that BC and suitable
variants of LPR, SPR, PR and SR rules are already cost-preserving, thus no additional check
is necessary. Moreover, our approach works even without the blocking variable encoding.
To give a concrete idea, when studying satisfiability we say that a clause C is redundant
w.r.t. a set of clauses Γ if there exists a partial assignment α that satisfies C and such that
Γ|C |= Γ|α; that is, the set of clauses Γ|C , i.e., the clauses of Γ restricted by the assignment
which is the negation of C, logically imply all the clauses in Γ|α. In other words, if we can
find a solution of Γ assuming C is false, there is also a solution of Γ assuming the partial
assignment α. Unfortunately the relation |= is not polynomially checkable therefore the
relation is substituted with unit-propagation ⊢1, a simpler form of logical implication which
is efficiently checkable. This notion is fine for satisfiability, but unfortunately the ⊢1 relation
is not cost-preserving: the central idea in this paper is to consider ⊆ instead of ⊢1 in the
redundancy condition.

In the context of MaxSAT, we say that a clause C is redundant w.r.t. a multiset of
clauses Γ, when Γ|C ⊇ Γ|α for some α that satisfies C. Recall that inclusion between multiset
takes multiple occurrences in account. We define rules iLPR, iSPR, iPR and iSR that are the
“inclusion” versions of redundancy rules LPR, SPR, PR, and SR (Definition 3.2). There is no
inclusion version of BC since it is already defined using inclusion. This change makes the
rules immediately cost-preserving, thus avoids the extra check on the cost and the blocking
variables encoding, needed in [22, 8, 7]. The relation ⊇ is weaker than ⊢1, therefore, in
principle, our rules are formally less expressive. This does not seem to be a limitation: in the
context of SAT, all the upper bounds for hard tautologies showed in [13], while described
using the SPR rule, do not use unit-propagation but only inclusion, even if the SPR rule
would have allowed it.

Adding redundancy rules to the resolution proof system makes it stronger. We add our
new rules to the MaxSAT-Resolution proof system (Definition 3.4) and we see that indeed it
becomes more powerful: we see that some hard contradictions for MaxSAT-Resolution become
easy (the Pigeonhole Principle and the Parity Principle, Theorem 4.3 and Theorem 4.4 resp.),
and we show that we can “undo” the effect of xorifications (Theorem 4.5). Both the Pigeonhole
Principle and the Parity Principle are exponentially hard for MaxSAT-Resolution, since a
MaxSAT-Resolution proof of cost at least 1 is also, syntactically, a Resolution refutation, and
the principles above are exponentially hard for Resolution [14].

One goal of proof systems for MaxSAT is to capture the reasoning of MaxSAT solvers and
it turns out that the iPR rule is quite apt at logging Branch-and-Bound (BnB) approaches to
optimization. In its simplest form, the BnB approach explores the possible assignments for
a CNF formula in a tree-like fashion, in order to find one that satisfies the largest number
of clauses, cutting the branches that are bound to give solutions worse than the best one
discovered so far. This works well in many scenarios, but historically has not performed
well on MaxSAT industrial instances. Recently, though, a better integration with CDCL
has made BnB competitive again [28]. As a proof of concept we show how the basic BnB
approach can be simulated in MaxSAT-Resolution+iPR.

SAT 2024

19:4 MaxSAT Resolution with Inclusion Redundancy

Structure of the Paper
Section 2 contains notation and preliminaries. In Section 3 we introduce the redundancy
rules for MaxSAT and proof systems for MaxSAT based on them. Section 4 showcases the
strength of the system. We give short refutation of the Pigeonhole Principle, the Parity
Principle, and show how to undo xor-ifications. In Section 5 we show how to simulate in the
system Branch-and-bound algorithms. Finally, Section 6 contains some concluding remarks
and open problems.

2 Preliminaries

Basic Notation For n ∈ N, let [n] = {1, . . . , n}. We denote with capital Roman or Greek
letters sets and multisets. The size of a multiset S is |S|, the number of elements in S

(counted with multiplicity). Given two multisets S, T , S is included in T (S ⊆ T) if each
element of S appears in T with multiplicity at least the multiplicity it had in S.

A Boolean variable x is a variable that takes values ⊤ (true) or ⊥ (false). A literal is a
Boolean variable x or its negation x. We consider fixed a finite set X of Boolean variables
and let X = { x | x ∈ X }. A clause is a finite disjunction of literals. A clause D is a
weakening of a clause C if D = C ∨ C ′ for some clause C ′. The empty disjunction is ⊥.

A map σ : X ∪ X ∪ {⊤, ⊥} → X ∪ X ∪ {⊤, ⊥} is a substitution if σ is the identity on
{⊤, ⊥}, and for each x ∈ X, σ(x) = σ(x), where ⊤ = ⊥, ⊥ = ⊤, and for each Boolean
variable x, x = x. The composition σ ◦ τ of two substitutions σ, τ is also a substitution,
where σ ◦ τ(v) = σ(τ(v)) for every v ∈ X ∪ X ∪ {⊤, ⊥}.

A substitution σ is an assignment if for every ℓ ∈ X ∪X, either σ(ℓ) = ℓ or σ(ℓ) ∈ {⊤, ⊥}.
An assignment τ extends an assignment σ if σ−1({⊤, ⊥}) ⊆ τ−1({⊤, ⊥}). An assignment
σ is total if for every ℓ ∈ X ∪ X, σ(ℓ) ∈ {⊤, ⊥}. The domain of an assignment σ is
dom(σ) = σ−1({⊤, ⊥}).

Given a clause
∨

x∈L ℓ and a substitution σ, the restriction of C under σ is C|σ =∨
x∈L σ(ℓ), simplified using the usual logic rules (⊤ ∨ ℓ = ⊤, ℓ ∨ ℓ = ℓ, etc.). A substitution σ

satisfies a clause C if C|σ is a tautology, i.e., C|σ is a weakening either of ⊤ or x ∨ x for some
variable x. Given a clause C =

∨
ℓ∈L ℓ, we denote with C the assignment given by σ(ℓ) = ⊥

and σ(ℓ) = ⊤ if ℓ ∈ L and the identity otherwise. In particular, C|C = ⊥.
Given a set of clauses Γ and a substitution σ, the restriction of Γ under σ is the multiset

Γ|σ = {C|σ : C ∈ Γ and σ ̸|= C}. A substitution σ satisfies a multiset of clauses Γ (σ |= Γ)
if σ satisfies all the clauses in Γ, i.e., Γ|σ = ∅. A multiset of clauses Γ entails a multiset of
clauses ∆ if for every substitution σ s.t. σ |= Γ it holds σ |= ∆.

▶ Fact 1. If S, T are multisets of clauses with S ⊆ T and σ is a substitution then S|σ ⊆ T |σ.

▶ Fact 2 ([13, Lemma 1.1]). If S is a multiset of clauses and σ, τ are substitutions, then
(S|σ)|τ = S|τ◦σ.

MaxSAT and MaxSAT-Resolution Given a multiset of clauses S, MaxSAT asks to find the
maximum number of clauses in S that can be simultaneously satisfied. Equivalently, find a
total assignment mapping to ⊥ the smallest number of clauses in S possible. The cost of a
multiset of clauses S is cost(S), the minimum of size of S|α over all possible total assignments
α. Notice that for a total assignment α, S|α is a multiset of the form {⊥, . . . , ⊥}. The goal
of proof systems for MaxSAT is to show lower bounds on the cost of MaxSAT instances.
One of such systems is MaxSAT-Resolution which was introduced in [15] and proved complete
in [12]. We present the system using the rules of [2], first used in the context of MaxSAT
in [11].

I. Bonacina and M.L. Bonet and M. Lauria 19:5

▶ Definition 2.1 (MaxSAT-Resolution). A sequence of multisets (Si)i∈[m] is a derivation of
Sm from S1 in MaxSAT-Resolution if for each i ∈ [m] either

(i) Si+1 = (Si \ {C ∨ x, C ∨ x}) ∪ {C} where {C ∨ x, C ∨ x} ⊆ Si (symm. cut); or
(ii) Si+1 = (Si \ {C}) ∪ {C ∨ x, C ∨ x} where C ∈ Si (split).

The size of the derivation is
∑

i∈[m]|Si|.

It is known that MaxSAT-Resolution is sound and complete for MaxSAT:
Soundness Whenever (Si)i∈[m] is a MaxSAT-Resolution derivation, cost(S1) = cost(Sm).

Therefore, if ⊥ appears in Sm with multiplicity k, then trivially cost(Sm) ≥ k and we say
that the MaxSAT-Resolution derivation certifies cost(S1) ≥ k, since cost(S1) = cost(Sm).

Completeness Whenever cost(S1) = k there is a MaxSAT-Resolution derivation (Si)i∈[m]
where ⊥ occurs k times in Sm, and all the remaining clauses in Sm are satisfiable [12,
Theorem 10].

3 Cost-preserving rules

In the context of SAT, a clause C is redundant w.r.t. a set of clauses F if adding C to F

does not affect its satisfiability or unsatisfiability, i.e., F ∪ {C} is satisfiable if and only if F

is satisfiable [26]. In particular if F |= C, then C is redundant.
In the context of MaxSAT the intuition is similar, a clause C is redundant w.r.t. a multiset

of clauses S if adding C to S does not affect the cost. In this context, even when F |= C,
it is not clear that C is redundant w.r.t. S. The notion of redundancy for MaxSAT was
introduced in [22] in a slightly different setting than ours.

▶ Definition 3.1 (redundant clause). A clause C is redundant w.r.t. a multiset of clauses S

if cost(S) = cost(S ∪ {C}).

Notice that C is redundant w.r.t. S if and only if there exists a total assignment β with
|S|β | = cost(S) and β |= C. In particular, if C is redundant w.r.t. S, then the clause C

could be added to S with arbitrary multiplicity without changing the cost, i.e., cost(S) =
cost(S ∪ {C}) = cost(S ∪ {C, . . . , C}).

Unless P = NP, it is not polynomially checkable whether a clause C is redundant w.r.t. a
multiset of clauses S, therefore, as in the context of SAT, we consider polynomially verifiable
notions of redundancy, i.e., ways of adding redundant clauses (as per Definition 3.1) while
certifying efficiently their redundancy. In [8] the authors described a systematic way of
porting to MaxSAT the notions of efficiently certifiable redundancy already studied in the
literature of SAT [20], for example the systems SR/PR/SPR/LPR/BC . This relied on (1)
a particular form of the MaxSAT instance considered, and (2) an additional condition to
enforce the correctness for MaxSAT.

By considering limited versions of the rules SR/PR/SPR/LPR/BC, we show a conceptually
simpler way of adding redundancy rules to MaxSAT. This approach is alternative to the one
in [8, 22].

▶ Definition 3.2 (Inclusion Substitution Redundant, iSR). A clause C is Inclusion Substitution
Redundant (iSR) w.r.t. a multiset of clauses S if exists a substitution σ s.t.

(S ∪ {C})|σ ⊆ S|C .

If the substitution σ has some additional structure, we also have the following redundancy
rules, listed in decreasing order of generality:
Inclusion Propagation Redundant (iPR) if σ is an assignment.

SAT 2024

19:6 MaxSAT Resolution with Inclusion Redundancy

Inclusion Subset Propagation Redundant (iSPR) if σ is an assignment with the same do-
main of C. Hence σ differs from C in the value given to some variables.

Inclusion Literal Propagation Redundant (iLPR) if σ is an assignment with the same do-
main of C and differs from C in the value given to exactly one variable.

Blocked Clause (BC) if σ is an assignment with the same domain of C and differs from
C in the value given to exactly one variable x, and moreover for every clause in D ∈ S

containing the variable x, σ |= D.1

Notice that while BC and iLPR might look very similar, they are distinct concepts. For
instance, the clause C = x is iLPR w.r.t. S = {y, y ∨ x, y ∨ x} but it is not BC w.r.t. the
same set. Another redundancy rule is SBC, a generalization of BC defined in [25] which we
do not address explicity. As it happens for BC and iLPR, SBC is a valid redundancy rule for
MaxSAT and a proper special case of iSPR. For instance, the clause C = {x ∨ z} is iSPR
w.r.t. F = {y, y ∨ x, y ∨ x, y ∨ x ∨ z, y ∨ x ∨ z}, but it is not SBC (nor iLPR).

▶ Lemma 3.3. If a clause C is iSR w.r.t a multiset of clauses S, then C is redundant w.r.t.
S, i.e., cost(S) = cost(S ∪ {C}).

Proof. Clearly cost(S) ≤ cost(S ∪ {C}). To prove the other inequality, let k = cost(S) and
let β be a total assignment such that |S|β | = k. If β |= C, then we are done. Suppose
then C|β = ⊥. That is β extends C. By assumption, there is a substitution σ such that
(S∪{C})|σ ⊆ S|C . Therefore (S∪{C})|β◦σ ⊆ S|β◦C = S|β . Hence |(S∪{C})|β◦σ| ≤ |Sβ | = k,
and cost(S ∪ {C}) ≤ k. ◀

Checking whether a clause is iSR w.r.t. S, given the substitution σ, is doable in polynomial
time. Therefore we can extend any proof system for MaxSAT with a rule that introduces
iSR clauses. We now consider such extension for MaxSAT-Resolution.

▶ Definition 3.4 (MaxSAT-Resolution+ iSR). A sequence of multisets (Si)i∈[m] is a derivation
of Sm from S1 in MaxSAT-Resolution + iSR if for each i ∈ [m] either one of the cases (i), (ii)
of the definition of MaxSAT-Resolution occur, or
(iii) Si+1 = Si ∪ {C} where C is iSR w.r.t. Si;
(iv) Si+1 = Si \ {C} where C is iSR w.r.t. Si \ {C}.

Each occurrence of the rules (iii) and (iv) is accompanied by the corresponding substitution σ

witnessing the validity of the rule. The size of the derivation is
∑

i∈[m]|Si|. The definition of
MaxSAT-Resolution+R for any R ∈ {iPR, iSPR, iLPR, BC} is analogous.

We only consider the case where MaxSAT-Resolution + iSR derivation are not allowed to
introduce new variables, since introducing new variables makes the systems as strong as
Extended Resolution [26]. To be consistent with [13], the rules/systems should be called
MaxSAT-Resolution+ iSR−, where the “−” is used to indicate that the systems are not
allowed to introduce new variables. We ignore that convention to ease notation. The system
MaxSAT-Resolution + iSR is sound and complete.
Soundness Lemma 3.3 and the soundness of MaxSAT-Resolution immediately imply that

MaxSAT-Resolution + iSR is also sound, i.e., whenever (Si)i∈[m] is a MaxSAT-Resolution
+ iSR derivation, cost(S1) = cost(Sm). Therefore, as in the case of MaxSAT-Resolution,
we say that the MaxSAT-Resolution + iSR derivation certifies cost(S1) ≥ k if Sm contains
⊥ with multiplicity at least k.

1 This is not the usual definition of BC but it is equivalent, as shown in [8].

I. Bonacina and M.L. Bonet and M. Lauria 19:7

Completeness The completeness of MaxSAT-Resolution + iSR is immediate from the com-
pleteness of the system MaxSAT-Resolution.

▶ Remark 3.5. The choice of MaxSAT-Resolution in Definition 3.4 is in some sense arbitrary:
the rule iSR (i.e., items (iii) and (iv) in Definition 3.4) could be added or easily adapted
to any sound proof system for MaxSAT with substitution rules, for instance, the weighted
resolution proof system from [11]. In particular, since weighted resolution is equivalent to
Sherali-Adams, and restricted weighted resolution is equivalent to Nullstellensatz [11, 9], this
means the iSR rule could be also added to those (semi-)algebraic proof systems.
▶ Remark 3.6. Our goal is to adapt rules like SR from the SAT framework to MaxSAT.
Nevertheless the iSR rule and its restrictions iPR/iSPR/iLPR/BC still make sense for SAT. If
we apply them to sets instead of multisets, they immediately become special cases of the
original redundancy rules for SAT. For example iSR in this context is a special case of the
SR rule that we spell here for convenience. A clause C is Substitution Redundant (SR) w.r.t.
a set of clauses S if

S|C ⊢1 (S ∪ {C})|σ ,

where ⊢1 indicates unit propagation, an efficiently checkable form of entailment. To the best
of our knowledge, the iSR/iPR/iSPR/iLPR rules are presented here for the first time, both in
the context of SAT and MaxSAT. We observe, though, that the upper bounds for pigeonhole
principle, bit-pigeonhole principles, clique-coloring, parity, xor-ification, and Tseitin formulas
in [13, Section 4] are stated for the rule SPR in the case of SAT, but in fact fulfill the inclusion
condition as in iSPR. On the other hand, these results cannot be automatically adapted to
MaxSAT-Resolution+iSPR due to the MaxSAT-Resolution rule restrictions.

4 Certifying the cost of some hard tautologies

In this section we exemplify the power of MaxSAT-Resolution + iSR by (1) efficiently certifing
the optimum cost of the pigeonhole principle PHPm

n , (2) efficiently certifying the optimum
cost of the parity principle, and (3) reversing the hardness increase due to xor-ification of
CNFs. To do so we use few simple, yet useful, lemmas.

▶ Lemma 4.1. Given a clause C and multisets of clauses S and T , if there is a substitution
π such that S|π ⊆ S and C|π ∨ C is a tautology and for every clause D ∈ T , D|π ∨ C is also
a tautology, then C is iSR w.r.t. S ∪ T .

Proof. Let π such that S|π ⊆ S and C|π ∨ C is a tautology. Let σ = C ◦ π. Since C|π ∨ C is
a tautology we have C |= C|π and σ |= C. Similarly for every clause D ∈ T , σ |= D. That is

(S ∪ T ∪ {C})|σ = S|σ = S|C◦π = (S|π)|C ⊆ S|C ⊆ (S ∪ T)|C . ◀

It is well known that pure literals are blocked clauses. For convenience here we state
essentially the same fact for iLPR.

▶ Lemma 4.2. Given a multiset of clauses Γ and a literal ℓ such that ℓ does not occur in Γ.
We can derive Γ′ from Γ using the iLPR rule where Γ′ ⊆ Γ and Γ′ is a multiset not containing
any clause with the literal ℓ.

Proof. It is sufficient to consider the symmetric difference to be a single clause C ∨ ℓ and
show that C ∨ ℓ is iLPR w.r.t. to Γ. The main claim follows by repeated applications of iLPR
rules.

SAT 2024

19:8 MaxSAT Resolution with Inclusion Redundancy

Let Γ = Γ0 ∪Γℓ where Γ0 are the clauses containing neither ℓ nor ℓ, and Γℓ are the clauses
with literal ℓ. We fix σ = {C ∧ ℓ = 1}, and observe that

(Γ ∪ {C ∨ ℓ})|σ = Γ0|C = Γ0|C∧ℓ=0 ⊆ Γ|C∧ℓ=0 . ◀

4.1 Pigeonhole principle PHPm
n

Let m, n ∈ N with m > n. The propositional encoding of the Pigeonhole Principle PHPm
n

uses Boolean variables pi,j with i ∈ [m] and j ∈ [n] with intended meaning that pi,j is true
if and only if the pigeon i flies to hole j. For i < k let the injectivity axiom Inji,k,j be the
clause pi,j ∨ pk,j , expressing that the two pigeons i, k cannot fly at the same time to hole j;
and let the totality axiom Toti,n be the clause

∨
j∈[n] pi,j , expressing that the pigeon i must

fly somewhere among the n holes. The CNF encoding of Pigeonhole Principle is

PHPm
n = {Toti,n | i ∈ [m]} ∪ {Inji,k,j | i, k ∈ [m], j ∈ [n] and i < k} .

An assignment that maps the first n pigeons to the n holes, and leaves the other pigeons
unassigned, falsifies m − n totality axioms and no injectivity axioms. Hence cost(PHPm

n) ≤
m − n, and we can prove that this is optimal in MaxSAT-Resolution + iSR.

▶ Theorem 4.3. There is a polynomial size derivation in MaxSAT-Resolution + iSR showing
that cost(PHPm

n) ≥ m − n.

Proof. It is enough to show how to derive PHPm−1
n−1 from PHPm

n , since repeating this process
n times gives PHPm−n

0 . This latter formula contains no other clauses than m − n totality
axioms Toti,0, that are indeed copies of the empty clause ⊥. This would conclude the proof.

To derive PHPm−1
n−1 from PHPm

n we use iSR to enforce one by one all the pigeons of index
below m not to fly into hole n. Namely for 1 ≤ i ≤ m we have the intermediate sets

Γi =
((

PHPm
n \ {Injℓ,k,n : ℓ < i and k ̸= ℓ}

)
\ {Totℓ,n : ℓ < i}

)
∪ {Totℓ,n−1 : ℓ < i} ,

In particular, Γ1 = PHPm
n and Γm = PHPm−1

n−1 ∪ {Totm,n}. The variable xm,n appears only
in Totm,n therefore, by Lemma 4.2, this clause can be removed from Γm to get PHPm−1

n−1 .
Suppose now 1 ≤ i < m, we have the database of clauses is Γi and we want to obtain Γi+1.

Step 1 The clause C = pm,n ∨ pi,n is iSR for Γi, and we witness that with permutation π

that exchanges pigeons i and m. That is, π(pm,j) = pi,j , π(pi,j) = pm,j , π(pm,j) = pi,j and
π(pi,j) = pm,j for every j ∈ [n]. On the other variables π is the identity. The permutation π

maps Γi to itself: totality axioms Totm,n and Toti,n are both in Γi−1 and get swapped; the
injectivity axioms Injℓ,k,n in Γi all have ℓ, k ≥ i, therefore π maps this set of axioms to itself,
the set of remaining axioms is also mapped to itself. Applying Lemma 4.1 with T = ∅ we get
that pm,n ∨ pi,n is iSR wrt Γi. Once we add pm,n ∨ pi,n to Γi, we cut it with the injectivity
axiom Inji,m,n to get pi,n. Now the database of clauses is Γi \ {Inji,m,n} ∪ {pi,n}.
Step 2 To cut pi,n with Toti,n, i.e.,

∨
j∈[n] pi,j we need first to split pi,n repeatedly getting

the database of clauses(
Γi \ {Inji,m,n}

)
∪{pi,n ∨

(∨
ℓ∈[j−1]

pi,ℓ

)
∨pi,j : j ∈ [n−1]}∪{pi,n ∨pi,1 ∨pi,2 ∨· · ·∨pi,n−1} .

Now cut pi,n ∨ pi,1 ∨ pi,2 ∨ · · · ∨ pi,n−1 with the totality axiom Toti,n to obtain Toti,n−1 and
the database of clauses

∆ =
(
Γi \ {Inji,m,n, Toti,n}

)
∪ {Toti,n−1} ∪ {pi,n ∨

(∨
ℓ∈[j−1]

pi,ℓ

)
∨ pi,j : j ∈ [n − 1]} .

I. Bonacina and M.L. Bonet and M. Lauria 19:9

Step 3 The database ∆ only contains variable pi,n with negative polarity, hence, Lemma 4.2
allows to remove all the clauses containing pi,n, and get the database of clauses((

Γi \ {Inji,k,n : i < k}
)

\ {Toti,n}
)

∪ {Toti,n−1} = Γi+1 . ◀

The proof of Theorem 4.3 is a generalization of the argument to prove efficiently the
unsatisfiability of PHPn+1

n in [13, Example 1.4], which in turn is based on [20].

4.2 Parity principle
The Parity Principle claims that there is a perfect matching between an odd number of
elements. The propositional encoding of this principle (Parityn) is minimally unsatisfiable,
and here we show that it has a short proof in MaxSAT-Resolution+ iSR. This is interesting
since the formula is hard for Sherali-Adams and Sum-of-Squares proof systems [3, 1].

The set of clauses Parityn has Boolean variables x{i,j} for i, j ∈ [n] with i ̸= j, where
x{i,j} means that elements i and j are matched together. To ease the notation we use xi,j

and xj,i as alternative notations for x{i,j}. For each i, n′ ∈ [n] we define the set of clauses

AtLeastn′

i =
∨

j∈[n′]\{i}

xi,j AtMostn′

i = {xi,j ∨ xi,j′ : j, j′ ∈ [n′], i, j, j′ all distinct} .

Their informal meaning is that the element i matches with at least and at most one distinct
element in [n′] respectively. The set of clauses Parityn is then

Parityn = {AtMostn
i , AtLeastn

i : i ∈ [n]} .

For n odd, there is an assignment of the variables satisfying all but one clause, that is Parityn

is minimally unsatisfiable.

▶ Theorem 4.4. For odd n, there is a polynomial size derivation in MaxSAT-Resolution
+ iSR showing that cost(Parityn) ≥ 1.

Proof. The strategy of the proof is to start with a clauses of Parityn and deduce from it the
clauses of Parityn−2. Since n is odd at some point we get to Parity1, which contains AtLeast1

1
which is the empty disjunction, i.e., ⊥.

To reduce Parityn to Parityn−2 we enforce the elements n − 1 and n to match.
Step 1 Derive clauses Ci = xn,i ∨ xn,(n−1) for every 1 ≤ i ≤ n − 2 in this order one by one.
To derive the clause Ci we use Lemma 4.1 with S = Parityn and T = {Cj : j < i}. As
witnessing substitution we use π, the variable permutation induced by swapping indices i

and n − 1. By symmetry Parityn|π = Parityn. Then, observe that the clause Ci|π and all
clauses Cj |π for Cj ∈ T contain the literal xn,i, while Ci contains xn,i. Therefore Ci|π ∨ Ci

and all Cj |π ∨ Ci are tautologies and Lemma 4.1 applies.
Step 2 Derive clauses Di = x(n−1),i ∨ x(n−1),n for every 1 ≤ i ≤ n − 2 in this order, using
almost the same strategy of Step 1. To derive the clause Di we again use Lemma 4.1 with
substitution π induced by the variable permutation induced by swapping indices i and n.
Everything works as in the previous paragraph, S = Parityn and

T = {Dj : j < i} ∪ {Ck : k ∈ [n − 2]} .

Clause Di|π contains the literal x(n−1),i and the same happens for all Dj |π with j < i, and
for all Ck|π with k ∈ [n − 2]. Hence, as in Step 1, all Dj |π ∨ Di with j ≤ i and all Ck|π ∨ Di

with k ∈ [n − 2] are tautologies, and Lemma 4.1 applies. The current database of clauses is

Γ = Parityn ∪ {Ci : i ∈ [n − 2]} ∪ {Dj : j ∈ [n − 2]} .

SAT 2024

19:10 MaxSAT Resolution with Inclusion Redundancy

Step 3 For all i ∈ [n − 2] we do a symmetric cut between the clause Ci = xn,i ∨ xn,(n−1),
introduced in Step 2, and the Parityn clause xn,i ∨ xn,(n−1), to obtain the set of unit clauses

{xn,i : i ∈ [n − 2]} ,

consuming all the clauses of the form Ci and all the clauses xn,i ∨ xn,(n−1) with i ∈ [n − 2].
Similarly, for all j ∈ [n−2] we do a symmetric cut between the clause Dj = x(n−1),j ∨x(n−1),n,
introduced in Step 1, and the Parityn clause x(n−1),j ∨x(n−1),n, to obtain the set of unit clauses

{x(n−1),j : j ∈ [n − 2]} ,

consuming from Γ all the clauses of the form Dj and all the clauses x(n−1),j ∨ x(n−1),n with
j ∈ [n − 2]. As a result the current database of clauses is

Γ′ = (Parityn\{x(n−1),i∨x(n−1),n, xn,i∨xn,(n−1) : i ∈ [n−2]})∪{xi,(n−1), xi,n : i ∈ [n−2]} .

Step 4 In Γ′ literal xn,n−1 does not occur, so we can use Lemma 4.2 to remove both
AtLeastn

n−1 and AtLeastn
n from Γ′. The clause database becomes

Γ′′ = {AtMostn−2
i , AtLeastn

i : i ∈ [n − 2]} ∪ {xi,(n−1), xi,n : i ∈ [n − 2]} .

Step 5 To conclude the derivation of Parityn−2 we need to shorten the all the clauses
AtLeastn

i into AtLeastn−2
i for each i ∈ [n − 2]. We show how to derive AtLeastn−1

i from unit
xi,n and AtLeastn

i . The same procedure then works to get AtLeastn−2
i from unit xi,n−1 and

AtLeastn−1
i .

First split xi,n into xi,1 ∨ xi,n and xi,1 ∨ xi,n, then the latter clause into xi,1 ∨ xi,2 ∨ xi,n

and xi,1 ∨ xi,2 ∨ xi,n, and so on up to get
∨

j∈[n−1]\{i} xi,j ∨ xi,n. We do symmetric cut
between this last clause and AtLeastn

i to get AtLeastn−1
i . Notice that all intermediate clauses

from the splits left in the clause database contain the literal xi,n.
Repeating this procedure using the unit clause xi,n−1 and AtLeastn−1

i gives AtLeastn−2
i

and several intermediate clauses containing literal xi,n−1.
We do this for every i ∈ [n − 2], so that in the clause database we have Parityn−2 plus

clauses containing literals of the form either xi,n−1 or xi,n. We can remove all such clauses
using Lemma 4.2 because the opposites of these literals do not occur in Parityn−2. This
concludes the derivation of Parityn−2. ◀

Therefore, a consequence of Theorem 4.4 is that neither Sherali-Adams nor Sum-of-Squares
as proof systems for MaxSAT can simulate MaxSAT-Resolution + iSR.

4.3 XOR-ification
We show that MaxSAT-Resolution+iSPR can “undo” the effect of common techniques used to
make hard instances of propositional tautologies. For concreteness we do it for xor-ifications.
This is analogous to the case of SAT, where the SPR rule can be used to “undo” the effects
of xor-ifications [13, Section 4.6].

Given a multiset of clauses F , the mth xor-ification of a variable x is the set of clauses
where the variable x is substituted by the XOR of m new variables x1 ⊕ · · · ⊕ xm and
the resulting formula is expanded again as a CNF formula. The mth xor-ification of F

(denoted F [⊕m]) is the procedure above applied to all the variables of F . Notice that
cost(F) = cost(F [⊕m]).

I. Bonacina and M.L. Bonet and M. Lauria 19:11

▶ Theorem 4.5. Let F be a multiset of clauses with a MaxSAT-Resolution derivation showing
that cost(F) ≥ k in size s, then there is a MaxSAT-Resolution+iSPR derivation showing that
cost(F [⊕m]) ≥ k of size polynomial in s and the number of clauses of F [⊕m].

Proof. The idea is to remove all the symmetries among the xor-ified variables at the beginning
one by one, and then do the MaxSAT-Resolution derivation. We show how to “undo” the
xor-ification of a variable x xor-ified into x1 ⊕ x2 ⊕ · · · ⊕ xm. Without loss of generality we
assume m to be even, therefore for each clause in F of the form C ∨ x, F [⊕m] contains the
clause C ∨x1 ∨x2 ∨· · ·∨xm; similarly, for each clause in F of the form C ∨x, F [⊕m] contains
the clause C ∨ x1 ∨ x2 ∨ · · · ∨ xm. Let ℓ be the number of occurrences of the variable x in F .
Step 1 Let Γi = F [⊕m] ∪ {xj . . . xj︸ ︷︷ ︸

ℓ copies

: 2 ≤ j ≤ i}, so that Γ1 = F [⊕m]. For i ≥ 2, we see how

to derive Γi from Γi−1.
The clauses x1 ∨ xi is iSPR w.r.t. Γi−1 and x1 ∨ xi is iSPR w.r.t. Γi−1 ∪ {x1 ∨ xi}. For

the first application of the iSPR rule we set σ = {x1 := ⊤, xi := ⊥}. To check that it is a
valid application notice that for any clause C ∨ (x1 ∨ xi ∨ . . .) that gets restricted but not
satisfied in Γi−1|σ, there is another clause C ∨ (x1 ∨ xi ∨ . . .) that gets restricted in the same
way in Γi−1|{x1:=⊥,xi:=⊤}. For the second application σ = {x1 := ⊥, xi := ⊥} and we apply
a simular reasoning. In both cases we add x1 ∨ xi and x1 ∨ xi to Γi−1 with multiplicity ℓ.
Afterward, by symmetric cut we obtain ℓ copies of xi, and this gives us Γi. We keep going
until we get to Γm.
Step 2 Now in the clause database we have ℓ copies each of the sequence of unit clauses
x2, . . . , xm. A positive occurrence of original variable x in a clause C ∨ x ∈ F induces a
clause C ∨ x1 ∨ x2 ∨ · · · ∨ xm ∈ F [⊕m]. To resolve that with x2, . . . , xm we first apply splits
to the units, and eventually we can apply a series of symmetric cuts and obtain C ∨ x1. In
the same way, for C ∨ x ∈ F we work on the corresponding clause C ∨ x1 ∨ x2 ∨ · · · ∨ xm

to get clause C ∨ x1. In the end the clause database contains a copy of F up to variable
renaming. ◀

5 Simulating branch-and-bound with MaxSAT redundancy rules

Given a set of clauses F , the basic branch-and-bound (BnB) procedure explores the space
of all possible assignments for F in a depth-first way. At every node, the BnB procedure
has computed an upper bound UB and a lower bound LB: the UB is the cost of the best
solution found so far, while the LB is the number of falsified clauses in the current branch.
At the beginning of the procedure UB is the number of clauses in F and the LB is 0. At each
node the procedure compares LB and UB at that node: if LB ≥ UB the algorithm prunes
the branch, i.e., it does not continue to explore the subtree and backtracks to a previous
node, since we are exploring an assignment that we already discovered it is not optimal. If
LB < UB the algorithm instantiates one more variable and continues the exploration. The
solution is the value of UB after exploring the whole search tree.

Here we simulate the basic BnB approach via MaxSAT-Resolution+ iPR. Let S be a
multiset of clauses, let T be the BnB decision tree for S and let t be the number of leaves
of T . We identify the leaves of T with the partial assignments β1, β2, . . . , βt that label the
branches of the tree, enumerated according to the visit order. Each leaf has an associated
cost ki, which is the LB at node i, the number of clauses of S falsified by βi. Each leaf βi is
of one of two types:

Pruning: when ki ≥ kj for some 1 ≤ j < i; kj corresponds to the UB;

SAT 2024

19:12 MaxSAT Resolution with Inclusion Redundancy

Improvement: when ki < kj for all 1 ≤ j < i and each clause in S is either satisfied or
falsified by βi, because βi is a leaf. In this case ki will be the new UB.

▶ Theorem 5.1. Consider a BnB procedure for MaxSAT on clauses S and let T be the BnB
decision tree associated showing cost(S) = k. Then there is a MaxSAT-Resolution+ iPR proof
of length O(k · |T |) that cost(S) ≥ k.

Proof. Let t be the number of leaves of T , and m = |S|. First phase: the proof simulates
the BnB by considering the leaves β1, . . . , βt one by one. The derivation maintains a multiset
of clauses that forbid all leaves seen so far, except for the leaf with the current best value.
If the next leaf is pruned, then the proof adds a clause to forbid it. If the next leaf is an
improvement, then the proof forbids the leaf corresponding to the previous best value. We
will use several times the following fact.
▶ Fact 3. For any i ̸= j, assignment βj satisfies clause βi, since βi and βj must disagree on
the value of some variable.

For 1 ≤ i ≤ t, we show how to get the clause database Γi = S ∪ {β1, . . . , βi} \ {αi} where
αi is the assignment corresponding to the leaf of minimum cost among {β1, . . . , βi}. Leaf
β1 is trivially an improvement, hence Γ1 = S. To derive Γi+i from Γi we deal with the two
types of leaves separately.

If βi+1 was pruned, we forbid it by adding βi+1 to the database Γi using the iPR rule
with current best assignment αi as witness. We need to check that (Γi ∪ {βi+1})|αi ⊆ Γi|βi+1 .
By the previous Fact, all clauses in Γi \ S = {β1, . . . , βi} \ {αi} are satisfied both by αi and
by βi+1, and furthermore βi+1|αi = ⊤. The check reduces to verifying that S|αi ⊆ S|βi+1 .
The right hand side S|βi+1 contains ki+1 copies of ⊥ by definition (together possibly with
other clauses), and S|αi contains only the clause ⊥ with multiplicity at most ki+1.

If leaf βi+1 corresponds to an improvement, we forbid αi by adding αi to the database
via iPR using βi+1 as witness, that is (Γi ∪ {αi})|βi+1 ⊆ Γi|αi

. The procedure is the same as
before, but with the role of αi and βi+1 reversed. In this case Γi+1 = Γi ∪ {αi}.

Second phase: Let α be the assignment corresponding to the optimal leaf, and k be its
cost. The clause database now contains S ∪ {β1 . . . , βt} \ {α}. Our goal now is to derive
k copies of all clauses forbidding all assignments at the leaves of T . From there, we derive
k copies of ⊥ by doing symmetric cuts on the tree branches, and that would conclude the
proof.

To derive the missing k − 1 copies of clauses βi, for βi ≠ α, we use the iPR rule with α as
witnessing substitution. This is similar to the pruning step, but the right hand side of the
inclusion has even more copies of ⊥. These applications of iPR rule are correct regardless of
their order in the proof.

Now we derive k copies of α: S contains k clauses falsified by α, hence α is a weakening
of each of them. We do not have a weakening rule in our proof system, but we can
simulate it using the split rule. We explain with an example how we do it: let us say that
α = x1 ∨ x2 ∨ · · · ∨ xℓ and that C = x1 ∨ x2 ∨ · · · ∨ xj ∈ S for some j ≤ ℓ. We use the
split rule on C to get C ∨ xj+1 and C ∨ xj+1, then on the latter to get C ∨ xj+1 ∨ xj+2 and
C ∨ xj+1 ∨ xj+2, and so on. In this way we derive a copy of α from each of the k falsified
clauses, each of them in O(|α|) steps.

In total we do k(|T | − 1) applications of iPR rule, and O(k|α|) to derive the clauses
corresponding to the optimal leaf. Finally we get the k empty clauses in O(|T |) steps each,
resolving bottom to top in the tree using symmetric cuts. ◀

The division of the proof into first and second phase looks artificial, but we used it to
highlight how part of the proof can be logged during the BnB procedure. In the second phase

I. Bonacina and M.L. Bonet and M. Lauria 19:13

we use the optimum k, that is only known at the end of the procedure. As an alternative, for
any non-optimal branch βi ̸= α we could produce a sufficient number of copies of βi when we
add it, and use only k of them at the end, since the optimal branch α can only be produced
with multiplicity k (as in the previous proof). The sufficient number of copies could be the
current UB of the branch, which is always greater or equal than k. This, on the other hand,
makes the proof longer, but could be avoided using the language of weighted clauses.

6 Conclusions and open problems

We convert redundancy rules SR/PR/SPR/LPR for SAT into rules iSR/iPR/iSPR/iLPR that
are sound for MaxSAT. Adding such rules to MaxSAT-Resolution produces new proof systems.
We exemplify their strength with short proofs of the optimal cost of hard tautologies
(Section 4), and with a simulation of simple BnB procedures (Section 5). We conclude with
a list of open problems.

Can MaxSAT-Resolution+iSPR prove either cost(PHPm
n) = m − n or cost(Parityn) = 1

efficiently? Polynomial-size proofs of the unsatisfiability of PHPn+1
n and Parityn are known

for the system SPR− [13] but the arguments don’t seem to adapt to MaxSAT-Resolution
+iSPR.
Sparse versions of Pigeonhole Principle allow each pigeon to only fly into a small selection
of holes, i.e., some variables pi,j are set to ⊥. In proof systems that are closed under
variable restrictions, the sparse version is at least as easy as the standard version. But
this closure property does not hold in proof using redundancy rules, thus it is interesting
to ask whether sparse versions of pigeonhole principle are easy for MaxSAT-Resolution
+ iSR or SR−.
How does MaxSAT-Resolution + iSR compare with MaxSAT-Resolution+cost-SR from [8]?
We simulate a plain BnB in MaxSAT-Resolution + iPR. This suggests that iPR rule could
be instrumental to simulate more sophisticated BnB algorithms. For example algorithms
that integrate CDCL reasoning [28].

References
1 Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for Sums-of-Squares and

Positivstellensatz proofs. In 34th Computational Complexity Conference (CCC), volume 137,
pages 24:1–24:20, 2019. doi:10.4230/LIPIcs.CCC.2019.24.

2 Albert Atserias and Massimo Lauria. Circular (yet sound) proofs in propositional logic.
ACM Trans. Comput. Log., 24(3):20:1–20:26, 2023. Conference version appeared in SAT’19.
doi:10.1145/3579997.

3 Per Austrin and Kilian Risse. Perfect matching in random graphs is as hard as Tseitin.
TheoretiCS, 1, 2022. doi:10.46298/THEORETICS.22.2.

4 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiabiliy. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 929–991.
IOS Press, 2021. doi:10.3233/FAIA201008.

5 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, , and Dieter Vandesande.
Certified core-guided maxsat solving. In Proceedings of the 29th International Conference on
Automated Deduction (CADE-29), July 2023, 2023.

6 Jeremias Berg and Matti Järvisalo. Unifying reasoning and care-guided search for maximum
satisfiability. In 16th European Conf. on Logics in Artificial Intelligence (JELIA), pages
287–303, 2019.

SAT 2024

https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.1145/3579997
https://doi.org/10.46298/THEORETICS.22.2
https://doi.org/10.3233/FAIA201008

19:14 MaxSAT Resolution with Inclusion Redundancy

7 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,
2023. doi:10.1613/JAIR.1.14296.

8 Ilario Bonacina, Maria Luisa Bonet, Sam Buss, and Massimo Lauria. Redundancy rules for
MaxSAT. Electron. Colloquium Comput. Complex., TR24-045, 2024. URL: https://eccc.
weizmann.ac.il/report/2024/045.

9 Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy. Weighted, circular and semi-algebraic
proofs. Journal of Artificial Intelligence Research (JAIR), 79:447–482, February 2024. doi:
10.1613/jair.1.15075.

10 Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, João Marques-Silva, and Antonio Morgado.
MaxSAT resolution with the dual rail encoding. In 32nd Intl. AAAI Conference on Artificial
Intelligence (AAAI), 2018.

11 Maria Luisa Bonet and Jordi Levy. Equivalence between systems stronger than resolution.
In 23rd International Conference on Theory and Applications of Satisfiability Testing (SAT),
pages 166–181, Cham, 2020.

12 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for max-SAT. Artif. Intell.,
171(8-9):606–618, 2007.

13 Sam Buss and Neil Thapen. DRAT and propagation redundancy proofs without new variables.
Logical Methods in Computer Science, Volume 17, Issue 2, April 2021. Conference version
appeared in SAT’19.

14 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

15 Federico Heras and Javier Larrosa. New inference rules for efficient Max-SAT solving. In 21st
National Conference on Artificial Intelligence and 18th Innovative Applications of Artificial
Intelligence Conference, pages 68–73, 2006.

16 Marijn J. H. Heule and Armin Biere. What a difference a variable makes. In 24th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 75–92, 2018.

17 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design (FMCAD), pages 181–188, 2013.

18 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In 24th International Conference on Automated Deduction (CADE),
pages 345–359, 2013.

19 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing symmetry breaking
in DRAT proofs. In 25th International Conference on Automated Deduction (CADE), pages
591–606, 2015.

20 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof sys-
tems. Journal of Automated Reasoning, 64(3):533–554, 2019. Conference version appeared in
CADE’17. doi:10.1007/s10817-019-09516-0.

21 Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. PRuning through
satisfaction. In Hardware and Software: Verification and Testing - 13th International Haifa
Verification Conference (HVC), pages 179–194, 2017.

22 Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Clause redundancy and preprocessing
in maximum satisfiability. In Automated Reasoning, pages 75–94. Springer International
Publishing, 2022.

23 Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In 6th International
Joint Conference on Automated Reasoning (IJCAR), pages 355–270, 2012.

24 Benjamin Kiesl, Adrián Rebola-Pardo, and Marijn J. H. Heule. Extended resolution simulates
DRAT. In 6th International Joint Conference on Automated Reasoning (IJCAR), pages
516–531, 2018.

https://doi.org/10.1613/JAIR.1.14296
https://eccc.weizmann.ac.il/report/2024/045
https://eccc.weizmann.ac.il/report/2024/045
https://doi.org/10.1613/jair.1.15075
https://doi.org/10.1613/jair.1.15075
https://doi.org/10.1007/s10817-019-09516-0

I. Bonacina and M.L. Bonet and M. Lauria 19:15

25 Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere. Super-blocked clauses. In 8th
International Joint Conference on Automated Reasoning (IJCAR), volume 9706 of Lecture Notes
in Computer Science, pages 45–61. Springer, 2016. doi:10.1007/978-3-319-40229-1_5.

26 Oliver Kullmann. On a generalization of extended resolution. Discrete Applied Mathematics,
96-97:149–176, 1999. doi:10.1016/S0166-218X(99)00037-2.

27 Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 903–927. IOS Press,
2021. doi:10.3233/FAIA201007.

28 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Combining
clause learning and branch and bound for MaxSAT. In Constraint Programming (CP), volume
210, pages 38:1–38:18, 2021.

29 Adrián Rebola-Pardo and Martin Suda. A theory of satisfiability-preserving proofs in SAT
solving. In 22nd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), pages 583–603, 2018.

30 Emre Yolcu and Marijn J. H. Heule. Exponential separations using guarded extension variables.
In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference
(ITCS), volume 251 of LIPIcs, pages 101:1–101:22, 2023. doi:10.4230/LIPICS.ITCS.2023.
101.

SAT 2024

https://doi.org/10.1007/978-3-319-40229-1_5
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.3233/FAIA201007
https://doi.org/10.4230/LIPICS.ITCS.2023.101
https://doi.org/10.4230/LIPICS.ITCS.2023.101

	1 Introduction
	2 Preliminaries
	3 Cost-preserving rules
	4 Certifying the cost of some hard tautologies
	4.1 Pigeonhole principle PHPmn
	4.2 Parity principle
	4.3 XOR-ification

	5 Simulating branch-and-bound with MaxSAT redundancy rules
	6 Conclusions and open problems

